
GROMACS Documentation
Release 2026.0-dev-20241113-4b16639

GROMACS development team

Nov 15, 2024

CONTENTS

1 Downloads 2
1.1 Source code . 2
1.2 Regression tests . 2

2 Installation guide 3
2.1 Installation guide for exotic configurations . 3

2.1.1 Special instructions for building GROMACS on less-common systems 3
2.2 Introduction to building GROMACS . 5

2.2.1 Quick and dirty installation . 5
2.2.2 Quick and dirty cluster installation . 5
2.2.3 Typical installation . 6
2.2.4 Building older versions . 6

2.3 Prerequisites . 6
2.3.1 Platform . 6
2.3.2 Compiler . 7
2.3.3 Compiling with parallelization options . 8
2.3.4 CMake . 9
2.3.5 Fast Fourier Transform library . 9
2.3.6 Other optional build components . 12

2.4 Doing a build of GROMACS . 13
2.4.1 Configuring with CMake . 13
2.4.2 Compiling and linking . 23
2.4.3 Installing GROMACS . 24
2.4.4 Getting access to GROMACS after installation . 24
2.4.5 Testing GROMACS for correctness . 24
2.4.6 Testing GROMACS for performance . 25
2.4.7 Having difficulty? . 25

2.5 Special instructions for some platforms . 26
2.5.1 Building on Windows . 26
2.5.2 Building on Cray . 26
2.5.3 Intel Xeon Phi . 26
2.5.4 NVIDIA Grace . 27

2.6 Tested platforms . 27
2.7 Support . 27

3 User guide 28
3.1 Known issues affecting users of GROMACS . 28

3.1.1 Unable to compile with CUDA 11.3 . 28
3.1.2 The deform option is not suitable for flow . 28
3.1.3 SYCL build unstable when using oneAPI with LevelZero backend 29
3.1.4 Unable to build with CUDA 11.5-11.6 and GCC 11 on Ubuntu 22.04 29
3.1.5 FFT errors with NVIDIA RTX 40xx-series GPUs and CUDA 11.7 or earlier 29
3.1.6 “Cannot find a working standard library” error with ROCm Clang 29
3.1.7 Expanded ensemble does not checkpoint correctly . 29

i

3.1.8 Compiling with GCC 12 on POWER9 architectures . 30
3.1.9 Launching multiple instances of GROMACS on the same machine with AMD GPUs . . 30

3.2 Getting started . 30
3.2.1 Flow Chart . 30
3.2.2 Setting up your environment . 32
3.2.3 Flowchart of typical simulation . 32
3.2.4 Important files . 32
3.2.5 Tutorial material . 33
3.2.6 Background reading . 34

3.3 System preparation . 34
3.3.1 Steps to consider . 34
3.3.2 Tips and tricks . 35

3.4 Managing long simulations . 35
3.4.1 Appending to output files . 36
3.4.2 Backing up your files . 36
3.4.3 Extending a .tpr file . 36
3.4.4 Changing mdp options for a restart . 37
3.4.5 Restarts without checkpoint files . 37
3.4.6 Are continuations exact? . 37
3.4.7 Reproducibility . 37

3.5 Answers to frequently asked questions (FAQs) . 38
3.5.1 Questions regarding GROMACS installation . 38
3.5.2 Questions concerning system preparation and preprocessing 38
3.5.3 Questions regarding simulation methodology . 39
3.5.4 Parameterization and Force Fields . 40
3.5.5 Analysis and Visualization . 40

3.6 Force fields in GROMACS . 41
3.6.1 AMBER . 41
3.6.2 CHARMM . 41
3.6.3 GROMOS . 42
3.6.4 OPLS . 42

3.7 Molecular dynamics parameters (.mdp options) . 42
3.7.1 General information . 42

3.8 Useful mdrun features . 84
3.8.1 Re-running a simulation . 84
3.8.2 Running a simulation in reproducible mode . 84
3.8.3 Halting running simulations . 84
3.8.4 Running multi-simulations . 85
3.8.5 Controlling the length of the simulation . 86

3.9 Getting good performance from mdrun . 86
3.9.1 Hardware background information . 86
3.9.2 Work distribution by parallelization in GROMACS . 88
3.9.3 Parallelization schemes . 88
3.9.4 Running mdrun within a single node . 91
3.9.5 Running mdrun on more than one node . 95
3.9.6 Avoiding communication for constraints . 97
3.9.7 Finding out how to run mdrun better . 97
3.9.8 Running mdrun with GPUs . 99
3.9.9 Running the OpenCL version of mdrun . 103
3.9.10 Running SYCL version of mdrun . 104
3.9.11 Running HIP version of mdrun . 104
3.9.12 Performance checklist . 104

3.10 Common errors when using GROMACS . 106
3.10.1 Common errors during usage . 106
3.10.2 Errors in pdb2gmx . 106
3.10.3 Errors in grompp . 108
3.10.4 Errors in mdrun . 112

3.11 Command-line reference . 115

ii

3.11.1 molecular dynamics simulation suite . 115
3.11.2 gmx anaeig . 122
3.11.3 gmx analyze . 125
3.11.4 gmx angle . 128
3.11.5 gmx awh . 130
3.11.6 gmx bar . 131
3.11.7 gmx bundle . 133
3.11.8 gmx check . 134
3.11.9 gmx chi . 136
3.11.10 gmx cluster . 139
3.11.11 gmx clustsize . 143
3.11.12 gmx confrms . 144
3.11.13 gmx convert-tpr . 146
3.11.14 gmx convert-trj . 147
3.11.15 gmx covar . 148
3.11.16 gmx current . 150
3.11.17 gmx density . 152
3.11.18 gmx densmap . 154
3.11.19 gmx densorder . 155
3.11.20 gmx dielectric . 157
3.11.21 gmx dipoles . 158
3.11.22 gmx disre . 161
3.11.23 gmx distance . 163
3.11.24 gmx dos . 165
3.11.25 gmx dssp . 166
3.11.26 gmx dump . 169
3.11.27 gmx dyecoupl . 170
3.11.28 gmx editconf . 171
3.11.29 gmx eneconv . 174
3.11.30 gmx enemat . 175
3.11.31 gmx energy . 177
3.11.32 gmx extract-cluster . 181
3.11.33 gmx filter . 182
3.11.34 gmx freevolume . 183
3.11.35 gmx gangle . 185
3.11.36 gmx genconf . 187
3.11.37 gmx genion . 188
3.11.38 gmx genrestr . 189
3.11.39 gmx grompp . 190
3.11.40 gmx gyrate . 193
3.11.41 gmx gyrate-legacy . 194
3.11.42 gmx h2order . 196
3.11.43 gmx hbond . 197
3.11.44 gmx hbond-legacy . 199
3.11.45 gmx helix . 202
3.11.46 gmx helixorient . 204
3.11.47 gmx help . 205
3.11.48 gmx hydorder . 205
3.11.49 gmx insert-molecules . 207
3.11.50 gmx lie . 208
3.11.51 gmx make_edi . 209
3.11.52 gmx make_ndx . 213
3.11.53 gmx mdmat . 213
3.11.54 gmx mdrun . 215
3.11.55 gmx mindist . 220
3.11.56 gmx mk_angndx . 222
3.11.57 gmx msd . 222
3.11.58 gmx nmeig . 224

iii

3.11.59 gmx nmens . 226
3.11.60 gmx nmr . 227
3.11.61 gmx nmtraj . 228
3.11.62 gmx nonbonded-benchmark . 229
3.11.63 gmx order . 231
3.11.64 gmx pairdist . 233
3.11.65 gmx pdb2gmx . 235
3.11.66 gmx pme_error . 238
3.11.67 gmx polystat . 239
3.11.68 gmx potential . 240
3.11.69 gmx principal . 242
3.11.70 gmx rama . 243
3.11.71 gmx rdf . 243
3.11.72 gmx report-methods . 246
3.11.73 gmx rms . 246
3.11.74 gmx rmsdist . 248
3.11.75 gmx rmsf . 250
3.11.76 gmx rotacf . 252
3.11.77 gmx rotmat . 253
3.11.78 gmx saltbr . 254
3.11.79 gmx sans-legacy . 255
3.11.80 gmx sasa . 257
3.11.81 gmx saxs-legacy . 259
3.11.82 gmx scattering . 260
3.11.83 gmx select . 262
3.11.84 gmx sham . 264
3.11.85 gmx sigeps . 266
3.11.86 gmx solvate . 268
3.11.87 gmx sorient . 269
3.11.88 gmx spatial . 271
3.11.89 gmx spol . 272
3.11.90 gmx tcaf . 274
3.11.91 gmx traj . 275
3.11.92 gmx trajectory . 278
3.11.93 gmx trjcat . 279
3.11.94 gmx trjconv . 281
3.11.95 gmx trjorder . 284
3.11.96 gmx tune_pme . 286
3.11.97 gmx vanhove . 291
3.11.98 gmx velacc . 292
3.11.99 gmx wham . 294
3.11.100gmx wheel . 298
3.11.101gmx x2top . 299
3.11.102gmx xpm2ps . 300
3.11.103Command-line interface and conventions . 302
3.11.104Commands by name . 303
3.11.105Commands by topic . 306
3.11.106Special topics . 312
3.11.107Command changes between versions . 320

3.12 Terminology . 325
3.12.1 Pressure . 325
3.12.2 Periodic boundary conditions . 326
3.12.3 Thermostats . 327
3.12.4 Energy conservation . 328
3.12.5 Average structure . 328
3.12.6 Blowing up . 329
3.12.7 Diagnosing an unstable system . 330
3.12.8 Molecular dynamics . 331

iv

3.12.9 Force field . 331
3.13 Environment Variables . 331

3.13.1 Output Control . 332
3.13.2 Debugging . 332
3.13.3 Performance and Run Control . 333
3.13.4 OpenCL management . 337
3.13.5 Analysis and Core Functions . 338

3.14 Floating point arithmetic . 339
3.15 Security when using GROMACS . 339
3.16 Policy for deprecating GROMACS functionality . 339

4 Short How-To guides 341
4.1 Beginners . 341

4.1.1 Resources . 341
4.2 Adding a Residue to a Force Field . 341

4.2.1 Adding a new residue . 341
4.2.2 Modifying a force field . 342

4.3 Water solvation . 342
4.4 Non water solvent . 342

4.4.1 Making a non-aqueous solvent box . 342
4.5 Mixed solvent . 343
4.6 Making Disulfide Bonds . 343
4.7 Running membrane simulations in GROMACS . 343

4.7.1 Running Membrane Simulations . 343
4.7.2 Adding waters with genbox . 344
4.7.3 External material . 344

4.8 Parameterization of novel molecules . 344
4.8.1 Exotic Species . 345

4.9 Potential of Mean Force . 345
4.10 Single-Point Energy . 346
4.11 Carbon Nanotube . 346

4.11.1 Robert Johnson’s Tips . 346
4.11.2 Andrea Minoia’s tutorial . 346

4.12 Visualization Software . 347
4.12.1 Topology bonds vs Rendered bonds . 348

4.13 Extracting Trajectory Information . 348
4.14 External tools to perform trajectory analysis . 348
4.15 Plotting Data . 348

4.15.1 Software . 349
4.16 Micelle Clustering . 349

5 Reference Manual 351
5.1 Preface and Disclaimer . 351

5.1.1 Citation information . 352
5.1.2 GROMACS is Free Software . 352

5.2 Introduction . 353
5.2.1 Computational Chemistry and Molecular Modeling . 353
5.2.2 Molecular Dynamics Simulations . 354
5.2.3 Energy Minimization and Search Methods . 356

5.3 Definitions and Units . 358
5.3.1 Notation . 358
5.3.2 MD units . 358
5.3.3 Reduced units . 359
5.3.4 Mixed or Double precision . 360

5.4 Algorithms . 361
5.4.1 Periodic boundary conditions . 361
5.4.2 The group concept . 364
5.4.3 Molecular Dynamics . 365

v

5.4.4 Shell molecular dynamics . 388
5.4.5 Constraint algorithms . 388
5.4.6 Simulated Annealing . 391
5.4.7 Stochastic Dynamics . 392
5.4.8 Brownian Dynamics . 392
5.4.9 Energy Minimization . 393
5.4.10 Normal-Mode Analysis . 394
5.4.11 Free energy calculations . 395
5.4.12 Replica exchange . 397
5.4.13 Essential Dynamics sampling . 398
5.4.14 Expanded Ensemble . 399
5.4.15 Parallelization . 399
5.4.16 Domain decomposition . 399

5.5 Interaction function and force fields . 405
5.5.1 Non-bonded interactions . 405
5.5.2 Bonded interactions . 410
5.5.3 Restraints . 422
5.5.4 Polarization . 431
5.5.5 Free energy interactions . 432
5.5.6 Methods . 439
5.5.7 Virtual interaction sites . 440
5.5.8 Long Range Electrostatics . 444
5.5.9 Long Range Van der Waals interactions . 447
5.5.10 Force field . 450

5.6 Topologies . 454
5.6.1 Particle type . 454
5.6.2 Parameter files . 456
5.6.3 Molecule definition . 459
5.6.4 Constraint algorithms . 460
5.6.5 pdb2gmx input files . 461
5.6.6 File formats . 468
5.6.7 Force field organization . 481

5.7 File formats . 483
5.7.1 Summary of file formats . 483
5.7.2 File format details . 485

5.8 Special Topics . 498
5.8.1 Free energy implementation . 498
5.8.2 Potential of mean force . 499
5.8.3 Non-equilibrium pulling . 500
5.8.4 Collective variables: the pull code . 500
5.8.5 Adaptive biasing with AWH . 505
5.8.6 Enforced Rotation . 515
5.8.7 Electric fields . 524
5.8.8 Computational Electrophysiology . 525
5.8.9 Calculating a PMF using the free-energy code . 528
5.8.10 Removing fastest degrees of freedom . 528
5.8.11 Viscosity calculation . 531
5.8.12 Shear simulations . 532
5.8.13 Tabulated interaction functions . 533
5.8.14 Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface 534
5.8.15 MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations 537
5.8.16 Using VMD plug-ins for trajectory file I/O . 541
5.8.17 Interactive Molecular Dynamics . 541
5.8.18 Embedding proteins into the membranes . 542
5.8.19 Applying forces from three-dimensional densities . 543
5.8.20 Collective Variable simulations with the Colvars module 546
5.8.21 Using PLUMED . 547
5.8.22 Neural Network Potentials . 548

vi

5.9 Run parameters and Programs . 549
5.9.1 Online documentation . 549
5.9.2 File types . 550
5.9.3 Run Parameters . 550

5.10 Analysis . 551
5.10.1 Using Groups . 551
5.10.2 Looking at your trajectory . 554
5.10.3 General properties . 554
5.10.4 Radial distribution functions . 554
5.10.5 Correlation functions . 556
5.10.6 Curve fitting in GROMACS . 557
5.10.7 Mean Square Displacement . 559
5.10.8 Bonds/distances, angles and dihedrals . 559
5.10.9 Radius of gyration and distances . 561
5.10.10 Root mean square deviations in structure . 562
5.10.11 Covariance analysis . 563
5.10.12 Dihedral principal component analysis . 564
5.10.13 Hydrogen bonds . 564
5.10.14 Protein-related items . 566
5.10.15 Interface-related items . 568

5.11 Some implementation details . 569
5.11.1 Single Sum Virial in GROMACS . 569
5.11.2 Optimizations . 572

5.12 Averages and fluctuations . 573
5.12.1 Formulae for averaging . 573
5.12.2 Implementation . 574

5.13 Bibliography . 577

6 gmxapi Python package 586
6.1 Full installation instructions . 586

6.1.1 Overview . 587
6.1.2 Background . 588
6.1.3 Installing the Python package . 590
6.1.4 Accessing gmxapi documentation . 595
6.1.5 Testing . 596
6.1.6 Troubleshooting . 596

6.2 Using the Python package . 599
6.2.1 Notes on parallelism and MPI . 599
6.2.2 Running simple simulations . 601
6.2.3 Running ensemble simulations . 601
6.2.4 Input arguments and “ensemble” syntax . 601
6.2.5 Accessing command line tools . 602
6.2.6 Preparing simulations . 602
6.2.7 Using arbitrary Python functions . 603
6.2.8 Subgraphs . 603
6.2.9 Looping . 604
6.2.10 Logging . 604
6.2.11 More . 605

6.3 gmxapi Python module reference . 605
6.3.1 Interface concepts . 606
6.3.2 gmxapi basic package . 607
6.3.3 Simulation module . 610
6.3.4 Utilities . 612
6.3.5 Status messages and Logging . 614
6.3.6 Exceptions module . 615
6.3.7 gmx.version module . 616
6.3.8 Core API . 617

vii

7 (Non-)Bonded LIBrary (NB-LIB) API 621
7.1 Guide to Writing MD Programs . 621

7.1.1 Global Definitions . 621
7.1.2 Define Particle Data . 622
7.1.3 Defining Coordinates, Velocities and Force Buffers . 622
7.1.4 Writing the MD Program . 623

8 Developer Guide 628
8.1 Contribute to GROMACS . 628

8.1.1 Checklist . 629
8.1.2 Preparing code for submission . 630
8.1.3 Alternatives . 630
8.1.4 Do you have more questions? . 630
8.1.5 Removing functionality . 630

8.2 Codebase overview . 631
8.2.1 Source code organization . 631
8.2.2 Documentation organization . 633

8.3 Build system overview . 635
8.3.1 Build types . 635
8.3.2 CMake cache variables . 636
8.3.3 External libraries . 641
8.3.4 Special targets . 641
8.3.5 Passing information to source code . 642

8.4 Change Management . 642
8.4.1 Getting started . 643
8.4.2 Labels . 644
8.4.3 Code Review . 644
8.4.4 More git tips . 646

8.5 Relocatable binaries . 648
8.5.1 Finding shared libraries . 649
8.5.2 Finding data files . 649
8.5.3 Known issues . 650

8.6 Documentation generation . 651
8.6.1 Building the GROMACS documentation . 651
8.6.2 Needed build tools . 652

8.7 Style guidelines . 653
8.7.1 Guidelines for code formatting . 653
8.7.2 Guidelines for #include directives . 654
8.7.3 Naming conventions . 655
8.7.4 Allowed language features . 657
8.7.5 Guidelines for creating meaningful issue reports . 661
8.7.6 Guidelines for formatting of git commits . 662
8.7.7 Error handling . 663

8.8 Development-time tools . 665
8.8.1 Using Doxygen . 665
8.8.2 Automation and Infrastructure . 678
8.8.3 Source tree checker scripts . 689
8.8.4 Automatic source code formatting . 692
8.8.5 Unit testing . 697
8.8.6 Physical validation . 700

8.9 Known issues relevant for developers . 702
8.9.1 Issues with GPU timer with OpenCL . 703
8.9.2 GPU emulation does not work . 703
8.9.3 OpenCL on NVIDIA Volta and later broken . 703
8.9.4 PME decomposition automated task assignment broken 703

9 Doxygen documentation 704

viii

10 C++ API 705
10.1 Public C++ API . 705

10.1.1 Overview . 705
10.1.2 Client build system support . 705
10.1.3 gmxapi CMake package . 706
10.1.4 gromacs (and gromacs$GROMACS_SUFFIX packages) 707

11 Release notes 709
11.1 GROMACS 2026 series . 709

11.1.1 Patch releases . 709
11.1.2 Major release . 709

11.2 GROMACS 2025 series . 710
11.2.1 Patch releases . 710
11.2.2 Major release . 710

11.3 Older (unmaintained) GROMACS series . 713
11.4 GROMACS 2024 series . 713

11.4.1 Patch releases . 713
11.4.2 Major release . 725

11.5 GROMACS 2023 series . 732
11.5.1 Patch releases . 732
11.5.2 Major release . 745

11.6 GROMACS 2022 series . 752
11.6.1 Patch releases . 752
11.6.2 Major release . 765

11.7 GROMACS 2021 series . 777
11.7.1 Patch releases . 777
11.7.2 Major release . 788

11.8 GROMACS 2020 series . 797
11.8.1 Patch releases . 797
11.8.2 Major release . 810

11.9 GROMACS 2019 series . 817
11.9.1 Patch releases . 817
11.9.2 Major release . 828

11.10 GROMACS 2018 series . 835
11.10.1 Patch releases . 835
11.10.2 Major release . 851

11.11 GROMACS 2016 series . 866
11.11.1 Patch releases . 866
11.11.2 Major release . 883

Python Module Index 901

ix

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The release notes can be found online at http://manual.gromacs.org/current/release-notes/index.html

CONTENTS 1

http://manual.gromacs.org/current/release-notes/index.html

CHAPTER

ONE

DOWNLOADS

This is not a release build of GROMACS, so please reference one of the GROMACS papers and the base release
of the manual.

This is not a release build of GROMACS. Please reference one of the GROMACS papers, as well as the base
release that this version is built from. Also, please state what modifcations have been performed or where the
version was sourced from.

1.1 Source code

• As ftp ftp://ftp.gromacs.org/gromacs/gromacs-2026.0-dev.tar.gz

• As https https://ftp.gromacs.org/gromacs/gromacs-2026.0-dev.tar.gz

• (md5sum unknown)

Other source code versions may be found at the web site.

1.2 Regression tests

• https://ftp.gromacs.org/regressiontests/regressiontests-2026.0.tar.gz

• (md5sum unknown)

2

ftp://ftp.gromacs.org/gromacs/gromacs-2026.0-dev.tar.gz
https://ftp.gromacs.org/gromacs/gromacs-2026.0-dev.tar.gz
https://manual.gromacs.org/
https://ftp.gromacs.org/regressiontests/regressiontests-2026.0.tar.gz

CHAPTER

TWO

INSTALLATION GUIDE

2.1 Installation guide for exotic configurations

2.1.1 Special instructions for building GROMACS on less-common systems

These instructions pertain to building GROMACS 2026.0-dev. This document is complementary to the up-to-date
installation instructions instructions.

The configurations listed here are expected to work, but are not recommended for typical users.

SYCL GPU acceleration for AMD and NVIDIA GPUs using Intel oneAPI DPC++

AMD and NVIDIA GPUs can also be used with Intel oneAPI BaseKit and Codeplay oneAPI plugins.

For most users, we recommend using CUDA (page 16) for NVIDIA GPUs and AdaptiveCpp (page 18) for AMD
GPUs instead.

With some versions of oneAPI, you might receive “The compiler you are using does not support OpenMP paral-
lelism” error from CMake. In this case, please add the following options to your CMake command:

• For oneAPI 2024.x: -DCMAKE_C_FLAGS="-isystem /opt/intel/oneapi/compiler/
latest/opt/compiler/include" -DCMAKE_CXX_FLAGS="-isystem /opt/intel/
oneapi/compiler/latest/opt/compiler/include"

• For oneAPI 2023.x: -DCMAKE_C_FLAGS="-isystem /opt/intel/oneapi/compiler/
latest/linux/compiler/include" -DCMAKE_CXX_FLAGS="-isystem /opt/intel/
oneapi/compiler/latest/linux/compiler/include"

AMD GPUs

After installing Intel oneAPI toolkit 2023.0 or newer, a compatible ROCm version, and the Codeplay plugin, set up
the environment by running source /opt/intel/oneapi/setvars.sh --include-intel-llvm
or loading an appropriate module load on an HPC system.

