.. _gmx tcaf: gmx tcaf ======== Synopsis -------- .. parsed-literal:: gmx tcaf [:strong:`-f` :emphasis:`[<.trr/.cpt/...>]`] [:strong:`-s` :emphasis:`[<.tpr/.gro/...>]`] [:strong:`-n` :emphasis:`[<.ndx>]`] [:strong:`-ot` :emphasis:`[<.xvg>]`] [:strong:`-oa` :emphasis:`[<.xvg>]`] [:strong:`-o` :emphasis:`[<.xvg>]`] [:strong:`-of` :emphasis:`[<.xvg>]`] [:strong:`-oc` :emphasis:`[<.xvg>]`] [:strong:`-ov` :emphasis:`[<.xvg>]`] [:strong:`-b` :emphasis:`<time>`] [:strong:`-e` :emphasis:`<time>`] [:strong:`-dt` :emphasis:`<time>`] [:strong:`-[no]w`] [:strong:`-xvg` :emphasis:`<enum>`] [:strong:`-[no]mol`] [:strong:`-[no]k34`] [:strong:`-wt` :emphasis:`<real>`] [:strong:`-acflen` :emphasis:`<int>`] [:strong:`-[no]normalize`] [:strong:`-P` :emphasis:`<enum>`] [:strong:`-fitfn` :emphasis:`<enum>`] [:strong:`-beginfit` :emphasis:`<real>`] [:strong:`-endfit` :emphasis:`<real>`] Description ----------- ``gmx tcaf`` computes tranverse current autocorrelations. These are used to estimate the shear viscosity, eta. For details see: Palmer, Phys. Rev. E 49 (1994) pp 359-366. Transverse currents are calculated using the k-vectors (1,0,0) and (2,0,0) each also in the *y*- and *z*-direction, (1,1,0) and (1,-1,0) each also in the 2 other planes (these vectors are not independent) and (1,1,1) and the 3 other box diagonals (also not independent). For each k-vector the sine and cosine are used, in combination with the velocity in 2 perpendicular directions. This gives a total of 16*2*2=64 transverse currents. One autocorrelation is calculated fitted for each k-vector, which gives 16 TCAFs. Each of these TCAFs is fitted to f(t) = exp(-v)(cosh(Wv) + 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(1 - 4 tau eta/rho k^2), which gives 16 values of tau and eta. The fit weights decay exponentially with time constant w (given with ``-wt``) as exp(-t/w), and the TCAF and fit are calculated up to time 5*w. The eta values should be fitted to 1 - a eta(k) k^2, from which one can estimate the shear viscosity at k=0. When the box is cubic, one can use the option ``-oc``, which averages the TCAFs over all k-vectors with the same length. This results in more accurate TCAFs. Both the cubic TCAFs and fits are written to ``-oc`` The cubic eta estimates are also written to ``-ov``. With option ``-mol``, the transverse current is determined of molecules instead of atoms. In this case, the index group should consist of molecule numbers instead of atom numbers. The k-dependent viscosities in the ``-ov`` file should be fitted to eta(k) = eta_0 (1 - a k^2) to obtain the viscosity at infinite wavelength. **Note:** make sure you write coordinates and velocities often enough. The initial, non-exponential, part of the autocorrelation function is very important for obtaining a good fit. Options ------- Options to specify input files: ``-f`` [<.trr/.cpt/...>] (traj.trr) Full precision trajectory: :ref:`trr` :ref:`cpt` :ref:`tng` ``-s`` [<.tpr/.gro/...>] (topol.tpr) (Optional) Structure+mass(db): :ref:`tpr` :ref:`gro` :ref:`g96` :ref:`pdb` brk ent ``-n`` [<.ndx>] (index.ndx) (Optional) Index file Options to specify output files: ``-ot`` [<.xvg>] (transcur.xvg) (Optional) xvgr/xmgr file ``-oa`` [<.xvg>] (tcaf_all.xvg) xvgr/xmgr file ``-o`` [<.xvg>] (tcaf.xvg) xvgr/xmgr file ``-of`` [<.xvg>] (tcaf_fit.xvg) xvgr/xmgr file ``-oc`` [<.xvg>] (tcaf_cub.xvg) (Optional) xvgr/xmgr file ``-ov`` [<.xvg>] (visc_k.xvg) xvgr/xmgr file Other options: ``-b`` <time> (0) Time of first frame to read from trajectory (default unit ps) ``-e`` <time> (0) Time of last frame to read from trajectory (default unit ps) ``-dt`` <time> (0) Only use frame when t MOD dt = first time (default unit ps) ``-[no]w`` (no) View output :ref:`.xvg <xvg>`, :ref:`.xpm <xpm>`, :ref:`.eps <eps>` and :ref:`.pdb <pdb>` files ``-xvg`` <enum> (xmgrace) xvg plot formatting: xmgrace, xmgr, none ``-[no]mol`` (no) Calculate TCAF of molecules ``-[no]k34`` (no) Also use k=(3,0,0) and k=(4,0,0) ``-wt`` <real> (5) Exponential decay time for the TCAF fit weights ``-acflen`` <int> (-1) Length of the ACF, default is half the number of frames ``-[no]normalize`` (yes) Normalize ACF ``-P`` <enum> (0) Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3 ``-fitfn`` <enum> (none) Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9 ``-beginfit`` <real> (0) Time where to begin the exponential fit of the correlation function ``-endfit`` <real> (-1) Time where to end the exponential fit of the correlation function, -1 is until the end .. only:: man See also -------- :manpage:`gmx(1)` More information about |Gromacs| is available at <http://www.gromacs.org/>.