Radial distribution functions ----------------------------- | :ref:`gmx rdf ` | The *radial distribution function* (RDF) or pair correlation function :math:`g_{AB}(r)` between particles of type :math:`A` and :math:`B` is defined in the following way: .. math:: \begin{array}{rcl} g_{AB}(r)&=& {\displaystyle \frac{\langle \rho_B(r) \rangle}{\langle\rho_B\rangle_{local}}} \\ &=& {\displaystyle \frac{1}{\langle\rho_B\rangle_{local}}}{\displaystyle \frac{1}{N_A}} \sum_{i \in A}^{N_A} \sum_{j \in B}^{N_B} {\displaystyle \frac{\delta( r_{ij} - r )}{4 \pi r^2}} \\ \end{array} :label: eqnrdfdefine with :math:`\langle\rho_B(r)\rangle` the particle density of type :math:`B` at a distance :math:`r` around particles :math:`A`, and :math:`\langle\rho_B\rangle_{local}` the particle density of type :math:`B` averaged over all spheres around particles :math:`A` with radius :math:`r_{max}` (see :numref:`Fig. %s ` C). .. _fig-rdfex: .. figure:: plots/rdf.* :width: 7.00000cm Definition of slices in :ref:`gmx rdf `: A. :math:`g_{AB}(r)`. B. :math:`g_{AB}(r,\theta)`. The slices are colored gray. C. Normalization :math:`\langle\rho_B\rangle_{local}`. D. Normalization :math:`\langle\rho_B\rangle_{local,\:\theta }`. Normalization volumes are colored gray. Usually the value of :math:`r_{max}` is half of the box length. The averaging is also performed in time. In practice the analysis program :ref:`gmx rdf ` divides the system into spherical slices (from :math:`r` to :math:`r+dr`, see :numref:`Fig. %s ` A) and makes a histogram in stead of the :math:`\delta`-function. An example of the RDF of oxygen-oxygen in SPC water \ :ref:`80 ` is given in :numref:`Fig. %s ` .. _fig-rdf: .. figure:: plots/rdfO-O.* :width: 8.00000cm :math:`g_{OO}(r)` for Oxygen-Oxygen of SPC-water. With :ref:`gmx rdf ` it is also possible to calculate an angle dependent rdf :math:`g_{AB}(r,\theta)`, where the angle :math:`\theta` is defined with respect to a certain laboratory axis :math:`{\bf e}`, see :numref:`Fig. %s ` B. .. math:: g_{AB}(r,\theta) = {1 \over \langle\rho_B\rangle_{local,\:\theta }} {1 \over N_A} \sum_{i \in A}^{N_A} \sum_{j \in B}^{N_B} {\delta( r_{ij} - r ) \delta(\theta_{ij} -\theta) \over 2 \pi r^2 sin(\theta)} :label: eqnrdfangleaxis1 .. math:: cos(\theta_{ij}) = {{\bf r}_{ij} \cdot {\bf e} \over \|r_{ij}\| \;\| e\| } :label: eqnrdfangleaxis2 This :math:`g_{AB}(r,\theta)` is useful for analyzing anisotropic systems. **Note** that in this case the normalization :math:`\langle\rho_B\rangle_{local,\:\theta}` is the average density in all angle slices from :math:`\theta` to :math:`\theta + d\theta` up to :math:`r_{max}`, so angle dependent, see :numref:`Fig. %s ` D.