Then, configure GROMACS using the following command (replace gfxXYZ with the target architecture):

cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
-DSYCL_CXX_FLAGS_EXTRA='-fsycl-targets=amdgcn-amd-amdhsa;-Xsycl-

→˓target-backend;--offload-arch=gfxXYZ'

3

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html
https://developer.codeplay.com/products/oneapi/amd/home/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

NVIDIA GPUs

After installing Intel oneAPI toolkit 2023.0 or newer, a compatible CUDA version, and the Codeplay plugin, set up
the environment by running source /opt/intel/oneapi/setvars.sh --include-intel-llvm
or loading an appropriate module load on an HPC system.

Then, configure GROMACS using the following command:

cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_CLUSTER_SIZE=8 -DGMX_GPU_FFT_LIBRARY=vkfft \
-DSYCL_CXX_FLAGS_EXTRA=-fsycl-targets=nvptx64-nvidia-cuda

For more recent NVIDIA GPUs, compiling for a specific compute capability can be beneficial for per-
formance. This is possible by setting the -fsycl-targets parameter of SYCL_CXX_FLAGS_EXTRA.
For example for an Ampere architecture GPU such as the NVIDIA A100, set -DSYCL_CXX_FLAGS_-
EXTRA=-fsycl-targets=nvidia_gpu_sm_80. Possible values are given in the DPC++ user manual.

SYCL GPU acceleration for NVIDIA GPUs using AdaptiveCpp (hipSYCL)

For most users, we recommend using CUDA (page 16) for NVIDIA GPUs.

Build and install AdaptiveCpp with CUDA backend (we recommend using the mainline Clang, not the ROCm-
bundled one).

Then, use the following command to build GROMACS (make sure to use the same compiler and set target GPU
architecture instead of sm_XY):

cmake .. -DCMAKE_C_COMPILER=clang -DCMAKE_CXX_COMPILER=clang++ \
-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DHIPSYCL_TARGETS='cuda:sm_XY'

Static linking

Dynamic linking of the GROMACS executables will lead to a smaller disk footprint when installed, and so is the
default on platforms where we believe it has been tested repeatedly and found to work. In general, this includes
Linux, Windows, Mac OS X and BSD systems. Static binaries take more space, but on some hardware and/or
under some conditions they are recommended or even necessary, most commonly when you are running large
parallel simulation using MPI libraries (e.g. Cray).

• To link GROMACS binaries statically against the internal GROMACS libraries, set -DBUILD_SHARED_-
LIBS=OFF.

• To link statically against external (non-system) libraries as well, set -DGMX_PREFER_STATIC_-
LIBS=ON. Note, that in general cmake picks up whatever is available, so this option only instructs cmake
to prefer static libraries when both static and shared are available. If no static version of an external library
is available, even when the aforementioned option is ON, the shared library will be used. Also note that the
resulting binaries will still be dynamically linked against system libraries on platforms where that is the de-
fault. To use static system libraries, additional compiler/linker flags are necessary, e.g. -static-libgcc
-static-libstdc++.

• To attempt to link a fully static binary set -DGMX_BUILD_SHARED_EXE=OFF. This will prevent CMake
from explicitly setting any dynamic linking flags. This option also sets -DBUILD_SHARED_LIBS=OFF
and -DGMX_PREFER_STATIC_LIBS=ON by default, but the above caveats apply. For compilers
which don’t default to static linking, the required flags have to be specified. On Linux, this is usually
CFLAGS=-static CXXFLAGS=-static.

2.1. Installation guide for exotic configurations 4

https://developer.codeplay.com/products/oneapi/nvidia/home/
https://intel.github.io/llvm-docs/UsersManual.html
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Building on Solaris

The built-in GROMACS processor detection does not work on Solaris, so it is strongly recommended that you
build GROMACS with -DGMX_HWLOC=on and ensure that the CMAKE_PREFIX_PATH includes the path where
the hwloc headers and libraries can be found. At least version 1.11.8 of hwloc is recommended.

2.2 Introduction to building GROMACS

These instructions pertain to building GROMACS 2026.0-dev. You might also want to check the up-to-date
installation instructions.

2.2.1 Quick and dirty installation

1. Get the latest version of your C and C++ compilers.

2. Check that you have CMake version 3.28 or later.

3. Get and unpack the latest version of the GROMACS tarball.

4. Make a separate build directory and change to it.

5. Run cmake with the path to the source as an argument

6. Run make, make check, and make install

7. Source GMXRC to get access to GROMACS

Or, as a sequence of commands to execute:

tar xfz gromacs-2026.0-dev.tar.gz
cd gromacs-2026.0-dev
mkdir build
cd build
cmake .. -DGMX_BUILD_OWN_FFTW=ON -DREGRESSIONTEST_DOWNLOAD=ON
make
make check
sudo make install
source /usr/local/gromacs/bin/GMXRC

This will download and build first the prerequisite FFT library followed by GROMACS. If you already have
FFTW installed, you can remove that argument to cmake. Overall, this build of GROMACS will be correct and
reasonably fast on the machine upon which cmake ran. On another machine, it may not run, or may not run fast.
If you want to get the maximum value for your hardware with GROMACS, you will have to read further. Sadly,
the interactions of hardware, libraries, and compilers are only going to continue to get more complex.

2.2.2 Quick and dirty cluster installation

On a cluster where users are expected to be running across multiple nodes using MPI, make one installation
similar to the above, and another using -DGMX_MPI=on. The latter will install binaries and libraries named
using a default suffix of _mpi ie gmx_mpi. Hence it is safe and common practice to install this into the same
location where the non-MPI build is installed.

2.2. Introduction to building GROMACS 5

https://manual.gromacs.org/documentation/current/install-guide/index.html
https://manual.gromacs.org/documentation/current/install-guide/index.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.2.3 Typical installation

As above, and with further details below, but you should consider using the following CMake options (page 14)
with the appropriate value instead of xxx :

• -DCMAKE_C_COMPILER=xxx equal to the name of the C99 compiler (page 7) you wish to use (or the
environment variable CC)

• -DCMAKE_CXX_COMPILER=xxx equal to the name of the C++17 compiler (page 7) you wish to use (or
the environment variable CXX)

• -DGMX_MPI=on to build using MPI support (page 8)

• -DGMX_GPU=CUDA to build with NVIDIA CUDA support enabled.

• -DGMX_GPU=OpenCL to build with OpenCL support enabled.

• -DGMX_GPU=SYCL to build with SYCL support enabled (using Intel oneAPI DPC++ by default).

• -DGMX_SYCL=ACPP to build with SYCL support using AdaptiveCpp (hipSYCL), requires -DGMX_-
GPU=SYCL.

• -DGMX_SIMD=xxx to specify the level of SIMD support (page 14) of the node on which GROMACS will
run

• -DGMX_DOUBLE=on to build GROMACS in double precision (slower, and not normally useful)

• -DCMAKE_PREFIX_PATH=xxx to add a non-standard location for CMake to search for libraries, headers
or programs (page 16)

• -DCMAKE_INSTALL_PREFIX=xxx to install GROMACS to a non-standard location (page 14) (default
/usr/local/gromacs)

• -DBUILD_SHARED_LIBS=off to turn off the building of shared libraries to help with static linking
(page 4)

• -DGMX_FFT_LIBRARY=xxx to select whether to use fftw3, mkl or fftpack libraries for FFT sup-
port (page 9)

• -DCMAKE_BUILD_TYPE=Debug to build GROMACS in debug mode

2.2.4 Building older versions

Installation instructions for old GROMACS versions can be found at the GROMACS documentation page.

2.3 Prerequisites

2.3.1 Platform

GROMACS can be compiled for many operating systems and architectures. These include any distribution of
Linux, macOS or Windows, and architectures including 64-bit x86 (AMD64/x86-64), several PowerPC including
POWER9, ARM v8, and RISC-V.

2.3. Prerequisites 6

https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
http://manual.gromacs.org/documentation

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.3.2 Compiler

GROMACS can be compiled on any platform with ANSI C99 and C++17 compilers, and their respective standard
C/C++ libraries. Good performance on an OS and architecture requires choosing a good compiler. We recommend
gcc, because it is free, widely available and frequently provides the best performance.

You should strive to use the most recent version of your compiler. Since we require full C++17 support the
minimum compiler versions supported by the GROMACS team are

• GNU (gcc/libstdc++) 11

• LLVM (clang/libc++) 14

• Microsoft (MSVC) 2019

Other compilers may work (Cray, Pathscale, older clang) but do not offer competitive performance. We recom-
mend against PGI because the performance with C++ is very bad.

The Intel classic compiler (icc/icpc) is no longer supported in GROMACS. Use Intel’s newer clang-based compiler
from oneAPI, or gcc.

The xlc compiler is not supported and version 16.1 does not compile on POWER architectures for GROMACS-
2026.0-dev. We recommend to use the GCC compiler, version 9.x to 11.x. Note: there are known issues (page 28)
with GCC 12 and newer.

You may also need the most recent version of other compiler toolchain components beside the compiler itself (e.g.
assembler or linker); these are often shipped by your OS distribution’s binutils package.

C++17 support requires adequate support in both the compiler and the C++ library. The gcc and MSVC compilers
include their own standard libraries and require no further configuration. If your vendor’s compiler also manages
the standard library library via compiler flags, these will be honored. For configuration of other compilers, read
on.

On Linux, the clang compilers typically use for their C++ library the libstdc++ which comes with g++. For
GROMACS, we require the compiler to support libstc++ version 11 or higher. To select a particular libstdc++
library for a compiler whose default standard library does not work, provide the path to g++ with -DGMX_-
GPLUSPLUS_PATH=/path/to/g++. Note that if you then build a further project that depends on GROMACS
you will need to arrange to use the same compiler and libstdc++.

To build with clang and llvm’s libcxx standard library, use -DCMAKE_CXX_FLAGS=-stdlib=libc++.

If you are running on Mac OS X, Apple has unfortunately explicitly disabled OpenMP support in their Clang-based
compiler, and running without OpenMP support means you would need to use thread-MPI for any parallelism -
which is the reason the GROMACS configuration script now stops rather than just issues a warning you might
miss. Instead of turning off OpenMP, you can try to download the unsupported libomp distributed by the R project
or compile your own version - but this will likely have to be updated any time you upgrade the major Mac OS
version. Alternatively, you can download a version of gcc; just make sure you actually use your downloaded gcc
version, since Apple by default links /usr/bin/gcc to their own compiler.

For all non-x86 platforms, your best option is typically to use gcc or the vendor’s default or recommended com-
piler, and check for specialized information below.

For updated versions of gcc to add to your Linux OS, see

• Ubuntu: Ubuntu toolchain ppa page

• RHEL/CentOS: EPEL page or the RedHat Developer Toolset

2.3. Prerequisites 7

https://mac.r-project.org/openmp/
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://fedoraproject.org/wiki/EPEL

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.3.3 Compiling with parallelization options

For maximum performance you will need to examine how you will use GROMACS and what hardware you plan
to run on. Often OpenMP parallelism is an advantage for GROMACS, but support for this is generally built into
your compiler and detected automatically.

GPU support

GROMACS has excellent support for NVIDIA GPUs supported via CUDA. On Linux, NVIDIA CUDA toolkit
with minimum version 12.1 is required, and the latest version is strongly encouraged. NVIDIA GPUs with at least
NVIDIA compute capability 5.0 are required. You are strongly recommended to get the latest CUDA version and
driver that supports your hardware, but beware of possible performance regressions in newer CUDA versions on
older hardware. While some CUDA compilers (nvcc) might not officially support recent versions of gcc as the
back-end compiler, we still recommend that you at least use a gcc version recent enough to get the best SIMD
support for your CPU, since GROMACS always runs some code on the CPU. It is most reliable to use the same
C++ compiler version for GROMACS code as used as the host compiler for nvcc.

To make it possible to use other accelerators, GROMACS also includes OpenCL support as a portable GPU
backend. The minimum OpenCL version required is unknown and only 64-bit implementations are supported.
The current OpenCL implementation is recommended for use with GCN-based AMD GPUs, and on Linux we
recommend the ROCm runtime. Intel integrated GPUs are supported with the Neo drivers. OpenCL is also
supported with NVIDIA GPUs, but using the latest NVIDIA driver (which includes the NVIDIA OpenCL runtime)
is recommended. Also note that there are performance limitations (inherent to the NVIDIA OpenCL runtime). It
is not possible to support both Intel and other vendors’ GPUs with OpenCL. A 64-bit implementation of OpenCL
is required and therefore OpenCL is only supported on 64-bit platforms.

Please note that OpenCL backend does not support the following GPUs:

• NVIDIA Volta (CC 7.0, e.g., Tesla V100 or GTX 1630) or newer,

• AMD RDNA1/2/3 (Navi 1/2X,3X, e.g., RX 5500 or RX6900).

Since GROMACS 2021, SYCL support has been added. Since GROMACS 2023 the SYCL backend has matured
to have near feature parity with the CUDA backend as well as broad platform support in both aspects more versatile
than the OpenCL backend (notable exception is the Apple Silicon GPU which is only supported in OpenCL). The
current SYCL implementation can be compiled either with Intel oneAPI DPC++ compiler for Intel GPUs, or
with AdaptiveCpp compiler and ROCm runtime for AMD GPUs (GFX9, CDNA 1/2, and RDNA1/2/3). Using
other devices supported by these compilers is possible, but not recommended. Notably, SSCP/generic mode of
AdaptiveCpp is not supported.

Starting with GROMACS 2025, AMD-HIP (page 19) support has been added for running the main non-bonded
kernels on AMD devices.

It is not possible to configure several GPU backends in the same build of GROMACS.

MPI support

GROMACS can run in parallel on multiple cores of a single workstation using its built-in thread-MPI. No user
action is required in order to enable this.

If you wish to run in parallel on multiple machines across a network, you will need to have an MPI library
installed that supports the MPI 2.0 standard. That’s true for any MPI library version released since about 2009,
but the GROMACS team recommends the latest version (for best performance) of either your vendor’s library,
OpenMPI or MPICH.

To compile with MPI set your compiler to the normal (non-MPI) compiler and add -DGMX_MPI=on to the cmake
options. It is possible to set the compiler to the MPI compiler wrapper but it is neither necessary nor recommended.

2.3. Prerequisites 8

http://en.wikipedia.org/wiki/OpenMP
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/
https://www.khronos.org/sycl/
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
http://www.open-mpi.org
http://www.mpich.org

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GPU-aware MPI support

In simulations using multiple GPUs, an MPI implementation with GPU support allows communication to be per-
formed directly between the distinct GPU memory spaces without staging through CPU memory, often resulting
in higher bandwidth and lower latency communication. The only current support for this in GROMACS is with
a CUDA build targeting Nvidia GPUs using “CUDA-aware” MPI libraries. For more details, see Introduction to
CUDA-aware MPI.

To use CUDA-aware MPI for direct GPU communication we recommend using the latest OpenMPI version
(>=4.1.0) with the latest UCX version (>=1.10), since most GROMACS internal testing on CUDA-aware sup-
port has been performed using these versions. OpenMPI with CUDA-aware support can be built following the
procedure in these OpenMPI build instructions.

For GPU-aware MPI support of Intel GPUs, use Intel MPI no earlier than version 2018.8. Such a version is
found in the oneAPI SDKs starting from version 2023.0. At runtime, the LevelZero SYCL backend must be used
(setting environment variable ONEAPI_DEVICE_SELECTOR=level_zero:gpu will typically suffice) and
GPU-aware support in the MPI runtime selected.

For GPU-aware MPI support on AMD GPUs, several MPI implementations with UCX support can work, we
recommend the latest OpenMPI version (>=4.1.4) with the latest UCX (>=1.13) since most of our testing was
done using these version. Other MPI flavors such as Cray MPICH are also GPU-aware and compatible with
ROCm.

With GMX_MPI=ON, GROMACS attempts to automatically detect GPU support in the underlying MPI library
at compile time, and enables direct GPU communication when this is detected. However, there are some cases
when GROMACS may fail to detect existing GPU-aware MPI support, in which case it can be manually enabled
by setting environment variable GMX_FORCE_GPU_AWARE_MPI=1 at runtime (although such cases still lack
substantial testing, so we urge the user to carefully check correctness of results against those using default build
options, and report any issues).

2.3.4 CMake

GROMACS builds with the CMake build system, requiring at least version 3.28. You can check whether CMake
is installed, and what version it is, with cmake --version. If you need to install CMake, then first check
whether your platform’s package management system provides a suitable version, or visit the CMake installation
page for pre-compiled binaries, source code and installation instructions. The GROMACS team recommends you
install the most recent version of CMake you can.

2.3.5 Fast Fourier Transform library

Many simulations in GROMACS make extensive use of fast Fourier transforms, and a software library to perform
these is always required. We recommend FFTW (version 3 or higher only) or Intel MKL. The choice of library can
be set with cmake -DGMX_FFT_LIBRARY=<name>, where <name> is one of fftw3, mkl, or fftpack.
FFTPACK is bundled with GROMACS as a fallback, and is acceptable if simulation performance is not a priority.
When choosing MKL, GROMACS will also use MKL for BLAS and LAPACK (see linear algebra libraries
(page 21)). Generally, there is no advantage in using MKL with GROMACS, and FFTW is often faster. With
PME GPU offload support using CUDA, a GPU-based FFT library is required. The CUDA-based GPU FFT
library cuFFT is part of the CUDA toolkit (required for all CUDA builds) and therefore no additional software
component is needed when building with CUDA GPU acceleration.

2.3. Prerequisites 9

https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://developer.nvidia.com/blog/introduction-cuda-aware-mpi/
https://www.open-mpi.org/faq/?category=buildcuda
https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-reference-linux/top/environment-variable-reference/gpu-support.html
http://www.cmake.org/install/
http://www.cmake.org/install/
http://www.fftw.org
https://software.intel.com/en-us/intel-mkl

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Using FFTW

FFTW is likely to be available for your platform via its package management system, but there can be compatibility
and significant performance issues associated with these packages. In particular, GROMACS simulations are
normally run in “mixed” floating-point precision, which is suited for the use of single precision in FFTW. The
default FFTW package is normally in double precision, and good compiler options to use for FFTW when linked
to GROMACS may not have been used. Accordingly, the GROMACS team recommends either

• that you permit the GROMACS installation to download and build FFTW from source automatically for
you (use cmake -DGMX_BUILD_OWN_FFTW=ON), or

• that you build FFTW from the source code.

If you build FFTW from source yourself, get the most recent version and follow the FFTW installation guide.
Choose the precision for FFTW (i.e. single/float vs. double) to match whether you will later use mixed or double
precision for GROMACS. There is no need to compile FFTW with threading or MPI support, but it does no harm.
On x86 hardware, compile with all of --enable-sse2, --enable-avx, and --enable-avx2 flags. On
Intel processors supporting 512-wide AVX, including KNL, add --enable-avx512 too. FFTW will create a
fat library with codelets for all different instruction sets, and pick the fastest supported one at runtime. On ARM
architectures with SIMD support use --enable-neon flag; on IBM Power8 and later, use --enable-vsx
flag. If you are using a Cray, there is a special modified (commercial) version of FFTs using the FFTW interface
which can be slightly faster.

Relying on -DGMX_BUILD_OWN_FFTW=ON works well in typical situations, but does not work on Windows,
when using ninja build system, when cross-compiling, with custom toolchain configurations, etc. In such cases,
please build FFTW manually.

Using MKL

To target either Intel CPUs or GPUs, use OneAPI MKL (>=2021.3) by setting up the environment,
e.g., through source /opt/intel/oneapi/setvars.sh or source /opt/intel/oneapi/mkl/
latest/env/vars.sh or manually setting environment variable MKLROOT=/full/path/to/mkl. Then
run CMake with setting -DGMX_FFT_LIBRARY=mkl and/or -DGMX_GPU_FFT_LIBRARY=mkl.

Using oneMKL Interface Library

The oneMKL interface library enables the SYCL backend for GROMACS with cuFFT, rocFFT, or closed-source
oneMKL using Intel DPC++ and Codeplay’s plugins for NVIDIA and AMD GPUs. To use, Intel DPC++ must
be installed (>= 2023.2.0), along with Codeplay’s plugins for NVIDIA and AMD GPUs as required, and CUDA
and/or ROCm as required. The enviroment should be initialized as with the MKL instructions above.

To use the oneMKL interface library, download, build and install oneMKL as directed in the oneMKL documenta-
tion, making sure that suitable DFT backends are enabled. Then, when building GROMACS, set -DGMX_GPU_-
FFT_LIBRARY=ONEMKL.

Using double-batched FFT library

Generally MKL will provide better performance on Intel GPUs, however this alternative open-source library from
Intel (https://github.com/intel/double-batched-fft-library) is useful for very large FFT sizes in GROMACS.

cmake -DGMX_GPU_FFT_LIBRARY=BBFFT \
-DCMAKE_PREFIX_PATH=$PATH_TO_BBFFT_INSTALL

Note: in GROMACS 2023, the option was called DBFFT.

2.3. Prerequisites 10

http://www.fftw.org
http://www.fftw.org/doc/Installation-and-Customization.html#Installation-and-Customization
https://oneapi-src.github.io/oneMKL/building_the_project.html#building-for-onemkl
https://oneapi-src.github.io/oneMKL/building_the_project.html#building-for-onemkl
https://github.com/oneapi-src/oneMKL/blob/develop/CMakeLists.txt#supported-configurations
https://github.com/intel/double-batched-fft-library

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Using ARM Performance Libraries

The ARM Performance Libraries provides FFT transforms implementation for ARM architectures. Preliminary
support is provided for ARMPL in GROMACS through its FFTW-compatible API. Assuming that the ARM HPC
toolchain environment including the ARMPL paths are set up (e.g. through loading the appropriate modules like
module load Module-Prefix/arm-hpc-compiler-X.Y/armpl/X.Y) use the following cmake op-
tions:

cmake -DGMX_FFT_LIBRARY=fftw3 \
-DFFTWF_LIBRARY="${ARMPL_DIR}/lib/libarmpl_lp64.so" \
-DFFTWF_INCLUDE_DIR=${ARMPL_DIR}/include

Using cuFFTMp

Decomposition of PME work to multiple GPUs is supported with NVIDIA GPUs when using a CUDA build.
This requires building GROMACS with the NVIDIA cuFFTMp (cuFFT Multi-process) library, shipped with
the NVIDIA HPC SDK, which provides distributed FFTs including across multiple compute nodes. To enable
cuFFTMp support use the following cmake options:

cmake -DGMX_USE_CUFFTMP=ON \
-DcuFFTMp_ROOT=<path to NVIDIA HPC SDK math_libs folder>

Please make sure cuFFTMp’s hardware and software requirements are met before trying to use GPU PME de-
composition feature. In particular, cuFFTMp internally uses NVSHMEM, and it is vital that the NVSHMEM
and cuFFTMp versions in use are compatible. Some versions of the NVIDIA HPC SDK include two versions
of NVSHMEM, where the cuFFTMp compatible variant can be found at Linux_x86_64/<SDK_version>/
comm_libs/<CUDA_version>/nvshmem_cufftmp_compat. If that directory does not exist in the SDK,
then there only exists a single (compatible) version at Linux_x86_64/<SDK_version>/comm_libs/
<CUDA_version>/nvshmem. The version can be selected by, prior to both compilation and running, updating
the LD_LIBRARY_PATH environment variable as follows:

export LD_LIBRARY_PATH=<path to compatible NVSHMEM folder>/lib:$LD_LIBRARY_
→˓PATH

It is advisable to refer to the NVSHMEM FAQ page for any issues faced at runtime.

