gmx make_edi |
||
Main Table of Contents | VERSION 5.0.2 |
gmx make_edi [-f [<.trr/.cpt/...>]] [-eig [<.xvg>]] [-s [<.tpr/.tpb/...>]] [-n [<.ndx>]] [-tar [<.gro/.g96/...>]] [-ori [<.gro/.g96/...>]] [-o [<.edi>]] [-nice] [-xvg ] [-mon ] [-linfix ] [-linacc ] [-radfix ] [-radacc ] [-radcon ] [-flood ] [-outfrq ] [-slope ] [-linstep ] [-accdir ] [-radstep ] [-maxedsteps ] [-eqsteps ] [-deltaF0 ] [-deltaF ] [-tau ] [-Eflnull ] [-T ] [-alpha ] [-[no]restrain] [-[no]hessian] [-[no]harmonic] [-constF ]
References:
A. Amadei, A.B.M. Linssen, B.L. de Groot, D.M.F. van Aalten and H.J.C. Berendsen; An efficient method for sampling the essential subspace of proteins., J. Biomol. Struct. Dyn. 13:615-626 (1996)
B.L. de Groot, A. Amadei, D.M.F. van Aalten and H.J.C. Berendsen; Towards an exhaustive sampling of the configurational spaces of the two forms of the peptide hormone guanylin, J. Biomol. Struct. Dyn. 13 : 741-751 (1996)
B.L. de Groot, A.Amadei, R.M. Scheek, N.A.J. van Nuland and H.J.C. Berendsen; An extended sampling of the configurational space of HPr from E. coli Proteins: Struct. Funct. Gen. 26: 314-322 (1996)
You will be prompted for one or more index groups that correspond to the eigenvectors, reference structure, target positions, etc.
-mon: monitor projections of the coordinates onto selected eigenvectors.
-linfix: perform fixed-step linear expansion along selected eigenvectors.
-linacc: perform acceptance linear expansion along selected eigenvectors. (steps in the desired directions will be accepted, others will be rejected).
-radfix: perform fixed-step radius expansion along selected eigenvectors.
-radacc: perform acceptance radius expansion along selected eigenvectors. (steps in the desired direction will be accepted, others will be rejected). Note: by default the starting MD structure will be taken as origin of the first expansion cycle for radius expansion. If -ori is specified, you will be able to read in a structure file that defines an external origin.
-radcon: perform acceptance radius contraction along selected eigenvectors towards a target structure specified with -tar.
NOTE: each eigenvector can be selected only once.
-outfrq: frequency (in steps) of writing out projections etc. to .xvg file
-slope: minimal slope in acceptance radius expansion. A new expansion cycle will be started if the spontaneous increase of the radius (in nm/step) is less than the value specified.
-maxedsteps: maximum number of steps per cycle in radius expansion before a new cycle is started.
Note on the parallel implementation: since ED sampling is a 'global' thing (collective coordinates etc.), at least on the 'protein' side, ED sampling is not very parallel-friendly from an implementation point of view. Because parallel ED requires some extra communication, expect the performance to be lower as in a free MD simulation, especially on a large number of ranks and/or when the ED group contains a lot of atoms.
Please also note that if your ED group contains more than a single protein, then the .tpr file must contain the correct PBC representation of the ED group. Take a look on the initial RMSD from the reference structure, which is printed out at the start of the simulation; if this is much higher than expected, one of the ED molecules might be shifted by a box vector.
All ED-related output of mdrun (specify with -eo) is written to a .xvg file as a function of time in intervals of OUTFRQ steps.
Note that you can impose multiple ED constraints and flooding potentials in a single simulation (on different molecules) if several .edi files were concatenated first. The constraints are applied in the order they appear in the .edi file. Depending on what was specified in the .edi input file, the output file contains for each ED dataset
* the RMSD of the fitted molecule to the reference structure (for atoms involved in fitting prior to calculating the ED constraints)
* projections of the positions onto selected eigenvectors
FLOODING:
with -flood, you can specify which eigenvectors are used to compute a flooding potential, which will lead to extra forces expelling the structure out of the region described by the covariance matrix. If you switch -restrain the potential is inverted and the structure is kept in that region.
The origin is normally the average structure stored in the eigvec.trr file. It can be changed with -ori to an arbitrary position in configuration space. With -tau, -deltaF0, and -Eflnull you control the flooding behaviour. Efl is the flooding strength, it is updated according to the rule of adaptive flooding. Tau is the time constant of adaptive flooding, high τ means slow adaption (i.e. growth). DeltaF0 is the flooding strength you want to reach after tau ps of simulation. To use constant Efl set -tau to zero.
-alpha is a fudge parameter to control the width of the flooding potential. A value of 2 has been found to give good results for most standard cases in flooding of proteins. α basically accounts for incomplete sampling, if you sampled further the width of the ensemble would increase, this is mimicked by α > 1. For restraining, α < 1 can give you smaller width in the restraining potential.
RESTART and FLOODING: If you want to restart a crashed flooding simulation please find the values deltaF and Efl in the output file and manually put them into the .edi file under DELTA_F0 and EFL_NULL.