Using heFFTe

Decomposition of PME work to multiple GPUs is supported with PME offloaded to any vendor’s GPU when
building GROMACS linked to the heFFTe library. HeFFTe uses GPU-aware MPI to provide distributed FFTs
including across multiple compute nodes. It requires a CUDA build to target NVIDIA GPUs and a SYCL build to
target Intel or AMD GPUs. To enable heFFTe support, use the following cmake options:

cmake -DGMX_USE_HEFFTE=ON \
-DHeffte_ROOT=<path to heFFTe folder>

You will need an installation of heFFTe configured to use the same GPU-aware MPI library that will be used by
GROMACS, and with support that matches the intended GROMACS build. It is best to use the same C++ compiler
and standard library also. When targeting Intel GPUs, add -DHeffte_ENABLE_ONEAPI=ON -DHeffte_-
ONEMKL_ROOT=<path to oneMKL folder>. When targeting AMD GPUs, add -DHeffte_ENABLE_-
ROCM=ON -DHeffte_ROCM_ROOT=<path to ROCm folder>.

2.3. Prerequisites 11

https://docs.nvidia.com/hpc-sdk/cufftmp
https://docs.nvidia.com/hpc-sdk/cufftmp/usage/requirements.html
https://developer.nvidia.com/nvshmem
https://docs.nvidia.com/hpc-sdk/nvshmem/api/faq.html#general-faqs
https://icl.utk.edu/fft/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Using VkFFT

VkFFT is a multi-backend GPU-accelerated multidimensional Fast Fourier Transform library which aims to pro-
vide an open-source alternative to vendor libraries.

GROMACS includes VkFFT support with two goals: portability across GPU platforms and performance improve-
ments. VkFFT can be used with OpenCL and SYCL backends:

• For SYCL builds, VkFFT provides a portable backend which currently can be used on AMD and NVIDIA
GPUs with AdaptiveCpp and Intel oneAPI DPC++; it generally outperforms rocFFT hence it is recom-
mended as default on AMD. Note that VkFFT is not supported with PME decomposition (which requires
HeFFTe) since HeFFTe does not have a VkFFT backend.

• For OpenCL builds, VkFFT provides an alternative to ClFFT. It is the default on macOS and when building
with Visual Studio. On other platforms it is not extensively tested, but it likely outperforms ClFFT and can
be enabled during cmake configuration.

• For AMD-HIP (page 19), VkFFT is the default FFT backend, as it supports both consumer and data center
hardware.

To enable VkFFT support, use the following CMake option:

cmake -DGMX_GPU_FFT_LIBRARY=VKFFT

GROMACS bundles VkFFT with its source code, but an external VkFFT can also be used (e.g. to benefit from
improvements in VkFFT releases more recent than the bundled version) in the following manner:

cmake -DGMX_GPU_FFT_LIBRARY=VKFFT \
-DGMX_EXTERNAL_VKFFT=ON -DVKFFT_INCLUDE_DIR=<path to VkFFT directory>

2.3.6 Other optional build components

• Run-time detection of hardware capabilities can be improved by linking with hwloc. By default this is
turned off since it might not be supported everywhere, but if you have hwloc installed it should work by just
setting -DGMX_HWLOC=ON

• Hardware-optimized BLAS and LAPACK libraries are useful for a few of the GROMACS utilities focused
on normal modes and matrix manipulation, but they do not provide any benefits for normal simulations.
Configuring these is discussed at linear algebra libraries (page 21).

• An external TNG library for trajectory-file handling can be used by setting -DGMX_EXTERNAL_-
TNG=yes, but TNG 1.7.10 is bundled in the GROMACS source already.

• The lmfit library for Levenberg-Marquardt curve fitting is used in GROMACS. Only lmfit 7.0 is supported.
A reduced version of that library is bundled in the GROMACS distribution, and the default build uses
it. That default may be explicitly enabled with -DGMX_USE_LMFIT=internal. To use an external
lmfit library, set -DGMX_USE_LMFIT=external, and adjust CMAKE_PREFIX_PATH as needed. lmfit
support can be disabled with -DGMX_USE_LMFIT=none.

• zlib is used by TNG for compressing some kinds of trajectory data.

• Building the GROMACS documentation is optional, and requires and other software. Refer to https:
//manual.gromacs.org/current/dev-manual/documentation-generation.html or the docs/dev-manual/
documentation-generation.rst file in the sources.

• The GROMACS utility programs often write data files in formats suitable for the Grace plotting tool, but it
is straightforward to use these files in other plotting programs, too.

• Set -DGMX_PYTHON_PACKAGE=ON when configuring GROMACS with CMake to enable additional
CMake targets for the gmxapi Python package and sample_restraint package from the main GROMACS
CMake build. This supports additional testing and documentation generation.

2.3. Prerequisites 12

https://github.com/DTolm/VkFFT
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://manual.gromacs.org/current/dev-manual/documentation-generation.html
https://manual.gromacs.org/current/dev-manual/documentation-generation.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.4 Doing a build of GROMACS

This section will cover a general build of GROMACS with CMake (page 9), but it is not an exhaustive discussion
of how to use CMake. There are many resources available on the web, which we suggest you search for when
you encounter problems not covered here. The material below applies specifically to builds on Unix-like systems,
including Linux, and Mac OS X. For other platforms, see the specialist instructions below.

2.4.1 Configuring with CMake

CMake will run many tests on your system and do its best to work out how to build GROMACS for you. If your
build machine is the same as your target machine, then you can be sure that the defaults and detection will be
pretty good. However, if you want to control aspects of the build, or you are compiling on a cluster head node for
back-end nodes with a different architecture, there are a few things you should consider specifying.

The best way to use CMake to configure GROMACS is to do an “out-of-source” build, by making another directory
from which you will run CMake. This can be outside the source directory, or a subdirectory of it. It also means
you can never corrupt your source code by trying to build it! So, the only required argument on the CMake
command line is the name of the directory containing the CMakeLists.txt file of the code you want to build.
For example, download the source tarball and use

tar xzf gromacs-2026.0-dev.tgz
cd gromacs-2026.0-dev
mkdir build-gromacs
cd build-gromacs
cmake ..

You will see cmake report a sequence of results of tests and detections done by the GROMACS build system.
These are written to the cmake cache, kept in CMakeCache.txt. You can edit this file by hand, but this is not
recommended because you could make a mistake. You should not attempt to move or copy this file to do another
build, because file paths are hard-coded within it. If you mess things up, just delete this file and start again with
cmake.

If there is a serious problem detected at this stage, then you will see a fatal error and some suggestions for how
to overcome it. If you are not sure how to deal with that, please start by searching on the web (most computer
problems already have known solutions!) and then consult the user discussion forum. There are also informational
warnings that you might like to take on board or not. Piping the output of cmake through less or tee can be
useful, too.

Once cmake returns, you can see all the settings that were chosen and information about them by using e.g. the
curses interface

ccmake ..

You can actually use ccmake (available on most Unix platforms) directly in the first step, but then most of the
status messages will merely blink in the lower part of the terminal rather than be written to standard output. Most
platforms including Linux, Windows, and Mac OS X even have native graphical user interfaces for cmake, and it
can create project files for almost any build environment you want (including Visual Studio or Xcode). Check out
running CMake for general advice on what you are seeing and how to navigate and change things. The settings
you might normally want to change are already presented. You may make changes, then re-configure (using c),
so that it gets a chance to make changes that depend on yours and perform more checking. It may take several
configuration passes to reach the desired configuration, in particular if you need to resolve errors.

When you have reached the desired configuration with ccmake, the build system can be generated by pressing
g. This requires that the previous configuration pass did not reveal any additional settings (if it did, you need to
configure once more with c). With cmake, the build system is generated after each pass that does not produce
errors.

You cannot attempt to change compilers after the initial run of cmake. If you need to change, clean up, and start
again.

2.4. Doing a build of GROMACS 13

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
http://www.cmake.org/runningcmake/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Where to install GROMACS

GROMACS is installed in the directory to which CMAKE_INSTALL_PREFIX points. It may not be the source
directory or the build directory. You require write permissions to this directory. Thus, without super-user privi-
leges, CMAKE_INSTALL_PREFIX will have to be within your home directory. Even if you do have super-user
privileges, you should use them only for the installation phase, and never for configuring, building, or running
GROMACS!

Using CMake command-line options

Once you become comfortable with setting and changing options, you may know in advance how you will con-
figure GROMACS. If so, you can speed things up by invoking cmake and passing the various options at once on
the command line. This can be done by setting cache variable at the cmake invocation using -DOPTION=VALUE.
Note that some environment variables are also taken into account, in particular variables like CC and CXX.

For example, the following command line

cmake .. -DGMX_GPU=CUDA -DGMX_MPI=ON \
-DCMAKE_INSTALL_PREFIX=/home/marydoe/programs

can be used to build with CUDA GPUs, MPI and install in a custom location. You can even save that in a shell
script to make it even easier next time. You can also do this kind of thing with ccmake, but you should avoid
this, because the options set with -D will not be able to be changed interactively in that run of ccmake.

SIMD support

GROMACS has extensive support for detecting and using the SIMD capabilities of many modern HPC CPU
architectures. If you are building GROMACS on the same hardware you will run it on, then you don’t need to read
more about this, unless you are getting configuration warnings you do not understand. By default, the GROMACS
build system will detect the SIMD instruction set supported by the CPU architecture (on which the configuring is
done), and thus pick the best available SIMD parallelization supported by GROMACS. The build system will also
check that the compiler and linker used also support the selected SIMD instruction set and issue a fatal error if
they do not.

Valid values are listed below, and the applicable value with the largest number in the list is generally the one
you should choose. In most cases, choosing an inappropriate higher number will lead to compiling a binary that
will not run. However, on a number of processor architectures choosing the highest supported value can lead to
performance loss, e.g. on Intel Skylake-X/SP and AMD Zen (first generation).

1. None For use only on an architecture either lacking SIMD, or to which GROMACS has not yet been ported
and none of the options below are applicable.

2. SSE2 This SIMD instruction set was introduced in Intel processors in 2001, and AMD in 2003. Essentially
all x86 machines in existence have this, so it might be a good choice if you need to support dinosaur x86
computers too.

3. SSE4.1 Present in all Intel core processors since 2007, but notably not in AMD Magny-Cours. Still, almost
all recent processors support this, so this can also be considered a good baseline if you are content with slow
simulations and prefer portability between reasonably modern processors.

4. AVX_128_FMA AMD Bulldozer, Piledriver (and later Family 15h) processors have this but it is NOT
supported on any AMD processors since Zen1.

5. AVX_256 Intel processors since Sandy Bridge (2011). While this code will work on the AMD Bulldozer
and Piledriver processors, it is significantly less efficient than the AVX_128_FMA choice above - do not be
fooled to assume that 256 is better than 128 in this case.

6. AVX2_128 AMD Zen/Zen2 and Hygon Dhyana microarchitecture processors; it will enable AVX2 with 3-
way fused multiply-add instructions. While these microarchitectures do support 256-bit AVX2 instructions,
hence AVX2_256 is also supported, 128-bit will generally be faster, in particular when the non-bonded

2.4. Doing a build of GROMACS 14

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

tasks run on the CPU – hence the default AVX2_128. With GPU offload, however, AVX2_256 can be
faster on Zen processors.

7. AVX2_256 Present on Intel Haswell (and later) processors (2013) and AMD Zen3 and later (2020); it will
also enable 3-way fused multiply-add instructions.

8. AVX_512 Skylake-X desktop and Skylake-SP Xeon processors (2017) and AMD Zen4 (2022); on Intel it
will generally be fastest on the higher-end desktop and server processors with two 512-bit fused multiply-
add units (e.g. Core i9 and Xeon Gold). However, certain desktop and server models (e.g. Xeon Bronze
and Silver) come with only one AVX512 FMA unit and therefore on these processors AVX2_256 is faster
(compile- and runtime checks try to inform about such cases). On AMD it is beneficial to use starting with
Zen4. Additionally, with GPU accelerated runs AVX2_256 can also be faster on high-end Skylake CPUs
with both 512-bit FMA units enabled.

9. AVX_512_KNL Knights Landing Xeon Phi processors.

10. IBM_VSX Power7, Power8, Power9 and later have this.

11. ARM_NEON_ASIMD 64-bit ARMv8 and later. For maximum performance on NVIDIA Grace (ARMv9),
we strongly suggest at least GNU >= 13, LLVM >= 16.

12. ARM_SVE 64-bit ARMv8 and later with the Scalable Vector Extensions (SVE). The SVE vector length
is fixed at CMake configure time. The default vector length is automatically detected, and this can be
changed via the GMX_SIMD_ARM_SVE_LENGTH CMake variable. If compiling for a different target ar-
chitecture than the compilation machine, GMX_SIMD_ARM_SVE_LENGTH should be set to the hardware
vector length implemented by the target machine. There is no expected performance benefit from setting
a smaller value than the implemented vector length, and setting a larger length can lead to unexpected
crashes. Minimum required compiler versions are GNU >= 10, LLVM >=13, or ARM >= 21.1. For maxi-
mum performance we strongly suggest the latest gcc compilers, or at least LLVM 14 or ARM 22.0. Lower
performance has been observed with LLVM 13 and Arm compiler 21.1.

The CMake configure system will check that the compiler you have chosen can target the architecture you have
chosen. mdrun will check further at runtime, so if in doubt, choose the lowest number you think might work, and
see what mdrun says. The configure system also works around many known issues in many versions of common
HPC compilers.

A further GMX_SIMD=Reference option exists, which is a special SIMD-like implementation written in plain
C that developers can use when developing support in GROMACS for new SIMD architectures. It is not designed
for use in production simulations, but if you are using an architecture with SIMD support to which GROMACS
has not yet been ported, you may wish to try this option instead of the default GMX_SIMD=None, as it can often
out-perform this when the auto-vectorization in your compiler does a good job. And post on the GROMACS user
discussion forum, because GROMACS can probably be ported to new SIMD architectures in a few days.

CMake advanced options

The options that are displayed in the default view of ccmake are ones that we think a reasonable number of
users might want to consider changing. There are a lot more options available, which you can see by toggling the
advanced mode in ccmake on and off with t. Even there, most of the variables that you might want to change
have a CMAKE_ or GMX_ prefix. There are also some options that will be visible or not according to whether their
preconditions are satisfied.

2.4. Doing a build of GROMACS 15

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Helping CMake find the right libraries, headers, or programs

If libraries are installed in non-default locations, their location can be specified using the following variables:

• CMAKE_INCLUDE_PATH for header files

• CMAKE_LIBRARY_PATH for libraries

• CMAKE_PREFIX_PATH for header, libraries and binaries (e.g. /usr/local).

The respective include, lib, or bin is appended to the path. For each of these variables, a list of paths can be
specified (on Unix, separated with “:”). These can be set as environment variables like:

CMAKE_PREFIX_PATH=/opt/fftw:/opt/cuda cmake ..

(assuming bash shell). Alternatively, these variables are also cmake options, so they can be set like -DCMAKE_-
PREFIX_PATH=/opt/fftw:/opt/cuda.

The CC and CXX environment variables are also useful for indicating to cmake which compilers to use. Similarly,
CFLAGS/CXXFLAGS can be used to pass compiler options, but note that these will be appended to those set
by GROMACS for your build platform and build type. You can customize some of this with advanced CMake
options, such as CMAKE_C_FLAGS and its relatives.

See also the page on CMake environment variables.

CUDA GPU acceleration

If you have the CUDA Toolkit installed, you can use cmake with:

cmake .. -DGMX_GPU=CUDA -DCUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda

(or whichever path has your installation). In some cases, you might need to specify manually which of your C++
compilers should be used, e.g. with the advanced option CUDA_HOST_COMPILER.

By default, code will be generated for the most common CUDA architectures. However, to reduce build time
and binary size we do not generate code for every single possible architecture, which in rare cases (say, Tegra
systems) can result in the default build not being able to use some GPUs. If this happens, or if you want to remove
some architectures to reduce binary size and build time, you can alter the target CUDA architectures. This can
be done either with the GMX_CUDA_TARGET_SM or GMX_CUDA_TARGET_COMPUTE CMake variables, which
take a semicolon delimited string with the two digit suffixes of CUDA (virtual) architectures names, for instance
“60;75;86”. For details, see the “Options for steering GPU code generation” section of the nvcc documentation.

The GPU acceleration has been tested on AMD64/x86-64 platforms with Linux, Mac OS X and Windows oper-
ating systems, but Linux is the best-tested and supported of these. Linux running on POWER 8/9 and ARM v8
CPUs also works well.

Experimental support is available for compiling CUDA code, both for host and device, using clang (version 6.0
or later). A CUDA toolkit is still required but it is used only for GPU device code generation and to link against
the CUDA runtime library. The clang CUDA support simplifies compilation and provides benefits for develop-
ment (e.g. allows the use code sanitizers in CUDA host-code). Additionally, using clang for both CPU and GPU
compilation can be beneficial to avoid compatibility issues between the GNU toolchain and the CUDA toolkit.
clang for CUDA can be triggered using the GMX_CLANG_CUDA=ON CMake option. Target architectures can be
selected with GMX_CUDA_TARGET_SM, virtual architecture code is always embedded for all requested archi-
tectures (hence GMX_CUDA_TARGET_COMPUTE is ignored). Note that this is mainly a developer-oriented
feature but its performance is generally close to that of code compiled with nvcc.

2.4. Doing a build of GROMACS 16

https://gitlab.kitware.com/cmake/community/-/wikis/doc/cmake/Useful-Variables
https://developer.nvidia.com/cuda-zone
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/#options-for-steering-cuda-compilation

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

OpenCL GPU acceleration

The primary targets of the GROMACS OpenCL support is accelerating simulations on AMD and Intel hardware.
For AMD, we target both discrete GPUs and APUs (integrated CPU+GPU chips), and for Intel we target the
integrated GPUs found on modern workstation and mobile hardware. The GROMACS OpenCL on NVIDIA
GPUs works, but performance and other limitations make it less practical (for details see the user guide).

To build GROMACS with OpenCL support enabled, two components are required: the OpenCL headers and the
wrapper library that acts as a client driver loader (so-called ICD loader). The additional, runtime-only dependency
is the vendor-specific GPU driver for the device targeted. This also contains the OpenCL compiler. As the GPU
compute kernels are compiled on-demand at run time, this vendor-specific compiler and driver is not needed for
building GROMACS. The former, compile-time dependencies are standard components, hence stock versions can
be obtained from most Linux distribution repositories (e.g. opencl-headers and ocl-icd-libopencl1
on Debian/Ubuntu). Only the compatibility with the required OpenCL version unknown needs to be ensured.
Alternatively, the headers and library can also be obtained from vendor SDKs, which must be installed in a path
found in CMAKE_PREFIX_PATH.

To trigger an OpenCL build the following CMake flags must be set

cmake .. -DGMX_GPU=OpenCL

To build with support for Intel integrated GPUs, it is required to add -DGMX_GPU_NB_CLUSTER_SIZE=4 to
the cmake command line, so that the GPU kernels match the characteristics of the hardware. The Neo driver is
recommended.

On Mac OS, an AMD GPU can be used only with OS version 10.10.4 and higher; earlier OS versions are known
to run incorrectly.

By default, on Linux, any clFFT library on the system will be used with GROMACS, but if none is found then the
code will fall back on a version bundled with GROMACS. To require GROMACS to link with an external library,
use

cmake .. -DGMX_GPU=OpenCL -DclFFT_ROOT_DIR=/path/to/your/clFFT \
-DGMX_EXTERNAL_CLFFT=TRUE

On Windows with MSVC and on macOS, VkFFT is used instead of clFFT, but this can provide performance
benefits on other platforms as well.

SYCL GPU acceleration

SYCL is a modern portable heterogeneous acceleration API, with multiple implementations targeting different
hardware platforms (similar to OpenCL).

GROMACS can be used with different SYCL compilers/runtimes to target the following hardware:

• Intel GPUs using Intel oneAPI DPC++ (both OpenCL and LevelZero backends),

• AMD GPUs with AdaptiveCpp (previously known as hipSYCL),

There is also experimental support for:

• AMD GPUs with oneAPI with Codeplay AMD plugin,

• NVIDIA GPUs with either AdaptiveCpp or oneAPI with Codeplay NVIDIA plugin.

In table form:

GPU vendor AdaptiveCpp (hipSYCL) Intel oneAPI DPC++

Intel not supported supported
AMD supported experimental (requires Codeplay plugin)
NVIDIA experimental experimental (requires Codeplay plugin)

2.4. Doing a build of GROMACS 17

https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/intel/compute-runtime/releases
https://github.com/DTolm/VkFFT
https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://developer.codeplay.com/products/oneapi/amd/home/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://developer.codeplay.com/products/oneapi/nvidia/home/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://developer.codeplay.com/products/oneapi/amd/home/
https://developer.codeplay.com/products/oneapi/nvidia/home/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Here, “experimental support” means that the combination has received limited testing and is expected to work
(with possible limitations), but is not recommended for production use. Please refer to a separate section in the
installation guide (page 3) to use them.

The SYCL support in GROMACS is intended to replace OpenCL as an acceleration mechanism for AMD and
Intel hardware.

For NVIDIA GPUs, we strongly advise using CUDA. Apple M1/M2 GPUs are not supported with SYCL but can
be used with OpenCL.

Codeplay ComputeCpp is not supported. Open-source Intel LLVM can be used in the same way as Intel oneAPI
DPC++.

Note: SYCL support in GROMACS and the underlying compilers and runtimes are less mature than either
OpenCL or CUDA. Please, pay extra attention to simulation correctness when you are using it.

SYCL GPU acceleration for Intel GPUs

You should install the recent Intel oneAPI DPC++ compiler toolkit. For GROMACS 2024, oneAPI version 2023.2
or 2024.0 are tested regularly and are recommended, although later versions might work and can offer better
performance. The earliest supported version is oneAPI 2023.0. Using open-source Intel LLVM is possible, but
not extensively tested. We also recommend installing the most recent Neo driver.

With the toolkit installed and added to the environment (usually by running source /opt/intel/oneapi/
setvars.sh or using an appropriate module load on an HPC system), the following CMake flags must be
set:

cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP

When compiling for Intel Data Center GPU Max (also knows as Ponte Vecchio / PVC), we recommend passing
additional flags for compatibility and improved performance:

cmake .. -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx \
-DGMX_GPU=SYCL -DGMX_SYCL=DPCPP \
-DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_X=1 -DGMX_GPU_NB_CLUSTER_SIZE=8

You might also consider using double-batched FFT library (page 10).

SYCL GPU acceleration for AMD GPUs

Using AdaptiveCpp 23.10.0 and ROCm 5.3-5.7 is recommended. The earliest supported version is hipSYCL
0.9.4.

We strongly recommend using the clang compiler bundled with ROCm for building both AdaptiveCpp and GRO-
MACS. Mainline Clang releases can also work.

The following CMake command can be used when configuring AdaptiveCpp to ensure that the proper Clang is
used (assuming ROCM_PATH is set correctly, e.g. to /opt/rocm in the case of default installation):

cmake .. -DCMAKE_C_COMPILER=${ROCM_PATH}/llvm/bin/clang \
-DCMAKE_CXX_COMPILER=${ROCM_PATH}/llvm/bin/clang++ \
-DLLVM_DIR=${ROCM_PATH}/llvm/lib/cmake/llvm/

If ROCm 5.0 or earlier is used, AdaptiveCpp might require additional build flags. Using hipSYCL 0.9.4 with
ROCm 5.7+ / Clang 17+ might also require extra workarounds.

After compiling and installing AdaptiveCpp, the following settings can be used for building GROMACS itself (set
HIPSYCL_TARGETS to the target hardware):

2.4. Doing a build of GROMACS 18

https://www.khronos.org/sycl/
https://www.khronos.org/opencl/
https://www.khronos.org/opencl/
https://github.com/intel/llvm
https://www.khronos.org/sycl/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/intel/llvm
https://github.com/intel/compute-runtime/releases
https://github.com/AdaptiveCpp/AdaptiveCpp/releases/tag/v23.10.0
https://github.com/AdaptiveCpp/AdaptiveCpp/blob/v0.9.4/doc/install-rocm.md
https://github.com/AdaptiveCpp/AdaptiveCpp/wiki/Build-instructions-for-old-versions#hipsycl-094

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

cmake .. -DCMAKE_C_COMPILER=${ROCM_PATH}/llvm/bin/clang \
-DCMAKE_CXX_COMPILER=${ROCM_PATH}/llvm/bin/clang++ \
-DGMX_GPU=SYCL -DGMX_SYCL=ACPP -DHIPSYCL_TARGETS='hip:gfxXYZ'

Multiple target architectures can be specified, e.g., -DHIPSYCL_TARGETS='hip:gfx908,gfx90a'. Hav-
ing both RDNA (gfx1xyz) and GCN/CDNA (gfx9xx) devices in the same build is possible but will incur a
minor performance penalty compared to building for GCN/CDNA devices only. If you have multiple AMD GPUs
of different generations in the same system (e.g., integrated APU and a discrete GPU) the ROCm runtime requires
code to be available for each device at runtime, so you need to specify every device in HIPSYCL_TARGETSwhen
compiling to avoid ROCm crashes at initialization.

By default, VkFFT is used to perform FFT on GPU. You can switch to rocFFT by passing -DGMX_GPU_FFT_-
LIBRARY=rocFFT CMake flag. Please note that rocFFT is not officially supported and tends not to work on
most consumer GPUs.

AMD GPUs can also be targeted via Intel oneAPI DPC++; please refer to a separate section (page 3) for the build
instructions.

SYCL GPU compilation options

The following flags can be passed to CMake in order to tune GROMACS:

-DGMX_GPU_NB_CLUSTER_SIZE
changes the data layout of non-bonded kernels. When compiling with Intel oneAPI DPC++, the default
value is 4, which is optimal for most Intel GPUs except Data Center MAX (Ponte Vecchio), for which 8
is better. When compiling with AdaptiveCpp, the default value is 8, which is the only supported value for
AMD and NVIDIA devices.

-DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_X, -DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_Y,
-DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_Z

Sets the number of clusters along X, Y, or Z in a pair-search grid cell, default 2. When targeting Intel Ponte
Vecchio GPUs, set -DGMX_GPU_NB_NUM_CLUSTER_PER_CELL_X=1 and leave the other values as the
default.

-DGMX_GPU_NB_DISABLE_CLUSTER_PAIR_SPLIT
Disables cluster pair splitting in the GPU non-bonded kernels. This is only supported in SYCL, and it is
compatible with and improves performance on GPUs with 64-wide execution like AMD GCN and CDNA
family. This option is automatically enabled in all builds that target GCN or CDNA GPUs (but not RDNA).

AMD HIP GPU acceleration

HIP is the AMD interoperability layer for the ROCm toolkit used to target AMD devices.

In GROMACS 2025 there is only limited support for using HIP as the device backend for AMD devices, with
only NBNxM kernels offload being available.

Build instructions

In order to use HIP as the device backend, you need to have the ROCm toolkit installed, including the rocPrim
libraries. The minimum version required by GROMACS is ROCm 5.2, but we recommend a recent version to take
advantage of library improvements.

You can then configure the build like this

cmake .. -DCMAKE_HIP_COMPILER=${ROCM_PATH}/bin/amdclang++ \
-DCMAKE_PREFIX_PATH=${ROCM_PATH} \
-DGMX_GPU=HIP

2.4. Doing a build of GROMACS 19

https://github.com/DTolm/VkFFT
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp
https://rocm.docs.amd.com/en/latest/index.html
https://rocm.docs.amd.com/en/latest/index.html
https://rocm.docs.amd.com/projects/rocPRIM/en/latest/index.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

By default GROMACS will generate code for a range of different CDNA devices. In case you want to narrow the
scope of the code generation, or want to target RDNA or GCN devices, you can specify the architectures using
this flag

-DGMX_HIP_TARGET_ARCH=gfxXYZ,gfxABCD

When detecting a 64-wide execution architecture and no 32-wide versions, GROMACS will automatically config-
ure with

-DGMX_GPU_NB_DISABLE_CLUSTER_PAIR_SPLIT=ON

to improve performance on those devices. In case any 32-wide architectures are present, the maximum execution
width will be restricted to be 32-wide, even on devices that support 64-wide execution.

When GROMACS is built with explicit 64-wide execution (and conflicting support for 32-wide devices), any
32-wide devices detected will be not be used.

Static linking

Please refer to a dedicated section (page 4).

gmxapi C++ API

For dynamic linking builds and on non-Windows platforms, an extra library and headers are installed by setting
-DGMXAPI=ON (default). Build targets gmxapi-cppdocs and gmxapi-cppdocs-dev produce documen-
tation in docs/api-user and docs/api-dev, respectively. For more project information and use cases,
refer to the tracked Issue 2585, associated GitHub gmxapi projects, or DOI 10.1093/bioinformatics/bty484.

gmxapi is not yet tested on Windows or with static linking, but these use cases are targeted for future versions.

Portability of a GROMACS build

A GROMACS build will normally not be portable, not even across hardware with the same base instruction set, like
x86. Non-portable hardware-specific optimizations are selected at configure-time, such as the SIMD instruction
set used in the compute kernels. This selection will be done by the build system based on the capabilities of the
build host machine or otherwise specified to cmake during configuration.

Often it is possible to ensure portability by choosing the least common denominator of SIMD support, e.g. SSE2
for x86. In rare cases of very old x86 machines, ensure that you use cmake -DGMX_USE_RDTSCP=off if
any of the target CPU architectures does not support the RDTSCP instruction. However, we discourage attempts
to use a single GROMACS installation when the execution environment is heterogeneous, such as a mix of AVX
and earlier hardware, because this will lead to programs (especially mdrun) that run slowly on the new hardware.
Building two full installations and locally managing how to call the correct one (e.g. using a module system) is
the recommended approach. Alternatively, one can use different suffixes to install several versions of GROMACS
in the same location. To achieve this, one can first build a full installation with the least-common-denominator
SIMD instruction set, e.g. -DGMX_SIMD=SSE2, in order for simple commands like gmx grompp to work on all
machines, then build specialized gmx binaries for each architecture present in the heterogeneous environment. By
using custom binary and library suffixes (with CMake variables -DGMX_BINARY_SUFFIX=xxx and -DGMX_-
LIBS_SUFFIX=xxx), these can be installed to the same location.

Portability of binaries across GPUs is generally better, targeting multiple generations of GPUs from the same
vendor is in most cases possible with a single GROMACS build. CUDA builds will by default be able to run
on any NVIDIA GPU supported by the CUDA toolkit used since the GROMACS build system generates code
for these at build-time. With SYCL multiple target architectures of the same GPU vendor can be selected when
using AdaptiveCpp (i.e. only AMD or only NVIDIA). The SSCP/generic compilation mode of AdaptiveCpp is
currently not supported. With OpenCL, due to just-in-time compilation of GPU code for the device in use, this is
not a concern.

2.4. Doing a build of GROMACS 20

https://gitlab.com/gromacs/gromacs/-/issues/2585
https://github.com/kassonlab/gmxapi
https://doi.org/10.1093/bioinformatics/bty484
https://developer.nvidia.com/cuda-zone
https://www.khronos.org/sycl/
https://github.com/AdaptiveCpp/AdaptiveCpp
https://github.com/AdaptiveCpp/AdaptiveCpp
https://www.khronos.org/opencl/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Linear algebra libraries

As mentioned above, sometimes vendor BLAS and LAPACK libraries can provide performance enhancements for
GROMACS when doing normal-mode analysis or covariance analysis. For simplicity, the text below will refer
only to BLAS, but the same options are available for LAPACK. By default, CMake will search for BLAS, use it if
it is found, and otherwise fall back on a version of BLAS internal to GROMACS. The cmake option -DGMX_-
EXTERNAL_BLAS=on will be set accordingly. The internal versions are fine for normal use. If you need to
specify a non-standard path to search, use -DCMAKE_PREFIX_PATH=/path/to/search. If you need to
specify a library with a non-standard name (e.g. ESSL on Power machines or ARMPL on ARM machines), then
set -DGMX_BLAS_USER=/path/to/reach/lib/libwhatever.a.

If you are using Intel MKL for FFT, then the BLAS and LAPACK it provides are used automatically. This could
be over-ridden with GMX_BLAS_USER, etc.

On Apple platforms where the Accelerate Framework is available, these will be automatically used for BLAS and
LAPACK. This could be over-ridden with GMX_BLAS_USER, etc.

Building with MiMiC QM/MM support

MiMiC QM/MM interface integration will require linking against MiMiC communication library, that estab-
lishes the communication channel between GROMACS and CPMD. The MiMiC Communication library can be
downloaded here. Compile and install it. Check that the installation folder of the MiMiC library is added to
CMAKE_PREFIX_PATH if it is installed in non-standard location. Building QM/MM-capable version requires
double-precision version of GROMACS compiled with MPI support:

• -DGMX_DOUBLE=ON -DGMX_MPI=ON -DGMX_MIMIC=ON

Building with CP2K QM/MM support

CP2K QM/MM interface integration will require linking against libcp2k library, that incorporates CP2K function-
ality into GROMACS.

1. Download, compile and install CP2K (version 8.1 or higher is required). CP2K latest distribution can be
downloaded here. For CP2K specific instructions, please follow. You can also check instructions on the
official CP2K web-page.

2. Make libcp2k.a library by executing the following command:

make ARCH=<your arch file> VERSION=<your version like psmp> libcp2k

The library archive (e.g. libcp2k.a) should appear in the <cp2k dir>/lib/<arch>/
<version>/ directory.

3. Configure GROMACS with cmake, adding the following flags:

Build should be static: -DBUILD_SHARED_LIBS=OFF -DGMXAPI=OFF -DGMX_INSTALL_-
NBLIB_API=OFF

Double precision in general is better than single for QM/MM (however both options are viable): -DGMX_-
DOUBLE=ON

FFT, BLAS and LAPACK libraries should be the same between CP2K and GROMACS. Use the following
flags to do so:

• -DGMX_FFT_LIBRARY=<your library like fftw3> -DFFTWF_LIBRARY=<path
to library> -DFFTWF_INCLUDE_DIR=<path to directory with headers>

• -DGMX_BLAS_USER=<path to your BLAS>

• -DGMX_LAPACK_USER=<path to your LAPACK>

4. Compilation of QM/MM interface is controled by the following flags:

2.4. Doing a build of GROMACS 21

https://software.intel.com/en-us/intel-mkl
https://gitlab.com/MiMiC-projects/CommLib
https://github.com/cp2k/cp2k/releases/
https://github.com/cp2k/cp2k/blob/master/INSTALL.md
https://www.cp2k.org/howto

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-DGMX_CP2K=ON
Activates QM/MM interface compilation

-DCP2K_DIR="<path to cp2k>/lib/local/psmp
Directory with libcp2k.a library

-DCP2K_LINKER_FLAGS="<combination of LDFLAGS and LIBS>" (optional for CP2K
9.1 or newer)

Other libraries used by CP2K. Typically that should be combination of LDFLAGS and LIBS from
the ARCH file used for CP2K compilation. Sometimes ARCH file could have several lines defining
LDFLAGS and LIBS or even split one line into several using “\”. In that case all of them should be
concatenated into one long string without any extra slashes or quotes. For CP2K versions 9.1 or newer,
CP2K_LINKER_FLAGS is not required but still might be used in very specific situations.

Building with Colvars support

GROMACS bundles the Colvars library in its source distribution. The library and its interface with GROMACS are
enabled by default when building GROMACS. This behavior may also be enabled explicitly with -DGMX_USE_-
COLVARS=internal. Alternatively, Colvars support may be disabled with -DGMX_USE_COLVARS=none.
How to use Colvars in a GROMACS simulation is described in the User Guide, as well as in the Colvars docu-
mentation.

Building with PLUMED support

GROMACS bundles the interface from version 2.10 of the PLUMED library in its source distribution. The in-
terface is compatible with any PLUMED version. The interface is enabled by default with GROMACS unless
GROMACS is built on Windows. You can explicitly enable the interface with -DGMX_USE_PLUMED=ON or
deactivate it with -DGMX_USE_PLUMED=OFF. By default the option is set to AUTO, during the configuration
CMake will try to activate PLUMED and in case it does not succeed it will output a “soft” warning. If the user
forces the option ON, when PLUMED cannot be activated the configuration will fail with an error message. The
User Guide contains the instructions on how to use PLUMED in a GROMACS simulation.

Building with Neural Network potential support

To build GROMACS with support for Neural Network potentials, it has to be compiled with a suitable machine
learning library. At the moment, only models trained in Pytorch are supported. To be able to load them in
GROMACS, it has to be built with the Pytorch C++ API or LibTorch, which can be downloaded from the Pytorch
website. The NNP interface is enabled by default when a LibTorch installation is found in the CMAKE_PREFIX_-
PATH, or Torch_DIR is set to a TorchConfig.cmake or torch-config.cmake usually found under
share/cmake/Torch/ in the libtorch installation directory. It may also be explicitly enabled with -DGMX_-
NNPOT=TORCH or disabled with -DGMX_NNPOT=OFF.

In addition, GROMACS provides support to specify custom Pytorch extensions at build time that may be used by
the NNP model. The path to the extension library may be specified via the TORCH_EXTENSION_PATH variable.
Note that CMake will search for a file called libtorch_extension.so in the specified directory.

Changing the names of GROMACS binaries and libraries

It is sometimes convenient to have different versions of the same GROMACS programs installed. The most
common use cases have been single and double precision, and with and without MPI. This mechanism can also be
used to install side-by-side multiple versions of mdrun optimized for different CPU architectures, as mentioned
previously.

By default, GROMACS will suffix programs and libraries for such builds with _d for double precision and/or
_mpi for MPI (and nothing otherwise). This can be controlled manually with GMX_DEFAULT_SUFFIX (ON/
OFF), GMX_BINARY_SUFFIX (takes a string) and GMX_LIBS_SUFFIX (also takes a string). For instance, to
set a custom suffix for programs and libraries, one might specify:

2.4. Doing a build of GROMACS 22

https://colvars.github.io/
https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html
https://www.plumed.org/
https://pytorch.org/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/
https://pytorch.org/tutorials/advanced/cpp_extension.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

cmake .. -DGMX_DEFAULT_SUFFIX=OFF -DGMX_BINARY_SUFFIX=_mod \
-DGMX_LIBS_SUFFIX=_mod

Thus the names of all programs and libraries will be appended with _mod.

Changing installation tree structure

By default, a few different directories under CMAKE_INSTALL_PREFIX are used when when GROMACS is in-
stalled. Some of these can be changed, which is mainly useful for packaging GROMACS for various distributions.
The directories are listed below, with additional notes about some of them. Unless otherwise noted, the directories
can be renamed by editing the installation paths in the main CMakeLists.txt.

bin/
The standard location for executables and some scripts. Some of the scripts hardcode the absolute installa-
tion prefix, which needs to be changed if the scripts are relocated. The name of the directory can be changed
using CMAKE_INSTALL_BINDIR CMake variable.

include/gromacs/
The standard location for installed headers.

lib/
The standard location for libraries. The default depends on the system, and is determined by CMake. The
name of the directory can be changed using CMAKE_INSTALL_LIBDIR CMake variable.

lib/pkgconfig/
Information about the installed libgromacs library for pkg-config is installed here. The lib/ part
adapts to the installation location of the libraries. The installed files contain the installation prefix as absolute
paths.

share/cmake/
CMake package configuration files are installed here.

share/gromacs/
Various data files and some documentation go here. The first part can be changed using CMAKE_-
INSTALL_DATADIR, and the second by using GMX_INSTALL_DATASUBDIR Using these CMake vari-
ables is the preferred way of changing the installation path for share/gromacs/top/, since the path to
this directory is built into libgromacs as well as some scripts, both as a relative and as an absolute path
(the latter as a fallback if everything else fails).

share/man/
Installed man pages go here.

2.4.2 Compiling and linking

Once you have configured with cmake, you can build GROMACS with make. It is expected that this will always
complete successfully, and give few or no warnings. The CMake-time tests GROMACS makes on the settings
you choose are pretty extensive, but there are probably a few cases we have not thought of yet. Search the web
first for solutions to problems, but if you need help, ask on the user discussion forum, being sure to provide as
much information as possible about what you did, the system you are building on, and what went wrong. This
may mean scrolling back a long way through the output of make to find the first error message!

If you have a multi-core or multi-CPU machine with N processors, then using

make -j N

will generally speed things up by quite a bit. Other build generator systems supported by cmake (e.g. ninja)
also work well.

2.4. Doing a build of GROMACS 23

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.4.3 Installing GROMACS

Finally, make install will install GROMACS in the directory given in CMAKE_INSTALL_PREFIX. If this
is a system directory, then you will need permission to write there, and you should use super-user privileges only
for make install and not the whole procedure.

2.4.4 Getting access to GROMACS after installation

GROMACS installs the script GMXRC in the bin subdirectory of the installation directory (e.g. /usr/local/
gromacs/bin/GMXRC), which you should source from your shell:

source /your/installation/prefix/here/bin/GMXRC

It will detect what kind of shell you are running and set up your environment for using GROMACS. You may wish
to arrange for your login scripts to do this automatically; please search the web for instructions on how to do this
for your shell.

Many of the GROMACS programs rely on data installed in the share/gromacs subdirectory of the installation
directory. By default, the programs will use the environment variables set in the GMXRC script, and if this is not
available they will try to guess the path based on their own location. This usually works well unless you change
the names of directories inside the install tree. If you still need to do that, you might want to recompile with the
new install location properly set, or edit the GMXRC script.

GROMACS also installs a CMake cache file to help with building client software (using the -C option when con-
figuring the client software with CMake.) For an installation at /your/installation/prefix/here, hints
files will be installed at /your/installation/prefix/share/cmake/gromacs${GMX_LIBS_-
SUFFIX}/gromacs-hints${GMX_LIBS_SUFFIX}.cmake where ${GMX_LIBS_SUFFIX} is as doc-
umented above (page 22).

2.4.5 Testing GROMACS for correctness

Since 2011, the GROMACS development uses an automated system where every new code change is subject to
regression testing on a number of platforms and software combinations. While this improves reliability quite a lot,
not everything is tested, and since we increasingly rely on cutting edge compiler features there is non-negligible
risk that the default compiler on your system could have bugs. We have tried our best to test and refuse to use
known bad versions in cmake, but we strongly recommend that you run through the tests yourself. It only takes
a few minutes, after which you can trust your build.

The simplest way to run the checks is to build GROMACS with -DREGRESSIONTEST_DOWNLOAD, and run
make check. GROMACS will automatically download and run the tests for you. Alternatively, you can down-
load and unpack the GROMACS regression test suite https://ftp.gromacs.org/regressiontests/regressiontests-2026.
0.tar.gz tarball yourself and use the advanced cmake option REGRESSIONTEST_PATH to specify the path to
the unpacked tarball, which will then be used for testing. If the above does not work, then please read on.

The regression tests are also available from the download section. Once you have downloaded them, unpack the
tarball, source GMXRC as described above, and run ./gmxtest.pl all inside the regression tests folder. You
can find more options (e.g. adding double when using double precision, or -only expanded to run just the
tests whose names match “expanded”) if you just execute the script without options.

Hopefully, you will get a report that all tests have passed. If there are individual failed tests it could be a sign of
a compiler bug, or that a tolerance is just a tiny bit too tight. Check the output files the script directs you to, and
try a different or newer compiler if the errors appear to be real. If you cannot get it to pass the regression tests,
you might try dropping a line to the GROMACS user discussion forum, but then you should include a detailed
description of your hardware, and the output of gmx mdrun -version (which contains valuable diagnostic
information in the header).

2.4. Doing a build of GROMACS 24

https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
https://ftp.gromacs.org/regressiontests/regressiontests-2026.0.tar.gz
https://ftp.gromacs.org/regressiontests/regressiontests-2026.0.tar.gz
../download.html
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Non-standard suffix

If your gmx program has been suffixed in a non-standard way, then the ./gmxtest.pl -suffix option will
let you specify that suffix to the test machinery. You can use ./gmxtest.pl -double to test the double-
precision version. You can use ./gmxtest.pl -crosscompiling to stop the test harness attempting to
check that the programs can be run. You can use ./gmxtest.pl -mpirun srun if your command to run an
MPI program is called srun.

Running MPI-enabled tests

The make check target also runs integration-style tests that may run with MPI if GMX_MPI=ON was
set. To make these work with various possible MPI libraries, you may need to set the CMake vari-
ables MPIEXEC, MPIEXEC_NUMPROC_FLAG, MPIEXEC_PREFLAGS and MPIEXEC_POSTFLAGS so that
mdrun-mpi-test_mpi would run on multiple ranks via the shell command

${MPIEXEC} ${MPIEXEC_NUMPROC_FLAG} ${NUMPROC} ${MPIEXEC_PREFLAGS} \
mdrun-mpi-test_mpi ${MPIEXEC_POSTFLAGS} -otherflags

A typical example for SLURM is

cmake .. -DGMX_MPI=on -DMPIEXEC=srun -DMPIEXEC_NUMPROC_FLAG=-n \
-DMPIEXEC_PREFLAGS= -DMPIEXEC_POSTFLAGS=

2.4.6 Testing GROMACS for performance

We are still working on a set of benchmark systems for testing the performance of GROMACS. Until that is
ready, we recommend that you try a few different parallelization options, and experiment with tools such as gmx
tune_pme.

2.4.7 Having difficulty?

You are not alone - this can be a complex task! If you encounter a problem with installing GROMACS, then there
are a number of locations where you can find assistance. It is recommended that you follow these steps to find the
solution:

1. Read the installation instructions again, taking note that you have followed each and every step correctly.

2. Search the GROMACS webpage and user discussion forum for information on the error. Adding
site:https://gromacs.bioexcel.eu/c/gromacs-user-forum/5 to a Google search may
help filter better results. It is also a good idea to check the gmx-users mailing list archive at https://
mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users

3. Search the internet using a search engine such as Google.

4. Ask for assistance on the GROMACS user discussion forum. Be sure to give a full description of what you
have done and why you think it did not work. Give details about the system on which you are installing.
Copy and paste your command line and as much of the output as you think might be relevant - certainly
from the first indication of a problem. In particular, please try to include at least the header from the mdrun
logfile, and preferably the entire file. People who might volunteer to help you do not have time to ask you
interactive detailed follow-up questions, so you will get an answer faster if you provide as much information
as you think could possibly help. High quality bug reports tend to receive rapid high quality answers.

2.4. Doing a build of GROMACS 25

http://www.gromacs.org
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.5 Special instructions for some platforms

Some less common configurations are described in a separate manual section (page 3).

2.5.1 Building on Windows

Building on Windows using native compilers is rather similar to building on Unix, so please start by reading the
above. Then, download and unpack the GROMACS source archive. Make a folder in which to do the out-of-
source build of GROMACS. For example, make it within the folder unpacked from the source archive, and call it
build-gromacs.

For CMake, you can either use the graphical user interface provided on Windows, or you can use a command line
shell with instructions similar to the UNIX ones above. If you open a shell from within your IDE (e.g. Microsoft
Visual Studio), it will configure the environment for you, but you might need to tweak this in order to get either
a 32-bit or 64-bit build environment. The latter provides the fastest executable. If you use a normal Windows
command shell, then you will need to either set up the environment to find your compilers and libraries yourself,
or run the vcvarsall.bat batch script provided by MSVC (just like sourcing a bash script under Unix).

With the graphical user interface, you will be asked about what compilers to use at the initial configuration stage,
and if you use the command line they can be set in a similar way as under UNIX.

Unfortunately, -DGMX_BUILD_OWN_FFTW=ON (see Using FFTW (page 10)) does not work on Windows, be-
cause there is no supported way to build FFTW on Windows. You can either build FFTW some other way (e.g.
MinGW), or use the built-in fftpack (which may be slow), or using MKL (page 10).

For the build, you can either load the generated solutions file into e.g. Visual Studio, or use the command line
with cmake --build so the right tools get used.

2.5.2 Building on Cray

GROMACS builds mostly out of the box on modern Cray machines, but you may need to specify the use of static
binaries with -DGMX_BUILD_SHARED_EXE=off, and you may need to set the F77 environmental variable to
ftn when compiling FFTW. The ARM ThunderX2 Cray XC50 machines differ only in that the recommended
compiler is the ARM HPC Compiler (armclang).

2.5.3 Intel Xeon Phi

Xeon Phi processors, hosted or self-hosted, are supported. The Knights Landing-based Xeon Phi processors
behave like standard x86 nodes, but support a special SIMD instruction set. When cross-compiling for such
nodes, use the AVX_512_KNL SIMD flavor. Knights Landing processors support so-called “clustering modes”
which allow reconfiguring the memory subsystem for lower latency. GROMACS can benefit from the quadrant or
SNC clustering modes. Care needs to be taken to correctly pin threads. In particular, threads of an MPI rank should
not cross cluster and NUMA boundaries. In addition to the main DRAM memory, Knights Landing has a high-
bandwidth stacked memory called MCDRAM. Using it offers performance benefits if it is ensured that mdrun
runs entirely from this memory; to do so it is recommended that MCDRAM is configured in “Flat mode” and
mdrun is bound to the appropriate NUMA node (use e.g. numactl --membind 1 with quadrant clustering
mode).

2.5. Special instructions for some platforms 26

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2.5.4 NVIDIA Grace

Summary: For best performance on Grace, run with GNU >= 13.1 and choose the -DCMAKE_CXX_-
FLAGS=-mcpu=neoverse-v2 -DCMAKE_C_FLAGS=-mcpu=neoverse-v2 -DGMX_SIMD=ARM_-
NEON_ASIMD CMake options.

At minimum any compiler being used for Grace should implement neoverse-v2, such as GNU >= 12.3 and LLVM
>= 16. There is a significant improvement in Arm performance between gcc-13 and gcc-12 so GNU >= 13.1 is
strongly recommended. The -mcpu=neoverse-v2 flag ensures that the compiler is not defaulting to the older
Armv8-A target.

On both GNU and LLVM, the GROMACS version implemented with NEON SIMD instructions significantly
outperforms the SVE version. This can be selected by setting GMX_SIMD=ARM_NEON_ASIMD at compilation.

These Grace specific config optimisations are most important when running in CPU only mode, where much of
the run time is spent in code which is sensitive to SIMD performance.

2.6 Tested platforms

While it is our best belief that GROMACS will build and run pretty much everywhere, it is important that we tell
you where we really know it works because we have tested it. Every commit in our git source code repository is
currently tested with a range of configuration options on x86 with gcc versions including 9 and 12, clang versions
including 9 and 15, CUDA versions 11.0 and 11.7, hipSYCL 0.9.4 with ROCm 5.3, and a version of oneAPI
containing Intel’s clang-based compiler. For this testing, we use Ubuntu 20.04 operating system. Other compiler,
library, and OS versions are tested less frequently. For details, you can have a look at the continuous integration
server used by the GitLab project, which uses GitLab runner on a local k8s x86 cluster with NVIDIA, AMD, and
Intel GPU support.

We test irregularly on ARM v8, Fujitsu A64FX, Cray, Power9, and other environments, and with other compilers
and compiler versions, too.

2.7 Support

Please refer to the manual for documentation, downloads, and release notes for any GROMACS release.

Visit the user forums for discussions and advice.

Report bugs at https://gitlab.com/gromacs/gromacs/-/issues

2.6. Tested platforms 27

https://gitlab.com/gromacs/gromacs/
https://gitlab.com/gromacs/gromacs/
http://manual.gromacs.org/
http://forums.gromacs.org/
https://gitlab.com/gromacs/gromacs/-/issues

CHAPTER

THREE

USER GUIDE

This guide provides

• material introducing GROMACS

• practical advice for making effective use of GROMACS.

For getting, building and installing GROMACS, see the Installation guide (page 3). For background on algorithms
and implementations, see the reference manual part (page 351) of the documentation. If you have questions not
answered by these resources, please visit the GROMACS users forum and search for a potential answer or ask a
question from the community.

This is not a release build of GROMACS, so please reference one of the GROMACS papers and the base release
of the manual.

This is not a release build of GROMACS. Please reference one of the GROMACS papers, as well as the base
release that this version is built from. Also, please state what modifcations have been performed or where the
version was sourced from.

3.1 Known issues affecting users of GROMACS

Here is a non-exhaustive list of issues that are we are aware of that are affecting regular users of GROMACS.

3.1.1 Unable to compile with CUDA 11.3

Due to a bug in the nvcc compiler, it is currently not possible to compile NVIDIA GPU-enabled GROMACS with
version 11.3 of the CUDA compiler. We recommend using CUDA 11.4 or newer.

Issue 4037

3.1.2 The deform option is not suitable for flow

The deform option currently scales the coordinates, but for flow the deformation should only be driven by changing
periodic vectors. In addition the velocities of particles need to be corrected when they are displaced by periodic
vectors. Therefore the deform option is currently only suitable for slowly deforming systems.

Issue 4607

28

https://gromacs.bioexcel.eu/
https://gitlab.com/gromacs/gromacs/-/issues/4037
https://gitlab.com/gromacs/gromacs/-/issues/4607

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.1.3 SYCL build unstable when using oneAPI with LevelZero backend

There are multiple issues with different versions of Intel oneAPI when using the LevelZero backend.

In many cases, it works fine, and if it fails, it does so explicitly (either crash or hang), so it should be fine to
experiment with.

For most cases, we recommend using OpenCL backend (the default) when running SYCL build of GROMACS
on Intel GPUs.

Issue 4219 Issue 4354

3.1.4 Unable to build with CUDA 11.5-11.6 and GCC 11 on Ubuntu 22.04

A bug in the nvcc toolchain, versions 11.5.0-11.6.1, makes it impossible to build recent GROMACS with GCC
11.2 shipped with Ubuntu 22.04. We recommend the users to either use an different version of GCC (at the time
of writing 9.x or 10.x have been reported to work), or manually update the nvcc toolchain to version 11.6.2 or
newer.

Some non-Ubuntu installations of GCC 11.2 library have been observed to work fine.

When an incompatible combination is used, an error will be raised from CMake or later during build.

Issue 4574

3.1.5 FFT errors with NVIDIA RTX 40xx-series GPUs and CUDA 11.7 or earlier

cuFFT library only has full support for RTX 40xx GPUs since version 11.8. If you are using older CUDA, you
might encounter cufftPlanMany R2C plan failure error when running a simulation with PME on such
a GPU. To resolve, upgrade to CUDA 11.8 or 12.x.

Issue 4759

3.1.6 “Cannot find a working standard library” error with ROCm Clang

Some Clang installations don’t contain a compatible C++ standard library. In such cases, you might have to install
g++ and help CMake find it by setting -DGMX_GPLUSGPLUS_PATH=/path/to/bin/g++.

On Ubuntu 22.04, installing GCC 12 standard library (with sudo apt install libstdc++-12-dev)
usually works well even without setting -DGMX_GPLUSGPLUS_PATH.

Issue 4679

3.1.7 Expanded ensemble does not checkpoint correctly

In the legacy simulator, because of shortcomings in the implementation, successful expanded-ensemble MC steps
that occured on checkpoint steps were not recorded in the checkpoint. If that checkpoint was used for a restart, then
it would not necessarily behave correctly and reproducibly afterwards. So checkpointing of expanded-ensemble
simulations is disabled for the legacy simulator.

Checkpointing of expanded ensemble in the modular simulator works correctly.

To work around the issue, either avoid -update gpu (so that it uses the modular simulator path which does not
have the bug), or use an older version of GROMACS (which does do the buggy checkpointing), or refrain from
restarting from checkpoints in the affected case.

Issue 4629

3.1. Known issues affecting users of GROMACS 29

https://gitlab.com/gromacs/gromacs/-/issues/4219
https://gitlab.com/gromacs/gromacs/-/issues/4354
https://gitlab.com/gromacs/gromacs/-/issues/4574
https://gitlab.com/gromacs/gromacs/-/issues/4759
https://gitlab.com/gromacs/gromacs/-/issues/4679
https://gitlab.com/gromacs/gromacs/-/issues/4629

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.1.8 Compiling with GCC 12 on POWER9 architectures

There are multiple failing unit tests after compilation with GCC 12.2 and 12.3 on POWER9 architectures. It is
possible that other GCC 12 and newer versions are affected.

Issue 4823

3.1.9 Launching multiple instances of GROMACS on the same machine with
AMD GPUs

When GROMACS is built with AdaptiveCpp 23.10 or earlier for AMD GPUs, launching more than 4 instances of
GROMACS (even on different GPUs) can lead to reduced performance.

The issue is completely avoided when each process is limited to a single GPU using ROCR_VISIBLE_DEVICES
environment variable. This is already the recommended setting on some of the relevant supercomputers.

Building with AdaptiveCpp 24.02 also prevents the problem from arising.

Issue 4965

3.2 Getting started

3.2.1 Flow Chart

This is a flow chart of a typical GROMACS MD run of a protein in a box of water. A more detailed example is
available in Getting started (page 30). Several steps of energy minimization may be necessary, these consist of
cycles: gmx grompp (page 190) -> gmx mdrun (page 215).

3.2. Getting started 30

https://gitlab.com/gromacs/gromacs/-/issues/4823
https://gitlab.com/gromacs/gromacs/-/issues/4965

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

eiwit.pdb

Generate a GROMACS topology
gmx pdb2gmx

grompp.mdp

Enlarge the box
gmx editconf

conf.gro

Solvate protein
gmx solvate

topol.top

conf.gro

Generate mdrun input file
gmx grompp

conf.grotopol.top

Run the simulation (EM or MD)
gmx mdrun

topol.tpr

Continuation
state.cpt

Analysis
gmx ...

traj.xtc / traj.trr

Analysis
gmx energy

ener.edr

In this chapter we assume the reader is familiar with Molecular Dynamics and familiar with Unix, including the
use of a text editor such as jot, emacs or vi. We furthermore assume the GROMACS software is installed
properly on your system. When you see a line like

ls -l

you are supposed to type the contents of that line on your computer terminal.

3.2. Getting started 31

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.2.2 Setting up your environment

In order to check whether you have access to GROMACS, please start by entering the command:

gmx -version

This command should print out information about the version of GROMACS installed. If this, in contrast, returns
the phrase

gmx: command not found.

then you have to find where your version of GROMACS is installed. In the default case, the binaries are located
in /usr/local/gromacs/bin, however, you can ask your local system administrator for more information,
and then follow the advice for Getting access to GROMACS after installation (page 24).

3.2.3 Flowchart of typical simulation

A typical simulation workflow with GROMACS is illustrated here (page 30).

3.2.4 Important files

Here is an overview of the most important GROMACS file types that you will encounter.

Molecular Topology file (.top)

The molecular topology file is generated by the program gmx pdb2gmx (page 235). gmx pdb2gmx (page 235)
translates a pdb (page 490) structure file of any peptide or protein to a molecular topology file. This topology file
contains a complete description of all the interactions in your peptide or protein.

Topology #include file mechanism

When constructing a system topology in a top (page 492) file for presentation to grompp, GROMACS uses a
built-in version of the so-called C preprocessor, cpp (in GROMACS 3, it really was cpp). cpp interprets lines like:

#include "ions.itp"

by looking for the indicated file in the current directory, the GROMACS share/top directory as indicated by
the GMXLIB environment variable, and any directory indicated by a -I flag in the value of the include run
parameter (page 43) in the mdp (page 488) file. It either finds this file or reports a warning. (Note that when
you supply a directory name, you should use Unix-style forward slashes ‘/’, not Windows-style backslashes ‘' for
separators.) When found, it then uses the contents exactly as if you had cut and pasted the included file into the
main file yourself. Note that you shouldn’t go and do this copy-and-paste yourself, since the main purposes of the
include file mechanism are to re-use previous work, make future changes easier, and prevent typos.

Further, cpp interprets code such as:

#ifdef POSRES_WATER
; Position restraint for each water oxygen
[position_restraints]
; i funct fcx fcy fcz

1 1 1000 1000 1000
#endif

by testing whether the preprocessor variable POSRES_WATER was defined somewhere (i.e. “if defined”). This
could be done with #define POSRES_WATER earlier in the top (page 492) file (or its #include files), with
a -D flag in the include run parameter as above, or on the command line to cpp. The function of the -D flag is

3.2. Getting started 32

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

borrowed from the similar usage in cpp. The string that follows -D must match exactly; using -DPOSRES will
not trigger #ifdef POSRE or #ifdef DPOSRES. This mechanism allows you to change your mdp (page 488)
file to choose whether or not you want position restraints on your solvent, rather than your top (page 492) file.
Note that preprocessor variables are not the same as shell environment variables.

Molecular Structure file (.gro, .pdb)

When gmx pdb2gmx (page 235) is executed to generate a molecular topology, it also translates the structure file
(pdb (page 490) file) to a GROMOS structure file (gro (page 486) file). The main difference between a pdb
(page 490) file and a gromos file is their format and that a gro (page 486) file can also hold velocities. However,
if you do not need the velocities, you can also use a pdb (page 490) file in all programs. To generate a box of
solvent molecules around the peptide, the program gmx solvate (page 268) is used. First the program gmx editconf
(page 171) should be used to define a box of appropriate size around the molecule. gmx solvate (page 268) solvates
a solute molecule (the peptide) into any solvent (in this case, water). The output of gmx solvate (page 268) is a
gromos structure file of the peptide solvated in water. gmx solvate (page 268) also changes the molecular topology
file (generated by gmx pdb2gmx (page 235)) to add solvent to the topology.

Molecular Dynamics parameter file (.mdp)

The Molecular Dynamics Parameter (mdp (page 488)) file contains all information about the Molecular Dynamics
simulation itself e.g. time-step, number of steps, temperature, pressure etc. The easiest way of handling such a
file is by adapting a sample mdp (page 488) file. A sample mdp file (page 488) is available.

Index file (.ndx)

Sometimes you may need an index file to specify actions on groups of atoms (e.g. temperature coupling, acceler-
ations, freezing). Usually the default index groups will be sufficient, so for this demo we will not consider the use
of index files.

Run input file (.tpr)

The next step is to combine the molecular structure (gro (page 486) file), topology (top (page 492) file) MD-
parameters (mdp (page 488) file) and (optionally) the index file (ndx (page 489)) to generate a run input file (tpr
(page 494) extension). This file contains all information needed to start a simulation with GROMACS. The gmx
grompp (page 190) program processes all input files and generates the run input tpr (page 494) file.

Trajectory file (.trr, .tng, or .xtc)

Once the run input file is available, we can start the simulation. The program which starts the simulation is called
gmx mdrun (page 215). The only input file of gmx mdrun (page 215) that you usually need in order to start a run
is the run input file (tpr (page 494) file). The typical output files of gmx mdrun (page 215) are the trajectory file
(trr (page 494) file), a logfile (log (page 487) file), and perhaps a checkpoint file (cpt (page 485) file).

3.2.5 Tutorial material

There are several third-party tutorials available that cover aspects of using GROMACS. Further information can
also be found in the How to (page 341) section.

3.2. Getting started 33

http://www.mdtutorials.com/gmx/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.2.6 Background reading

• Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., Hermans, J. (1981) Intermolecular Forces, chapter
Interaction models for water in relation to protein hydration, pp 331-342. Dordrecht: D. Reidel Publishing
Company Dordrecht

• Kabsch, W., Sander, C. (1983). Dictionary of protein secondary structure: Pattern recognition of hydrogen-
bonded and geometrical features. Biopolymers 22, 2577–2637.

• Mierke, D.F., Kessler, H. (1991). Molecular dynamics with dimethyl sulfoxide as a solvent. Conformation
of a cyclic hexapeptide. J. Am. Chem. Soc. 113, 9446.

• Stryer, L. (1988). Biochemistry vol. 1, p. 211. New York: Freeman, 3 edition.

3.3 System preparation

There are many ways to prepare a simulation system to run with GROMACS. These often vary with the kind
of scientific question being considered, or the model physics involved. A protein-ligand atomistic free-energy
simulation might need a multi-state topology, while a coarse-grained simulation might need to manage defaults
that suit systems with higher density.

3.3.1 Steps to consider

The following general guidance should help with planning successful simulations. Some stages are optional for
some kinds of simulations.

1. Clearly identify the property or phenomena of interest to be studied by performing the simulation. Do not
continue further until you are clear on this! Do not run your simulation and then seek to work out how to
use it to test your hypothesis, because it may be unsuitable, or the required information was not saved.

2. Select the appropriate tools to be able to perform the simulation and observe the property or phenomena of
interest. It is important to read and familiarize yourself with publications by other researchers on similar
systems. Choices of tools include:

• software with which to perform the simulation (consideration of force field may influence this deci-
sion)

• the force field, which describes how the particles within the system interact with each other. Select
one that is appropriate for the system being studied and the property or phenomena of interest. This
is a very important and non-trivial step! Consider now how you will analyze your simulation data to
make your observations.

3. Obtain or generate the initial coordinate file for each molecule to be placed within the system. Many differ-
ent software packages are able to build molecular structures and assemble them into suitable configurations.

4. Generate the raw starting structure for the system by placing the molecules within the coordinate file as
appropriate. Molecules may be specifically placed or arranged randomly. Several non-GROMACS tools are
useful here; within GROMACS gmx solvate (page 268), gmx insert-molecules (page 207) and gmx genconf
(page 187) solve frequent problems.

5. Obtain or generate the topology file for the system, using (for example) gmx pdb2gmx (page 235), gmx x2top
(page 299), SwissParam (for CHARMM forcefield), CHARMM-GUI , Automated Topology Builder (for
GROMOS96 53A6) or your favourite text editor in concert with Chapter 5 (page 405) of the GROMACS
Reference Manual. For the AMBER force fields, antechamber or acpype might be appropriate.

6. Describe a simulation box (e.g. using gmx editconf (page 171)) whose size is appropriate for the eventual
density you would like, fill it with solvent (e.g. using gmx solvate (page 268)), and add any counter-ions
needed to neutralize the system (e.g. using gmx grompp (page 190) and gmx insert-molecules (page 207)).
In these steps you may need to edit your topology file to stay current with your coordinate file.

3.3. System preparation 34

http://swissparam.ch/
https://www.charmm-gui.org/
https://atb.uq.edu.au/
https://ambermd.org/antechamber/antechamber.html
https://github.com/alanwilter/acpype

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

7. Run an energy minimization on the system (using gmx grompp (page 190) and gmx mdrun (page 215)). This
is required to sort out any bad starting structures caused during generation of the system, which may cause
the production simulation to crash. It may be necessary also to minimize your solute structure in vacuo
before introducing solvent molecules (or your lipid bilayer or whatever else). You should consider using
flexible water models and not using bond constraints or frozen groups. The use of position restraints and/or
distance restraints should be evaluated carefully.

8. Select the appropriate simulation parameters for the equilibration simulation (defined in mdp (page 488)
file). You need to choose simulation parameters that are consistent with how force field was derived. You
may need to simulate at NVT with position restraints on your solvent and/or solute to get the temperature
almost right, then relax to NPT to fix the density (which should be done with Berendsen until after the
density is stabilized, before a further switch to a barostat that produces the correct ensemble), then move
further (if needed) to reach your production simulation ensemble (e.g. NVT, NVE). If you have problems
here with the system blowing up (page 329), consider using the suggestions on that page, e.g. position
restraints on solutes, or not using bond constraints, or using smaller integration timesteps, or several gentler
heating stage(s).

9. Run the equilibration simulation for sufficient time so that the system relaxes sufficiently in the target
ensemble to allow the production run to be commenced (using gmx grompp (page 190) and gmx mdrun
(page 215), then gmx energy (page 177) and Visualization Software (page 347)).

10. Select the appropriate simulation parameters for the production simulation (defined in mdp (page 488) file).
In particular, be careful not to re-generate the velocities. You still need to be consistent with how the force
field was derived and how to measure the property or phenomena of interest.

3.3.2 Tips and tricks

Database files

The share/top directory of a GROMACS installation contains numerous plain-text helper files with the .dat
file extension. Some of the command-line tools (see Command-line reference (page 115)) refer to these, and each
tool documents which files it uses, and how they are used.

If you need to modify these files (e.g. to introduce new atom types with VDW radii into vdwradii.dat),
you can copy the file from your installation directory into your working directory, and the GROMACS tools will
automatically load the copy from your working directory rather than the standard one. To suppress all the standard
definitions, use an empty file in the working directory.

3.4 Managing long simulations

Molecular simulations often extend beyond the lifetime of a single UNIX command-line process. It is useful to
be able to stop and restart the simulation in a way that is equivalent to a single run. When gmx mdrun (page 215)
is halted, it writes a checkpoint file that can restart the simulation exactly as if there was no interruption. To do
this, the checkpoint retains a full-precision version of the positions and velocities, along with state information
necessary to restart algorithms e.g. that implement coupling to external thermal reservoirs. A restart can be
attempted using e.g. a gro (page 486) file with velocities, but since the gro (page 486) file has significantly less
precision, and none of the coupling algorithms will have their state carried over, such a restart is less continuous
than a normal MD step.

Such a checkpoint file is also written periodically by gmx mdrun (page 215) during the run. The interval is given
by the -cpt flag to gmx mdrun (page 215). When gmx mdrun (page 215) attempts to write each successive
checkpoint file, it first renames the old file with the suffix _prev, so that even if something goes wrong while
writing the new checkpoint file, only recent progress can be lost.

gmx mdrun (page 215) can be halted in several ways:

• the number of simulation nsteps (page 44) can expire

• the user issues a termination signal (e.g. with Ctrl-C on the terminal)

3.4. Managing long simulations 35

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• the job scheduler issues a termination signal when time expires

• when gmx mdrun (page 215) detects that the length specified with -maxh has elapsed (this option is useful
to help cooperate with a job scheduler, but can be problematic if jobs can be suspended)

• some kind of catastrophic failure, such as loss of power, or a disk filling up, or a network failing

To use the checkpoint file for a restart, use a command line such as

gmx mdrun -cpi state

which directs mdrun to use the checkpoint file (which is named state.cpt by default). You can choose to give
the output checkpoint file a different name with the -cpo flag, but if so then you must provide that name as input
to -cpi when you later use that file. You can query the contents of checkpoint files with gmx check (page 134)
and gmx dump (page 169).

3.4.1 Appending to output files

By default, gmx mdrun (page 215) will append to the old output files. If the previous part ended in a regular way,
then the performance data at the end of the log file will will be removed, some new information about the run
context written, and the simulation will proceed. Otherwise, mdrun will truncate all the output files back to the
time of the last written checkpoint file, and continue from there, as if the simulation stopped at that checkpoint in
a regular way.

You can choose not to append the output files by using the -noappend flag, which forces mdrun to write each
output to a separate file, whose name includes a “.partXXXX” string to describe which simulation part is contained
in this file. This numbering starts from zero and increases monotonically as simulations are restarted, but does
not reflect the number of simulation steps in each part. The simulation-part (page 45) option can be used
to set this number manually in gmx grompp (page 190), which can be useful if data has been lost, e.g. through
filesystem failure or user error.

Appending will not work if any output files have been modified or removed after mdrun wrote them, because the
checkpoint file maintains a checksum of each file that it will verify before it writes to them again. In such cases,
you must either restore the file, name them as the checkpoint file expects, or continue with -noappend. If your
original run used -deffnm, and you want appending, then your continuations must also use -deffnm.

3.4.2 Backing up your files

You should arrange to back up your simulation files frequently. Network file systems on clusters can be configured
in more or less conservative ways, and this can lead gmx mdrun (page 215) to be told that a checkpoint file has
been written to disk when actually it is still in memory somewhere and vulnerable to a power failure or disk that
fills or fails in the meantime. The UNIX tool rsync can be a useful way to periodically copy your simulation
output to a remote storage location, which works safely even while the simulation is underway. Keeping a copy of
the final checkpoint file from each part of a job submitted to a cluster can be useful if a file system is unreliable.

3.4.3 Extending a .tpr file

If the simulation described by tpr (page 494) file has completed and should be extended, use the gmx convert-tpr
(page 146) tool to extend the run, e.g.

gmx convert-tpr -s previous.tpr -extend timetoextendby -o next.tpr
gmx mdrun -s next.tpr -cpi state.cpt

The time can also be extended using the -until and -nsteps options. Note that the original mdp (page 488)
file may have generated velocities, but that is a one-time operation within gmx grompp (page 190) that is never
performed again by any other tool.

3.4. Managing long simulations 36

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.4.4 Changing mdp options for a restart

If you wish to make changes to your simulations settings other than length, then you should do so in the mdp
(page 488) file or topology, and then call

gmx grompp -f possibly-changed.mdp -p possibly-changed.top -c original.gro
→˓-t state.cpt -o new.tpr
gmx mdrun -s new.tpr -cpi state.cpt

to instruct gmx grompp (page 190) to copy the full-precision coordinates and velocities in the checkpoint file into
the new tpr (page 494) file. You should consider your choices for tinit (page 44), init-step (page 44),
nsteps (page 44) and simulation-part (page 45). You should generally not regenerate velocities with
gen-vel (page 57), and generally select continuation (page 58) so that constraints are not re-applied before
the first integration step.

3.4.5 Restarts without checkpoint files

It used to be possible to continue simulations without the checkpoint files. As this approach could be unreliable
or lead to unphysical results, only restarts from checkpoints are permitted now.

3.4.6 Are continuations exact?

If you had a computer with unlimited precision, or if you integrated the time-discretized equations of motion by
hand, exact continuation would lead to identical results. But since practical computers have limited precision and
MD is chaotic, trajectories will diverge very rapidly even if one bit is different. Such trajectories will all be equally
valid, but eventually very different. Continuation using a checkpoint file, using the same code compiled with the
same compiler and running on the same computer architecture using the same number of processors without GPUs
(see next section) would lead to binary identical results. However, by default the actual work load will be balanced
across the hardware according to the observed execution times. Such trajectories are in principle not reproducible,
and in particular a run that took place in more than one part will not be identical with an equivalent run in one part
- but neither of them is better in any sense.

3.4.7 Reproducibility

The following factors affect the reproducibility of a simulation, and thus its output:

• Precision (mixed / double) with double giving “better” reproducibility.

• Number of cores, due to different order in which forces are accumulated. For instance (a+b)+c is not
necessarily binary identical to a+(b+c) in floating-point arithmetic.

• Type of processors. Even within the same processor family there can be slight differences.

• Optimization level when compiling.

• Optimizations at run time: e.g. the FFTW library that is typically used for fast Fourier transforms determines
at startup which version of their algorithms is fastest, and uses that for the remainder of the calculations.
Since the speed estimate is not deterministic, the results may vary from run to run.

• Random numbers used for instance as a seed for generating velocities (in GROMACS at the preprocessing
stage).

• Uninitialized variables in the code (but there shouldn’t be any)

• Dynamic linking to different versions of shared libraries (e.g. for FFTs)

• Dynamic load balancing, since particles are redistributed to processors based on elapsed wallclock time,
which will lead to (a+b)+c != a+(b+c) issues as above

• Number of PME-only ranks (for parallel PME simulations)

3.4. Managing long simulations 37

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• MPI reductions typically do not guarantee the order of the operations, and so the absence of associativity
for floating-point arithmetic means the result of a reduction depends on the order actually chosen

• On GPUs, the reduction of e.g. non-bonded forces has a non-deterministic summation order, so any fast
implementation is non-reproducible by design.

The important question is whether it is a problem if simulations are not completely reproducible. The answer is
yes and no. Reproducibility is a cornerstone of science in general, and hence it is important. The Central Limit
Theorem tells us that in the case of infinitely long simulations, all observables converge to their equilibrium values.
Molecular simulations in GROMACS adhere to this theorem, and hence, for instance, the energy of your system
will converge to a finite value, the diffusion constant of your water molecules will converge to a finite value, and
so on. That means all the important observables, which are the values you would like to get out of your simulation,
are reproducible. Each individual trajectory is not reproducible, however.

However, there are a few cases where it would be useful if trajectories were reproducible, too. These include
developers doing debugging, and searching for a rare event in a trajectory when, if it occurs, you want to have
manually saved your checkpoint file so you can restart the simulation under different conditions, e.g. writing
output much more frequently.

In order to obtain this reproducible trajectory, it is important to look over the list above and eliminate the factors
that could affect it. Further, using

gmx mdrun -reprod

will eliminate all sources of non-reproducibility that it can, i.e. same executable + same hardware + same shared
libraries + same run input file + same command line parameters will lead to reproducible results.

3.5 Answers to frequently asked questions (FAQs)

3.5.1 Questions regarding GROMACS installation

1. Do I need to compile all utilities with MPI?

With one rarely-used exception (pme_error (page 238)), only mdrun (page 215) is able to use the MPI
(page 8) parallelism. So you only need to use the -DGMX_MPI=on flag when configuring (page 13) for a
build intended to run the main simulation engine mdrun (page 215). Generally that is desirable when running
on a multi-node cluster, and necessary when using multi-simulation algorithms. Usually also installing a
build of GROMACS configured without MPI is convenient for users.

2. Should my version be compiled using double precision?

In general, GROMACS only needs to be build in its default mixed-precision mode. For more details, see the
discussion in Chapter 2 of the reference manual. Sometimes, usage may also depend on your target system,
and should be decided upon according to the individual instructions (page 26).

3.5.2 Questions concerning system preparation and preprocessing

1. Where can I find a solvent coordinate file (page 483) for use with solvate (page 268)?

Suitable equilibrated boxes of solvent structure files (page 483) can be found in the $GMXDIR/share/
gromacs/top directory. That location will be searched by default by solvate (page 268), for example by
using -cs spc216.gro as an argument. Other solvent boxes can be prepared by the user as described
on the manual page for solvate (page 268) and elsewhere. Note that suitable topology files will be needed
for the solvent boxes to be useful in grompp (page 190). These are available for some force fields, and may
be found in the respective subfolder of $GMXDIR/share/gromacs/top.

2. How to prevent solvate (page 268) from placing waters in undesired places?

Water placement is generally well behaved when solvating proteins, but can be difficult when setting up
membrane or micelle simulations. In those cases, waters may be placed in between the alkyl chains of the

3.5. Answers to frequently asked questions (FAQs) 38

https://en.wikipedia.org/wiki/Central_limit_theorem
https://en.wikipedia.org/wiki/Central_limit_theorem

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

lipids, leading to problems later during the simulation (page 329). You can either remove those waters by
hand (and do the accounting for molecule types in the topology (page 492) file), or set up a local copy of the
vdwradii.dat file from the $GMXLIB directory, specific for your project and located in your working
directory. In it, you can increase the vdW radius of the atoms, to suppress such interstitial insertions.
Recommended e.g. at a common tutorial is the use of 0.375 instead of 0.15.

1. How do I provide multiple definitions of bonds / dihedrals in a topology?

You can add additional bonded terms beyond those that are normally defined for a residue (e.g. when
defining a special ligand) by including additional copies of the respective lines under the [bonds],
[pairs], [angles] and [dihedrals] sections in the [moleculetype] section for
your molecule, found either in the itp (page 487) file or the topology (page 492) file. This will add those
extra terms to the potential energy evaluation, but will not remove the previous ones. So be careful with
duplicate entries. Also keep in mind that this does not apply to duplicated entries for [bondtypes], [
angletypes], or [dihedraltypes], in force-field definition files, where duplicates overwrite
the previous values.

2. Do I really need a gro (page 486) file?

The gro (page 486) file is used in GROMACS as a unified structure file (page 483) format that can be read by
all utilities. The large majority of GROMACS routines can also use other file types such as pdb (page 490),
with the limitations that no velocities are available in this case (page 33). If you need a text-based format
with more digits of precision, the g96 (page 486) format is suitable and supported.

3. Do I always need to run pdb2gmx (page 235) when I already produced an itp (page 487) file elsewhere?

You don’t need to prepare additional files if you already have all itp (page 487) and top (page 492) files
prepared through other tools.

Examples for those can be found in the System Preparation section of this user guide (page 34).

4. How can I build in missing atoms?

GROMACS has no support for building coordinates of missing non-hydrogen atoms. If your system is
missing some part, you will have to add the missing pieces using external programs to avoid the missing
atom (page 107) error. This can be done using programs such as Chimera in combination with Modeller,
Swiss PDB Viewer, Maestro. Do not run a simulation that had missing atoms unless you know exactly why
it will be stable.

5. Why is the total charge of my system not an integer like it should be?

In floating point (page 339) math, real numbers can not be displayed to arbitrary precision (for more on
this, see e.g. Wikipedia). This means that very small differences to the final integer value will persist, and
GROMACS will not lie to you and round those values up or down. If your charge differs from the integer
value by a larger amount, e.g. at least 0.01, this usually means that something went wrong during your
system preparation

3.5.3 Questions regarding simulation methodology

1. Should I couple a handful of ions to their own temperature-coupling bath?

No. You need to consider the minimal size of your temperature coupling groups, as explained in Thermostats
(page 327) and more specifically in What not to do (page 327), as well as the implementation of your chosen
thermostat as described in the reference manual.

2. Why do my grompp restarts always start from time zero?

You can choose different values for tinit (page 44) and init-step (page 44).

3. Why can’t I do conjugate gradient minimization with constraints?

Minimization with the conjugate gradient scheme can not be performed with constraints as described in the
reference manual, and some additional information on Wikipedia.

3.5. Answers to frequently asked questions (FAQs) 39

http://www.mdtutorials.com/gmx/lysozyme/03_solvate.html
https://www.cgl.ucsf.edu/chimera/
https://salilab.org/modeller/
https://spdbv.unil.ch/
https://www.schrodinger.com/maestro
https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://en.wikipedia.org/wiki/Conjugate_gradient_method

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

4. How do I hold atoms in place in my energy minimization or simulation?

Groups may be frozen in place using freeze groups (see the reference manual). It is more common to
use a set of position restraints, to place penalties on movement of the atoms. Files that control this kind of
behaviour can be created using genrestr (page 189).

5. How do I extend a completed a simulation to longer times?

Please see the section on Managing long simulations (page 35). You can either prepare a new mdp
(page 488) file, or extend the simulation time in the original tpr (page 494) file using convert-tpr (page 146).

6. How should I compute a single-point energy?

This is best achieved with the -rerun option to mdrun (page 215). See the Re-running a simulation
(page 84) section.

3.5.4 Parameterization and Force Fields

1. I want to simulate a molecule (protein, DNA, etc.) which complexes with various transition metal ions,
iron-sulfur clusters, or other exotic species. Parameters for these exotic species aren’t available in force
field X. What should I do?

First, you should consider how well MD (page 331) will actually describe your system (e.g. see some of
the recent literature). Many species are infeasible to model without either atomic polarizability, or QM
treatments. Then you need to prepare your own set of parameters and add a new residue to your force field
(page 331) of choice. Then you will have to validate that your system behaves in a physical way, before
continuing your simulation studies. You could also try to build a more simplified model that does not rely
on the complicated additions, as long as it still represents the correct real object in the laboratory.

2. Should I take parameters from one force field and apply them inside another that is missing them?

NO. Molecules parametrized for a given force field (page 331) will not behave in a physical manner when
interacting with other molecules that have been parametrized according to different standards. If your
required molecule is not included in the force field you need to use, you will have to parametrize it yourself
according to the methodology of this force field.

3.5.5 Analysis and Visualization

1. Why am I seeing bonds being created when I watch the trajectory?

Most visualization softwares determine the bond status of atoms depending on a set of predefined distances.
So the bonding pattern created by them might not be the one defined in your topology (page 492) file.
What matters is the information encoded in there. If the software has read a tpr (page 494) file, then the
information is in reliable agreement with the topology you supplied to grompp (page 190).

2. When visualizing a trajectory from a simulation using PBC, why are there holes or my peptide leaving the
simulation box?

Those holes and molecules moving around are just a result of molecules ranging over the box boundaries
and wrapping around (page 326), and are not a reason for concern. You can fix the visualization using
trjconv (page 281) to prepare the structure for analysis.

3. Why is my total simulation time not an integer like it should be?

As the simulation time is calculated using floating point arithmetic (page 339), rounding errors can occur
but are not of concern.

3.5. Answers to frequently asked questions (FAQs) 40

https://dx.doi.org/10.1021%2Facs.chemrev.6b00440

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.6 Force fields in GROMACS

3.6.1 AMBER

AMBER (Assisted Model Building and Energy Refinement) refers both to a set of molecular mechanical force
fields (page 331) for the simulation of biomolecules and a package of molecular simulation programs.

GROMACS supports the following AMBER force fields natively:

• AMBER94

• AMBER96

• AMBER99

• AMBER99SB

• AMBER99SB-ILDN

• AMBER03

• AMBERGS

Information concerning the force field can be found using the following information:

• AMBER Force Fields - background about the AMBER force fields

• AMBER Programs - information about the AMBER suite of programs for molecular simulation

• ANTECHAMBER/GAFF - Generalized Amber Force Field (GAFF) which is supposed to provide param-
eters suitable for small molecules that are compatible with the AMBER protein/nucleic acid force fields.
It is available either together with AMBER, or through the antechamber package, which is also distributed
separately. There are scripts available for converting AMBER systems (set up, for example, with GAFF) to
GROMACS (amb2gmx.pl, or ACPYPE), but they do require AmberTools installation to work.

3.6.2 CHARMM

CHARMM (Chemistry at HARvard Macromolecular Mechanics) is a both a set of force fields and a software
package for molecular dynamics (page 331) simulations and analysis. Includes united atom (CHARMM19) and
all atom (CHARMM22, CHARMM27, CHARMM36) force fields (page 331). The CHARMM27 force field has
been ported to GROMACS and is officially supported. CHARMM36 force field files can be obtained from the
MacKerell lab website, which regularly produces up-to-date CHARMM force field files in GROMACS format.

For using CHARMM36 in GROMACS, please use the following settings in the mdp (page 488) file:

constraints = h-bonds
cutoff-scheme = Verlet
vdwtype = cutoff
vdw-modifier = force-switch
rlist = 1.2
rvdw = 1.2
rvdw-switch = 1.0
coulombtype = PME
rcoulomb = 1.2
DispCorr = no

Note that dispersion correction should be applied in the case of lipid monolayers, but not bilayers.

Please also note that the switching distance is a matter of some debate in lipid bilayer simulations, and it is depen-
dent to some extent on the nature of the lipid. Some studies have found that an 0.8-1.0 nm switch is appropriate,
others argue 0.8-1.2 nm is best, and yet others stand by 1.0-1.2 nm. The user is cautioned to thoroughly investigate
the force field literature for their chosen lipid(s) before beginning a simulation!

3.6. Force fields in GROMACS 41

http://ambermd.org/
https://ambermd.org/AmberModels.php
https://ambermd.org/AmberTools.php
http://ambermd.org/antechamber/antechamber.html
https://github.com/choderalab/mmtools/blob/master/converters/amb2gmx.pl
https://github.com/alanwilter/acpype
https://ambermd.org/AmberTools.php
http://www.charmm.org/
http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.6.3 GROMOS

. Warning

The GROMOS force fields have been parametrized with a physically incorrect multiple-time-stepping scheme
for a twin-range cut-off. When used with a single-range cut-off (or a correct Trotter multiple-time-stepping
scheme), physical properties, such as the density, might differ from the intended values. Since there are
researchers actively working on validating GROMOS with modern integrators we have not yet removed the
GROMOS force fields, but you should be aware of these issues and check if molecules in your system are
affected before proceeding. Further information is available in GitLab Issue 2884 , and a longer explanation of
our decision to remove physically incorrect algorithms can be found at DOI:10.26434/chemrxiv.11474583.v1
.

GROMOS is is a general-purpose molecular dynamics computer simulation package for the study of biomolecular
systems. It also incorporates its own force field covering proteins, nucleotides, sugars etc. and can be applied to
chemical and physical systems ranging from glasses and liquid crystals, to polymers and crystals and solutions of
biomolecules.

GROMACS supports the GROMOS force fields, with all parameters provided in the distribution for 43a1, 43a2,
45a3, 53a5, 53a6 and 54a7. The GROMOS force fields are united atom force fields (page 331), i.e. without explicit
aliphatic (non-polar) hydrogens.

• GROMOS 53a6 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).

• GROMOS 53a5 - in GROMACS format (J. Comput. Chem. 2004 vol. 25 (13): 1656-1676).

• GROMOS 43a1p - 43a1 modified to contain SEP (phosphoserine), TPO (phosphothreonine), and PTR
(phosphotyrosine) (all PO42- forms), and SEPH, TPOH, PTRH (PO4H- forms).

3.6.4 OPLS

OPLS (Optimized Potential for Liquid Simulations) is a set of force fields developed by Prof. William L. Jorgensen
for condensed phase simulations, with the latest version being OPLS-AA/M.

The standard implementations for those force fields are the BOSS and MCPRO programs developed by the Jor-
gensen group

As there is no central web-page to point to, the user is advised to consult the original literature for the united atom
(OPLS-UA) and all atom (OPLS-AA) force fields, as well as the Jorgensen group page

3.7 Molecular dynamics parameters (.mdp options)

3.7.1 General information

Default values are given in parentheses, or listed first among choices. The first option in the list is always the
default option. Units are given in square brackets. The difference between a dash and an underscore is ignored.

A sample mdp file (page 488) is available. This should be appropriate to start a normal simulation. Edit it to suit
your specific needs and desires.

3.7. Molecular dynamics parameters (.mdp options) 42

https://gitlab.com/gromacs/gromacs/-/issues/2884
https://doi.org/10.26434/chemrxiv.11474583.v1
https://www.igc.ethz.ch/gromos.html
http://zarbi.chem.yale.edu/oplsaam.html
http://zarbi.chem.yale.edu/software.html
http://zarbi.chem.yale.edu/software.html
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja00214a001
https://doi.org/10.1021%2Fja9621760
http://zarbi.chem.yale.edu/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Preprocessing

include

directories to include in your topology. Format: -I/home/john/mylib -I../otherlib

define

defines to pass to the preprocessor, default is no defines. You can use any defines to control options in your
customized topology files. Options that act on existing top (page 492) file mechanisms include

-DFLEXIBLE will use flexible water instead of rigid water into your topology, this can be useful
for normal mode analysis.

-DPOSRES will trigger the inclusion of posre.itp into your topology, used for implementing
position restraints.

Run control

integrator

(Despite the name, this list includes algorithms that are not actually integrators over time.
integrator=steep (page 43) and all entries following it are in this category)

md

A leap-frog algorithm for integrating Newton’s equations of motion.

md-vv

A velocity Verlet algorithm for integrating Newton’s equations of motion. For constant NVE simula-
tions started from corresponding points in the same trajectory, the trajectories are analytically, but not
binary, identical to the integrator=md (page 43) leap-frog integrator. The kinetic energy, which is
determined from the whole step velocities and is therefore slightly too high. The advantage of this in-
tegrator is more accurate, reversible Nose-Hoover and Parrinello-Rahman coupling integration based
on Trotter expansion, as well as (slightly too small) full step velocity output. This all comes at the cost
off extra computation, especially with constraints and extra communication in parallel. Note that for
nearly all production simulations the integrator=md (page 43) integrator is accurate enough.

md-vv-avek

A velocity Verlet algorithm identical to integrator=md-vv (page 43), except that the kinetic en-
ergy is determined as the average of the two half step kinetic energies as in the integrator=md
(page 43) integrator, and this thus more accurate. With Nose-Hoover and/or Parrinello-Rahman cou-
pling this comes with a slight increase in computational cost.

sd

An accurate and efficient leap-frog stochastic dynamics integrator. With constraints, coordinates needs
to be constrained twice per integration step. Depending on the computational cost of the force calcula-
tion, this can take a significant part of the simulation time. The temperature for one or more groups of
atoms (tc-grps (page 55)) is set with ref-t (page 55), the inverse friction constant for each group
is set with tau-t (page 55). The parameters tcoupl (page 54) and nsttcouple (page 54) are
ignored. The random generator is initialized with ld-seed (page 46). When used as a thermostat,
an appropriate value for tau-t (page 55) is 2 ps, since this results in a friction that is lower than the
internal friction of water, while it is high enough to remove excess heat NOTE: temperature deviations
decay twice as fast as with a Berendsen thermostat with the same tau-t (page 55).

bd

An Euler integrator for Brownian or position Langevin dynamics, the velocity is the force divided by
a friction coefficient (bd-fric (page 46)) plus random thermal noise (ref-t (page 55)). When
bd-fric (page 46) is 0, the friction coefficient for each particle is calculated as mass/ tau-t
(page 55), as for the integrator integrator=sd (page 43). The random generator is initialized
with ld-seed (page 46).

3.7. Molecular dynamics parameters (.mdp options) 43

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

steep

A steepest descent algorithm for energy minimization. The maximum step size is emstep (page 46),
the tolerance is emtol (page 46).

cg

A conjugate gradient algorithm for energy minimization, the tolerance is emtol (page 46). CG is
more efficient when a steepest descent step is done every once in a while, this is determined by
nstcgsteep (page 46). For a minimization prior to a normal mode analysis, which requires a
very high accuracy, GROMACS should be compiled in double precision.

l-bfgs

A quasi-Newtonian algorithm for energy minimization according to the low-memory Broyden-
Fletcher-Goldfarb-Shanno approach. In practice this seems to converge faster than Conjugate Gra-
dients, but due to the correction steps necessary it is not (yet) parallelized.

nm

Normal mode analysis is performed on the structure in the tpr (page 494) file. GROMACS should be
compiled in double precision.

tpi

Test particle insertion. The last molecule in the topology is the test particle. A trajectory must be pro-
vided to mdrun -rerun. This trajectory should not contain the molecule to be inserted. Insertions
are performed nsteps (page 44) times in each frame at random locations and with random orienta-
tions of the molecule. When nstlist (page 48) is larger than one, nstlist (page 48) insertions
are performed in a sphere with radius rtpi (page 47) around a the same random location using the
same pair list. Since pair list construction is expensive, one can perform several extra insertions with
the same list almost for free. The random seed is set with ld-seed (page 46). The temperature for
the Boltzmann weighting is set with ref-t (page 55), this should match the temperature of the sim-
ulation of the original trajectory. Dispersion correction is implemented correctly for TPI. All relevant
quantities are written to the file specified with mdrun -tpi. The distribution of insertion energies
is written to the file specified with mdrun -tpid. No trajectory or energy file is written. Parallel
TPI gives identical results to single-node TPI. For charged molecules, using PME with a fine grid is
most accurate and also efficient, since the potential in the system only needs to be calculated once per
frame.

tpic

Test particle insertion into a predefined cavity location. The procedure is the same as for
integrator=tpi (page 44), except that one coordinate extra is read from the trajectory, which
is used as the insertion location. The molecule to be inserted should be centered at 0,0,0. GROMACS
does not do this for you, since for different situations a different way of centering might be optimal.
Also rtpi (page 47) sets the radius for the sphere around this location. Neighbor searching is done
only once per frame, nstlist (page 48) is not used. Parallel integrator=tpic (page 44) gives
identical results to single-rank integrator=tpic (page 44).

mimic

Enable MiMiC QM/MM coupling to run hybrid molecular dynamics. Keey in mind that its required
to launch CPMD compiled with MiMiC as well. In this mode all options regarding integration (T-
coupling, P-coupling, timestep and number of steps) are ignored as CPMD will do the integration
instead. Options related to forces computation (cutoffs, PME parameters, etc.) are working as usual.
Atom selection to define QM atoms is read from QMMM-grps (page 79)

tinit

(0) [ps] starting time for your run (only makes sense for time-based integrators)

dt

(0.001) [ps] time step for integration (only makes sense for time-based integrators)

nsteps

(0) maximum number of steps to integrate or minimize, -1 is no maximum

3.7. Molecular dynamics parameters (.mdp options) 44

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

init-step

(0) The starting step. The time at step i in a run is calculated as: t = tinit (page 44) + dt (page 44) *
(init-step (page 44) + i). The free-energy lambda is calculated as: lambda = init-lambda (page 71)
+ delta-lambda (page 71) * (init-step (page 44) + i). Also non-equilibrium MD parameters can
depend on the step number. Thus for exact restarts or redoing part of a run it might be necessary to set
init-step (page 44) to the step number of the restart frame. gmx convert-tpr (page 146) does this
automatically.

simulation-part

(0) A simulation can consist of multiple parts, each of which has a part number. This option specifies what
that number will be, which helps keep track of parts that are logically the same simulation. This option is
generally useful to set only when coping with a crashed simulation where files were lost.

mts

no

Evaluate all forces at every integration step.

yes

Use a multiple timing-stepping integrator to evaluate some forces, as specified by
mts-level2-forces (page 45) every mts-level2-factor (page 45) integration steps.
All other forces are evaluated at every step. MTS is currently only supported with integrator=md
(page 43).

mts-levels

(2) The number of levels for the multiple time-stepping scheme. Currently only 2 is supported.

mts-level2-forces

(longrange-nonbonded) A list of one or more force groups that will be evaluated only ev-
ery mts-level2-factor (page 45) steps. Supported entries are: longrange-nonbonded,
nonbonded, pair, dihedral, angle, pull and awh. With pair the listed pair forces (such as
1-4) are selected. With dihedral all dihedrals are selected, including cmap. All other forces, including
all restraints, are evaluated and integrated every step. When PME or Ewald is used for electrostatics and/or
LJ interactions, longrange-nonbonded can not be omitted here.

mts-level2-factor

(2) [steps] Interval for computing the forces in level 2 of the multiple time-stepping scheme

mass-repartition-factor

(1) [] Scales the masses of the lightest atoms in the system by this factor to the mass mMin. All atoms with
a mass lower than mMin also have their mass set to that mMin. The mass change is subtracted from the
mass of the atom the light atom is bound to. If there is no bound atom a warning is generated. If there is
more than one atom bound an error is generated. If the mass of the bound atom would become lower than
mMin an error is generated. For typical atomistic systems only the masses of hydrogens are scaled. With
h-bonds constrained a factor of 3 will usually enable a time step of 4 fs.

comm-mode

Linear

Remove center of mass translational velocity

Angular

Remove center of mass translational and rotational velocity

Linear-acceleration-correction

Remove center of mass translational velocity. Correct the center of mass position assuming linear
acceleration over nstcomm (page 46) steps. This is useful for cases where an acceleration is expected
on the center of mass which is nearly constant over nstcomm (page 46) steps. This can occur for
example when pulling on a group using an absolute reference.

3.7. Molecular dynamics parameters (.mdp options) 45

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

None

No restriction on the center of mass motion

nstcomm

(100) [steps] frequency for center of mass motion removal

comm-grps

group(s) for center of mass motion removal, default is the whole system

Langevin dynamics

bd-fric

(0) [amu ps-1] Brownian dynamics friction coefficient. When bd-fric (page 46) is 0, the friction coeffi-
cient for each particle is calculated as mass/ tau-t (page 55).

ld-seed

(-1) [integer] used to initialize random generator for thermal noise for stochastic and Brownian dynamics.
When ld-seed (page 46) is set to -1, a pseudo random seed is used. When running BD or SD on multiple
processors, each processor uses a seed equal to ld-seed (page 46) plus the processor number.

Energy minimization

emtol

(10.0) [kJ mol-1 nm-1] the minimization is converged when the maximum force is smaller than this value

emstep

(0.01) [nm] initial step-size

nstcgsteep

(1000) [steps] frequency of performing 1 steepest descent step while doing conjugate gradient energy min-
imization.

nbfgscorr

(10) Number of correction steps to use for L-BFGS minimization. A higher number is (at least theoretically)
more accurate, but slower.

Shell Molecular Dynamics

When shells or flexible constraints are present in the system the positions of the shells and the lengths of the
flexible constraints are optimized at every time step until either the RMS force on the shells and constraints is less
than emtol (page 46), or a maximum number of iterations niter (page 46) has been reached. Minimization is
converged when the maximum force is smaller than emtol (page 46). For shell MD this value should be 1.0 at
most.

niter

(20) maximum number of iterations for optimizing the shell positions and the flexible constraints.

fcstep

(0) [ps2] the step size for optimizing the flexible constraints. Should be chosen as mu/(d2V/dq2) where
mu is the reduced mass of two particles in a flexible constraint and d2V/dq2 is the second derivative of the
potential in the constraint direction. Hopefully this number does not differ too much between the flexible
constraints, as the number of iterations and thus the runtime is very sensitive to fcstep. Try several values!

3.7. Molecular dynamics parameters (.mdp options) 46

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Test particle insertion

rtpi

(0.05) [nm] the test particle insertion radius, see integrators integrator=tpi (page 44) and
integrator=tpic (page 44)

Output control

nstxout

(0) [steps] number of steps that elapse between writing coordinates to the output trajectory file (trr
(page 494)), the last coordinates are always written unless 0, which means coordinates are not written
into the trajectory file.

nstvout

(0) [steps] number of steps that elapse between writing velocities to the output trajectory file (trr (page 494)),
the last velocities are always written unless 0, which means velocities are not written into the trajectory file.

nstfout

(0) [steps] number of steps that elapse between writing forces to the output trajectory file (trr (page 494)),
the last forces are always written, unless 0, which means forces are not written into the trajectory file.

nstlog

(1000) [steps] number of steps that elapse between writing energies to the log file, the last energies are
always written.

nstcalcenergy

(100) number of steps that elapse between calculating the energies, 0 is never. This option is only relevant
with dynamics. This option affects the performance in parallel simulations, because calculating energies
requires global communication between all processes which can become a bottleneck at high parallelization.

nstenergy

(1000) [steps] number of steps that elapse between writing energies to energy file, the last energies are
always written, should be a multiple of nstcalcenergy (page 47). Note that the exact sums and fluctu-
ations over all MD steps modulo nstcalcenergy (page 47) are stored in the energy file, so gmx energy
(page 177) can report exact energy averages and fluctuations also when nstenergy (page 47) > 1

nstxout-compressed

(0) [steps] number of steps that elapse between writing position coordinates using lossy compression (xtc
(page 496) file), 0 for not writing compressed coordinates output.

compressed-x-precision

(1000) [real] precision with which to write to the compressed trajectory file

compressed-x-grps

group(s) to write to the compressed trajectory file, by default the whole system is written (if
nstxout-compressed (page 47) > 0)

energygrps

group(s) for which to write to write short-ranged non-bonded potential energies to the energy file (not
supported on GPUs)

3.7. Molecular dynamics parameters (.mdp options) 47

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Neighbor searching

cutoff-scheme

Verlet

Generate a pair list with buffering. The buffer size is automatically set based on
verlet-buffer-tolerance (page 48), unless this is set to -1, in which case rlist (page 49)
will be used.

group

Generate a pair list for groups of atoms, corresponding to the charge groups in the topology. This
option is no longer supported.

nstlist

(10) [steps]

>0

Frequency to update the neighbor list. When dynamics and verlet-buffer-tolerance
(page 48) set, nstlist (page 48) is actually a minimum value and gmx mdrun (page 215) might
increase it, unless it is set to 1. With parallel simulations and/or non-bonded force calculation on the
GPU, a value of 20 or 40 often gives the best performance. With energy minimization this parameter
is not used as the pair list is updated when at least one atom has moved by more than half the pair list
buffer size.

0

The neighbor list is only constructed once and never updated. This is mainly useful for vacuum simu-
lations in which all particles see each other. But vacuum simulations are (temporarily) not supported.

<0

Unused.

pbc

xyz

Use periodic boundary conditions in all directions.

no

Use no periodic boundary conditions, ignore the box. To simulate without cut-offs, set all cut-offs and
nstlist (page 48) to 0. For best performance without cut-offs on a single MPI rank, set nstlist
(page 48) to zero.

xy

Use periodic boundary conditions in x and y directions only. This can be used in combination with
walls (page 59). Without walls or with only one wall the system size is infinite in the z direction.
Therefore pressure coupling or Ewald summation methods can not be used. These disadvantages do
not apply when two walls are used.

periodic-molecules

no

molecules are finite, fast molecular PBC can be used

yes

for systems with molecules that couple to themselves through the periodic boundary conditions, this
requires a slower PBC algorithm and molecules are not made whole in the output

verlet-buffer-tolerance

(0.005) [kJ mol-1 ps-1]

Used when performing a simulation with dynamics. This sets the maximum allowed error for pair interac-
tions per particle caused by the Verlet buffer, which indirectly sets rlist (page 49). As both nstlist
(page 48) and the Verlet buffer size are fixed (for performance reasons), particle pairs not in the pair list can

3.7. Molecular dynamics parameters (.mdp options) 48

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

occasionally get within the cut-off distance during nstlist (page 48) -1 steps. This causes very small
jumps in the energy. In a constant-temperature ensemble, these very small energy jumps can be estimated
for a given cut-off and rlist (page 49). The estimate assumes a homogeneous particle distribution, hence
the errors might be slightly underestimated for multi-phase systems. (See the reference manual for details).
For longer pair-list life-time (nstlist (page 48) -1) * dt (page 44) the buffer is overestimated, because
the interactions between particles are ignored. Combined with cancellation of errors, the actual drift of the
total energy is usually one to two orders of magnitude smaller. Note that the generated buffer size takes into
account that the GROMACS pair-list setup leads to a reduction in the drift by a factor 10, compared to a sim-
ple particle-pair based list. Without dynamics (energy minimization etc.), the buffer is 5% of the cut-off. For
NVE simulations the initial temperature is used, unless this is zero, in which case a buffer of 10% is used.
For NVE simulations the tolerance usually needs to be lowered to achieve proper energy conservation on
the nanosecond time scale. To override the automated buffer setting, use verlet-buffer-tolerance
(page 48) =-1 and set rlist (page 49) manually.

verlet-buffer-pressure-tolerance

(0.5) [bar]

Used when performing a simulation with dynamics and only active when verlet-buffer-tolerance
(page 48) is positive. This sets the maximum tolerated error in the average pressure due to missing Lennard-
Jones interactions of particle pairs that are not in the pair list, but come within rvdw (page 52) range as the
pair list ages. As for the drift tolerance, the (over)estimate of the pressure error is tight at short times. At
longer time it turns into a significant overestimate, because interactions limit the displacement of particles.
Note that the default tolerance of 0.5 bar corresponds to a maximum relative deviation of the density of
liquid water of 2e-5.

rlist

(1) [nm] Cut-off distance for the short-range neighbor list. With dynamics, this is by default set by the
verlet-buffer-tolerance (page 48) and verlet-buffer-pressure-tolerance (page 49)
options and the value of rlist (page 49) is ignored. Without dynamics, this is by default set to the
maximum cut-off plus 5% buffer, except for test particle insertion, where the buffer is managed exactly and
automatically. For NVE simulations, where the automated setting is not possible, the advised procedure is
to run gmx grompp (page 190) with an NVT setup with the expected temperature and copy the resulting
value of rlist (page 49) to the NVE setup.

Electrostatics

coulombtype

Cut-off

Plain cut-off with pair list radius rlist (page 49) and Coulomb cut-off rcoulomb (page 50), where
rlist (page 49) >= rcoulomb (page 50).

Ewald

Classical Ewald sum electrostatics. The real-space cut-off rcoulomb (page 50) should be equal
to rlist (page 49). Use e.g. rlist (page 49) =0.9, rcoulomb (page 50) =0.9. The highest
magnitude of wave vectors used in reciprocal space is controlled by fourierspacing (page 52).
The relative accuracy of direct/reciprocal space is controlled by ewald-rtol (page 53).

NOTE: Ewald scales as O(N3/2) and is thus extremely slow for large systems. It is included mainly for
reference - in most cases PME will perform much better.

PME

Fast smooth Particle-Mesh Ewald (SPME) electrostatics. Direct space is similar to the Ewald
sum, while the reciprocal part is performed with FFTs. Grid dimensions are controlled with
fourierspacing (page 52) and the interpolation order with pme-order (page 52). With a grid
spacing of 0.1 nm and cubic interpolation the electrostatic forces have an accuracy of 2-3*10-4. Since
the error from the vdw-cutoff is larger than this you might try 0.15 nm. When running in parallel
the interpolation parallelizes better than the FFT, so try decreasing grid dimensions while increasing
interpolation.

3.7. Molecular dynamics parameters (.mdp options) 49

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

P3M-AD

Particle-Particle Particle-Mesh algorithm with analytical derivative for for long range electrostatic
interactions. The method and code is identical to SPME, except that the influence function is optimized
for the grid. This gives a slight increase in accuracy.

Reaction-Field

Reaction field electrostatics with Coulomb cut-off rcoulomb (page 50), where rlist (page 49) >=
rvdw (page 52). The dielectric constant beyond the cut-off is epsilon-rf (page 50). The dielectric
constant can be set to infinity by setting epsilon-rf (page 50) =0.

User

Currently unsupported. gmx mdrun (page 215) will now expect to find a file table.xvg with user-
defined potential functions for repulsion, dispersion and Coulomb. When pair interactions are present,
gmx mdrun (page 215) also expects to find a file tablep.xvg for the pair interactions. When the
same interactions should be used for non-bonded and pair interactions the user can specify the same file
name for both table files. These files should contain 7 columns: the x value, f(x), -f'(x), g(x),
-g'(x), h(x), -h'(x), where f(x) is the Coulomb function, g(x) the dispersion function and
h(x) the repulsion function. When vdwtype (page 51) is not set to User the values for g, -g', h
and -h' are ignored. For the non-bonded interactions x values should run from 0 to the largest cut-off
distance + table-extension (page 52) and should be uniformly spaced. For the pair interactions
the table length in the file will be used. The optimal spacing, which is used for non-user tables, is
0.002 nm when you run in mixed precision or 0.0005 nm when you run in double precision. The
function value at x=0 is not important. More information is in the printed manual.

PME-Switch

Currently unsupported. A combination of PME and a switch function for the direct-space part (see
above). rcoulomb (page 50) is allowed to be smaller than rlist (page 49).

PME-User

Currently unsupported. A combination of PME and user tables (see above). rcoulomb (page 50) is
allowed to be smaller than rlist (page 49). The PME mesh contribution is subtracted from the user
table by gmx mdrun (page 215). Because of this subtraction the user tables should contain about 10
decimal places.

PME-User-Switch

Currently unsupported. A combination of PME-User and a switching function (see above). The
switching function is applied to final particle-particle interaction, i.e. both to the user supplied function
and the PME Mesh correction part.

coulomb-modifier

Potential-shift

Shift the Coulomb potential by a constant such that it is zero at the cut-off. This makes the potential
the integral of the force. Note that this does not affect the forces or the sampling.

None

Use an unmodified Coulomb potential. This can be useful when comparing energies with those com-
puted with other software.

rcoulomb-switch

(0) [nm] where to start switching the Coulomb potential, only relevant when force or potential switching is
used

rcoulomb

(1) [nm] The distance for the Coulomb cut-off. Note that with PME this value can be increased by the PME
tuning in gmx mdrun (page 215) along with the PME grid spacing.

epsilon-r

(1) The relative dielectric constant. A value of 0 means infinity.

3.7. Molecular dynamics parameters (.mdp options) 50

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

epsilon-rf

(0) The relative dielectric constant of the reaction field. This is only used with reaction-field electrostatics.
A value of 0 means infinity.

Van der Waals

vdwtype

Cut-off

Plain cut-off with pair list radius rlist (page 49) and VdW cut-off rvdw (page 52), where rlist
(page 49) >= rvdw (page 52).

PME

Fast smooth Particle-mesh Ewald (SPME) for VdW interactions. The grid dimensions are controlled
with fourierspacing (page 52) in the same way as for electrostatics, and the interpolation order
is controlled with pme-order (page 52). The relative accuracy of direct/reciprocal space is con-
trolled by ewald-rtol-lj (page 53), and the specific combination rules that are to be used by the
reciprocal routine are set using lj-pme-comb-rule (page 53).

Shift

This functionality is deprecated and replaced by using vdwtype=Cut-off (page 51) with
vdw-modifier=Force-switch (page 51). The LJ (not Buckingham) potential is decreased over
the whole range and the forces decay smoothly to zero between rvdw-switch (page 51) and rvdw
(page 52).

Switch

This functionality is deprecated and replaced by using vdwtype=Cut-off (page 51) with
vdw-modifier=Potential-switch (page 51). The LJ (not Buckingham) potential is normal
out to rvdw-switch (page 51), after which it is switched off to reach zero at rvdw (page 52). Both
the potential and force functions are continuously smooth, but be aware that all switch functions will
give rise to a bulge (increase) in the force (since we are switching the potential).

User

Currently unsupported. See user for coulombtype (page 49). The function value at zero is not
important. When you want to use LJ correction, make sure that rvdw (page 52) corresponds to the
cut-off in the user-defined function. When coulombtype (page 49) is not set to User the values for
the f and -f' columns are ignored.

vdw-modifier

Potential-shift

Shift the Van der Waals potential by a constant such that it is zero at the cut-off. This makes the
potential the integral of the force. Note that this does not affect the forces or the sampling.

None

Use an unmodified Van der Waals potential. This can be useful when comparing energies with those
computed with other software.

Force-switch

Smoothly switches the forces to zero between rvdw-switch (page 51) and rvdw (page 52). This
shifts the potential shift over the whole range and switches it to zero at the cut-off. Note that this is
more expensive to calculate than a plain cut-off and it is not required for energy conservation, since
Potential-shift conserves energy just as well.

Potential-switch

Smoothly switches the potential to zero between rvdw-switch (page 51) and rvdw (page 52).
Note that this introduces articifically large forces in the switching region and is much more expensive
to calculate. This option should only be used if the force field you are using requires this.

3.7. Molecular dynamics parameters (.mdp options) 51

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

rvdw-switch

(0) [nm] where to start switching the LJ force and possibly the potential, only relevant when force or
potential switching is used

rvdw

(1) [nm] distance for the LJ or Buckingham cut-off

DispCorr

no

don’t apply any correction

EnerPres

apply long range dispersion corrections for Energy and Pressure

Ener

apply long range dispersion corrections for Energy only

Tables

table-extension

(1) [nm] Extension of the non-bonded potential lookup tables beyond the largest cut-off distance. With
actual non-bonded interactions the tables are never accessed beyond the cut-off. But a longer table length
might be needed for the 1-4 interactions, which are always tabulated irrespective of the use of tables for the
non-bonded interactions.

energygrp-table

Currently unsupported. When user tables are used for electrostatics and/or VdW, here one can give pairs of
energy groups for which separate user tables should be used. The two energy groups will be appended to
the table file name, in order of their definition in energygrps (page 47), separated by underscores. For
example, if energygrps = Na Cl Sol and energygrp-table = Na Na Na Cl, gmx mdrun
(page 215) will read table_Na_Na.xvg and table_Na_Cl.xvg in addition to the normal table.
xvg which will be used for all other energy group pairs.

Ewald

fourierspacing

(0.12) [nm] For ordinary Ewald, the ratio of the box dimensions and the spacing determines a lower bound
for the number of wave vectors to use in each (signed) direction. For PME and P3M, that ratio determines
a lower bound for the number of Fourier-space grid points that will be used along that axis. In all cases, the
number for each direction can be overridden by entering a non-zero value for that fourier-nx (page 52)
direction. For optimizing the relative load of the particle-particle interactions and the mesh part of PME, it
is useful to know that the accuracy of the electrostatics remains nearly constant when the Coulomb cut-off
and the PME grid spacing are scaled by the same factor. Note that this spacing can be scaled up along with
rcoulomb (page 50) by the PME tuning in gmx mdrun (page 215).

fourier-nx

fourier-ny

fourier-nz

(0) Highest magnitude of wave vectors in reciprocal space when using Ewald. Grid size when using PME or
P3M. These values override fourierspacing (page 52) per direction. The best choice is powers of 2,
3, 5 and 7. Avoid large primes. Note that these grid sizes can be reduced along with scaling up rcoulomb
(page 50) by the PME tuning in gmx mdrun (page 215).

3.7. Molecular dynamics parameters (.mdp options) 52

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

pme-order

(4) The number of grid points along a dimension to which a charge is mapped. The actual order of the PME
interpolation is one less, e.g. the default of 4 gives cubic interpolation. Supported values are 3 to 12 (max
8 for P3M-AD). When running in parallel, it can be worth to switch to 5 and simultaneously increase the
grid spacing. Note that on the CPU only values 4 and 5 have SIMD acceleration and GPUs only support the
value 4.

ewald-rtol

(10-5) The relative strength of the Ewald-shifted direct potential at rcoulomb (page 50) is given by
ewald-rtol (page 53). Decreasing this will give a more accurate direct sum, but then you need more
wave vectors for the reciprocal sum.

ewald-rtol-lj

(10-3) When doing PME for VdW-interactions, ewald-rtol-lj (page 53) is used to control the relative
strength of the dispersion potential at rvdw (page 52) in the same way as ewald-rtol (page 53) controls
the electrostatic potential.

lj-pme-comb-rule

(Geometric) The combination rules used to combine VdW-parameters in the reciprocal part of LJ-PME.
Geometric rules are much faster than Lorentz-Berthelot and usually the recommended choice, even when
the rest of the force field uses the Lorentz-Berthelot rules.

Geometric

Apply geometric combination rules

Lorentz-Berthelot

Apply Lorentz-Berthelot combination rules

ewald-geometry

3d

The Ewald sum is performed in all three dimensions.

3dc

The reciprocal sum is still performed in 3D, but a force and potential correction applied in the z
dimension to produce a pseudo-2D summation. If your system has a slab geometry in the x-y plane
you can try to increase the z-dimension of the box (a box height of 3 times the slab height is usually
ok) and use this option.

epsilon-surface

(0) This controls the dipole correction to the Ewald summation in 3D. The default value of zero means it is
turned off. Turn it on by setting it to the value of the relative permittivity of the imaginary surface around
your infinite system. Be careful - you shouldn’t use this if you have free mobile charges in your system.
This value does not affect the slab 3DC variant of the long range corrections.

Temperature coupling

ensemble-temperature-setting

auto

With this setting gmx grompp (page 190) will determine which of the next three settings is available
and choose the appropriate one. When all atoms are coupled to a temperature bath with the same
temperature, a constant ensemble temperature is chosen and the value is taken from the temperature
bath.

constant

The system has a constant ensemble temperature given by ensemble-temperature (page 54). A
constant ensemble temperature is required for certain sampling algorithms such as AWH.

3.7. Molecular dynamics parameters (.mdp options) 53

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

variable

The system has a variable ensemble temperature due to simulated annealing or simulated tempering.
The system ensemble temperature is set dynamically during the simulation.

not-available

The system has no ensemble temperature.

ensemble-temperature

(-1) [K]

The ensemble temperature for the system. The input value is only used with
ensemble-temperature-setting=constant. By default the ensemble temperature is copied
from the temperature of the thermal bath (when used).

tcoupl

no

No temperature coupling.

berendsen

Temperature coupling with a Berendsen thermostat to a bath with temperature ref-t (page 55), with
time constant tau-t (page 55). Several groups can be coupled separately, these are specified in the
tc-grps (page 55) field separated by spaces. This is a historical thermostat needed to be able to
reproduce previous simulations, but we strongly recommend not to use it for new production runs.
Consult the manual for details.

nose-hoover

Temperature coupling using a Nose-Hoover extended ensemble. The reference temperature and cou-
pling groups are selected as above, but in this case tau-t (page 55) controls the period of the tem-
perature fluctuations at equilibrium, which is slightly different from a relaxation time. For NVT sim-
ulations the conserved energy quantity is written to the energy and log files.

andersen

Temperature coupling by randomizing a fraction of the particle velocities at each timestep. Reference
temperature and coupling groups are selected as above. tau-t (page 55) is the average time between
randomization of each molecule. Inhibits particle dynamics somewhat, but little or no ergodicity
issues. Currently only implemented with velocity Verlet, and not implemented with constraints.

andersen-massive

Temperature coupling by randomizing velocities of all particles at infrequent timesteps. Reference
temperature and coupling groups are selected as above. tau-t (page 55) is the time between ran-
domization of all molecules. Inhibits particle dynamics somewhat, but little or no ergodicity issues.
Currently only implemented with velocity Verlet.

v-rescale

Temperature coupling using velocity rescaling with a stochastic term (JCP 126, 014101). This thermo-
stat is similar to Berendsen coupling, with the same scaling using tau-t (page 55), but the stochastic
term ensures that a proper canonical ensemble is generated. The random seed is set with ld-seed
(page 46). This thermostat works correctly even for tau-t (page 55) =0. For NVT simulations the
conserved energy quantity is written to the energy and log file.

nsttcouple

(-1) The frequency for coupling the temperature. The default value of -1 sets nsttcouple (page 54) equal
to 100, or fewer steps if required for accurate integration (5 steps per tau for first order coupling, 20 steps
per tau for second order coupling). Note that the default value is large in order to reduce the overhead of the
additional computation and communication required for obtaining the kinetic energy. For velocity Verlet
integrators nsttcouple (page 54) is set to 1.

3.7. Molecular dynamics parameters (.mdp options) 54

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

nh-chain-length

(10) The number of chained Nose-Hoover thermostats for velocity Verlet integrators, the leap-
frog integrator=md (page 43) integrator only supports 1. Data for the NH chain vari-
ables is not printed to the edr (page 485) file by default, but can be turned on with the
print-nose-hoover-chain-variables (page 55) option.

print-nose-hoover-chain-variables

no

Do not store Nose-Hoover chain variables in the energy file.

yes

Store all positions and velocities of the Nose-Hoover chain in the energy file.

tc-grps

groups to couple to separate temperature baths

tau-t

[ps] time constant for coupling (one for each group in tc-grps (page 55)), -1 means no temperature
coupling

ref-t

[K] reference temperature for coupling (one for each group in tc-grps (page 55))

Pressure coupling

pcoupl

no

No pressure coupling. This means a fixed box size.

Berendsen

Exponential relaxation pressure coupling with time constant tau-p (page 56). The box is scaled
every nstpcouple (page 56) steps. This barostat does not yield a correct thermodynamic ensemble;
it is only included to be able to reproduce previous runs, and we strongly recommend against using it
for new simulations. See the manual for details.

C-rescale

Exponential relaxation pressure coupling with time constant tau-p (page 56), including a stochastic
term to enforce correct volume fluctuations. The box is scaled every nstpcouple (page 56) steps.
It can be used for both equilibration and production.

Parrinello-Rahman

Extended-ensemble pressure coupling where the box vectors are subject to an equation of motion. The
equation of motion for the atoms is coupled to this. No instantaneous scaling takes place. As for Nose-
Hoover temperature coupling the time constant tau-p (page 56) is the period of pressure fluctuations
at equilibrium. This is a good method when you want to apply pressure scaling during data collection,
but beware that you can get very large oscillations if you are starting from a different pressure. For
simulations where the exact fluctations of the NPT ensemble are important, or if the pressure coupling
time is very short it may not be appropriate, as the previous time step pressure is used in some steps of
the GROMACS implementation for the current time step pressure.

MTTK

Martyna-Tuckerman-Tobias-Klein implementation, only useable with integrator=md-vv
(page 43) or integrator=md-vv-avek (page 43), very similar to Parrinello-Rahman. As for
Nose-Hoover temperature coupling the time constant tau-p (page 56) is the period of pressure fluc-
tuations at equilibrium. This is probably a better method when you want to apply pressure scaling
during data collection, but beware that you can get very large oscillations if you are starting from a
different pressure. This requires a constant ensemble temperature for the system. It only supports
isotropic scaling, and only works without constraints. MTTK coupling is deprecated.

3.7. Molecular dynamics parameters (.mdp options) 55

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

pcoupltype

Specifies the kind of isotropy of the pressure coupling used. Each kind takes one or more values for
compressibility (page 56) and ref-p (page 56). Only a single value is permitted for tau-p
(page 56).

isotropic

Isotropic pressure coupling with time constant tau-p (page 56). One value each for
compressibility (page 56) and ref-p (page 56) is required.

semiisotropic

Pressure coupling which is isotropic in the x and y direction, but different in the z direction. This
can be useful for membrane simulations. Two values each for compressibility (page 56) and
ref-p (page 56) are required, for x/y and z directions respectively.

anisotropic

Same as before, but 6 values are needed for xx, yy, zz, xy/yx, xz/zx and yz/zy components,
respectively. When the off-diagonal compressibilities are set to zero, a rectangular box will stay rect-
angular. Beware that anisotropic scaling can lead to extreme deformation of the simulation box.

surface-tension

Surface tension coupling for surfaces parallel to the xy-plane. Uses normal pressure coupling for
the z-direction, while the surface tension is coupled to the x/y dimensions of the box. The first
ref-p (page 56) value is the reference surface tension times the number of surfaces bar nm, the
second value is the reference z-pressure bar. The two compressibility (page 56) values are
the compressibility in the x/y and z direction respectively. The value for the z-compressibility should
be reasonably accurate since it influences the convergence of the surface-tension, it can also be set to
zero to have a box with constant height.

nstpcouple

(-1) The frequency for coupling the pressure. The default value of -1 sets nstpcouple (page 56) equal to
100, or fewer steps if required for accurate integration (5 steps per tau for first order coupling, 20 steps per
tau for second order coupling). Note that the default value is large in order to reduce the overhead of the
additional computation and communication required for obtaining the virial and kinetic energy. For velocity
Verlet integrators nsttcouple (page 54) is set to 1.

tau-p

(5) [ps] The time constant for pressure coupling (one value for all directions).

compressibility

[bar-1] The compressibility (NOTE: this is now really in bar-1) For water at 1 atm and 300 K the compress-
ibility is 4.5e-5 bar-1. The number of required values is implied by pcoupltype (page 55).

ref-p

[bar] The reference pressure for coupling. The number of required values is implied by pcoupltype
(page 55).

refcoord-scaling

no

The reference coordinates for position restraints are not modified. Note that with this option the virial
and pressure might be ill defined, see here (page 423) for more details.

all

The reference coordinates are scaled with the scaling matrix of the pressure coupling.

com

Scale the center of mass of the reference coordinates with the scaling matrix of the pressure coupling.
The vectors of each reference coordinate to the center of mass are not scaled. Only one COM is
used, even when there are multiple molecules with position restraints. For calculating the COM of
the reference coordinates in the starting configuration, periodic boundary conditions are not taken into
account. Note that with this option the virial and pressure might be ill defined, see here (page 423) for
more details.

3.7. Molecular dynamics parameters (.mdp options) 56

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Simulated annealing

Simulated annealing is controlled separately for each temperature group in GROMACS. The reference temperature
is a piecewise linear function, but you can use an arbitrary number of points for each group, and choose either
a single sequence or a periodic behaviour for each group. The actual annealing is performed by dynamically
changing the reference temperature used in the thermostat algorithm selected, so remember that the system will
usually not instantaneously reach the reference temperature!

annealing

Type of annealing for each temperature group

no

No simulated annealing - just couple to reference temperature value.

single

A single sequence of annealing points. If your simulation is longer than the time of the last point, the
temperature will be coupled to this constant value after the annealing sequence has reached the last
time point.

periodic

The annealing will start over at the first reference point once the last reference time is reached. This is
repeated until the simulation ends.

annealing-npoints

A list with the number of annealing reference/control points used for each temperature group. Use 0 for
groups that are not annealed. The number of entries should equal the number of temperature groups.

annealing-time

List of times at the annealing reference/control points for each group. If you are using periodic annealing,
the times will be used modulo the last value, i.e. if the values are 0, 5, 10, and 15, the coupling will restart at
the 0ps value after 15ps, 30ps, 45ps, etc. The number of entries should equal the sum of the numbers given
in annealing-npoints (page 57).

annealing-temp

List of temperatures at the annealing reference/control points for each group. The number of entries should
equal the sum of the numbers given in annealing-npoints (page 57).

Confused? OK, let’s use an example. Assume you have two temperature groups, set the group selections to
annealing = single periodic, the number of points of each group to annealing-npoints = 3
4, the times to annealing-time = 0 3 6 0 2 4 6 and finally temperatures to annealing-temp =
298 280 270 298 320 320 298. The first group will be coupled to 298K at 0ps, but the reference tem-
perature will drop linearly to reach 280K at 3ps, and then linearly between 280K and 270K from 3ps to 6ps. After
this is stays constant, at 270K. The second group is coupled to 298K at 0ps, it increases linearly to 320K at 2ps,
where it stays constant until 4ps. Between 4ps and 6ps it decreases to 298K, and then it starts over with the same
pattern again, i.e. rising linearly from 298K to 320K between 6ps and 8ps. Check the summary printed by gmx
grompp (page 190) if you are unsure!

Velocity generation

gen-vel

no

Do not generate velocities. The velocities are set to zero when there are no velocities in the input
structure file.

yes

Generate velocities in gmx grompp (page 190) according to a Maxwell distribution at temperature
gen-temp (page 57), with random seed gen-seed (page 58). This is only meaningful with
integrator=md (page 43).

3.7. Molecular dynamics parameters (.mdp options) 57

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gen-temp

(300) [K] temperature for Maxwell distribution

gen-seed

(-1) [integer] used to initialize random generator for random velocities, when gen-seed (page 58) is set
to -1, a pseudo random seed is used.

Bonds

constraints

Controls which bonds in the topology will be converted to rigid holonomic constraints. Note that typical
rigid water models do not have bonds, but rather a specialized [settles] directive, so are not affected
by this keyword.

none

No bonds converted to constraints.

h-bonds

Convert the bonds with H-atoms to constraints.

all-bonds

Convert all bonds to constraints.

h-angles

Convert all bonds to constraints and convert the angles that involve H-atoms to bond-constraints.

all-angles

Convert all bonds to constraints and all angles to bond-constraints.

constraint-algorithm

Chooses which solver satisfies any non-SETTLE holonomic constraints.

LINCS

LINear Constraint Solver. With domain decomposition the parallel version P-LINCS is used. The
accuracy in set with lincs-order (page 59), which sets the number of matrices in the expansion
for the matrix inversion. After the matrix inversion correction the algorithm does an iterative correction
to compensate for lengthening due to rotation. The number of such iterations can be controlled with
lincs-iter (page 59). The root mean square relative constraint deviation is printed to the log file
every nstlog (page 47) steps. If a bond rotates more than lincs-warnangle (page 59) in one
step, a warning will be printed both to the log file and to stderr. LINCS should not be used with
coupled angle constraints.

SHAKE

SHAKE is slightly slower and less stable than LINCS, but does work with angle constraints. The
relative tolerance is set with shake-tol (page 58), 0.0001 is a good value for “normal” MD. SHAKE
does not support constraints between atoms on different decomposition domains, so it can only be used
with domain decomposition when so-called update-groups are used, which is usually the case when
only bonds involving hydrogens are constrained. SHAKE can not be used with energy minimization.

continuation

This option was formerly known as unconstrained-start.

no

apply constraints to the start configuration and reset shells

yes

do not apply constraints to the start configuration and do not reset shells, useful for exact continuation
and reruns

3.7. Molecular dynamics parameters (.mdp options) 58

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

shake-tol

(0.0001) relative tolerance for SHAKE

lincs-order

(4) Highest order in the expansion of the constraint coupling matrix. When constraints form triangles, an
additional expansion of the same order is applied on top of the normal expansion only for the couplings
within such triangles. For “normal” MD simulations an order of 4 usually suffices, 6 is needed for large
time-steps with virtual sites or BD. For accurate energy minimization in double precision an order of 8
or more might be required. Note that in single precision an order higher than 6 will often lead to worse
accuracy due to amplification of rounding errors. With domain decomposition, the cell size is limited by
the distance spanned by lincs-order (page 59) +1 constraints. When one wants to scale further than
this limit, one can decrease lincs-order (page 59) and increase lincs-iter (page 59), since the
accuracy does not deteriorate when (1+ lincs-iter (page 59))* lincs-order (page 59) remains
constant.

lincs-iter

(1) Number of iterations to correct for rotational lengthening in LINCS. For normal runs a single step is
sufficient, but for NVE runs where you want to conserve energy accurately or for accurate energy mini-
mization in double precision you might want to increase it to 2. Note that in single precision using more
than 1 iteration will often lead to worse accuracy due to amplification of rounding errors.

lincs-warnangle

(30) [deg] maximum angle that a bond can rotate before LINCS will complain

morse

no

bonds are represented by a harmonic potential

yes

bonds are represented by a Morse potential

Energy group exclusions

energygrp-excl

Pairs of energy groups for which all non-bonded interactions are excluded. An example: if you have two
energy groups Protein and SOL, specifying energygrp-excl = Protein Protein SOL SOL
would give only the non-bonded interactions between the protein and the solvent. This is especially useful
for speeding up energy calculations with mdrun -rerun and for excluding interactions within frozen
groups.

Walls

nwall

(0) When set to 1 there is a wall at z=0, when set to 2 there is also a wall at z=z-box. Walls can only be
used with pbc (page 48) =xy. When set to 2, pressure coupling and Ewald summation can be used (it is
usually best to use semiisotropic pressure coupling with the x/y compressibility set to 0, as otherwise the
surface area will change). Walls interact wit the rest of the system through an optional wall-atomtype
(page 59). Energy groups wall0 and wall1 (for nwall (page 59) =2) are added automatically to monitor
the interaction of energy groups with each wall. The center of mass motion removal will be turned off in
the z-direction.

wall-atomtype

the atom type name in the force field for each wall. By (for example) defining a special wall atom type in
the topology with its own combination rules, this allows for independent tuning of the interaction of each
atomtype with the walls.

wall-type

3.7. Molecular dynamics parameters (.mdp options) 59

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

9-3

LJ integrated over the volume behind the wall: 9-3 potential

10-4

LJ integrated over the wall surface: 10-4 potential

12-6

direct LJ potential with the z distance from the wall

table

user defined potentials indexed with the z distance from the wall, the tables are read analogously to the
energygrp-table (page 52) option, where the first name is for a “normal” energy group and the second
name is wall0 or wall1, only the dispersion and repulsion columns are used

wall-r-linpot

(-1) [nm] Below this distance from the wall the potential is continued linearly and thus the force is constant.
Setting this option to a postive value is especially useful for equilibration when some atoms are beyond a
wall. When the value is <=0 (<0 for wall-type (page 59) =table), a fatal error is generated when atoms
are beyond a wall.

wall-density

[nm-3] / [nm-2] the number density of the atoms for each wall for wall types 9-3 and 10-4

wall-ewald-zfac

(3) The scaling factor for the third box vector for Ewald summation only, the minimum is 2. Ewald sum-
mation can only be used with nwall (page 59) =2, where one should use ewald-geometry (page 53)
=3dc. The empty layer in the box serves to decrease the unphysical Coulomb interaction between periodic
images.

COM pulling

Sets whether pulling on collective variables is active. Note that where pulling coordinates are applicable, there
can be more than one (set with pull-ncoords (page 61)) and multiple related mdp (page 488) variables will
exist accordingly. Documentation references to things like pull-coord1-vec (page 64) should be understood
to apply to to the applicable pulling coordinate, eg. the second pull coordinate is described by pull-coord2-vec,
pull-coord2-k, and so on.

pull

no

No center of mass pulling. All the following pull options will be ignored (and if present in the mdp
(page 488) file, they unfortunately generate warnings)

yes

Center of mass pulling will be applied on 1 or more groups using 1 or more pull coordinates.

pull-cylinder-r

(1.5) [nm] the radius of the cylinder for pull-coord1-geometry=cylinder (page 63)

pull-constr-tol

(10-6) the relative constraint tolerance for constraint pulling

pull-print-com

no

do not print the COM for any group

yes

print the COM of all groups for all pull coordinates

pull-print-ref-value

3.7. Molecular dynamics parameters (.mdp options) 60

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

no

do not print the reference value for each pull coordinate

yes

print the reference value for each pull coordinate

pull-print-components

no

only print the distance for each pull coordinate

yes

print the distance and Cartesian components selected in pull-coord1-dim (page 63)

pull-nstxout

(50) frequency for writing out the COMs of all the pull group (0 is never)

pull-nstfout

(50) frequency for writing out the force of all the pulled group (0 is never)

pull-pbc-ref-prev-step-com

no

Use the reference atom (pull-group1-pbcatom (page 62)) for the treatment of periodic boundary
conditions.

yes

Use the COM of the previous step as reference for the treatment of periodic boundary conditions.
The reference is initialized using the reference atom (pull-group1-pbcatom (page 62)), which
should be located centrally in the group. Using the COM from the previous step can be useful if one
or more pull groups are large.

pull-xout-average

no

Write the instantaneous coordinates for all the pulled groups.

yes

Write the average coordinates (since last output) for all the pulled groups. N.b., some analysis tools
might expect instantaneous pull output.

pull-fout-average

no

Write the instantaneous force for all the pulled groups.

yes

Write the average force (since last output) for all the pulled groups. N.b., some analysis tools might
expect instantaneous pull output.

pull-ngroups

(1) The number of pull groups, not including the absolute reference group, when used. Pull groups can be
reused in multiple pull coordinates. Below only the pull options for group 1 are given, further groups simply
increase the group index number.

pull-ncoords

(1) The number of pull coordinates. Below only the pull options for coordinate 1 are given, further coordi-
nates simply increase the coordinate index number.

pull-group1-name

The name of the pull group, is looked up in the index file or in the default groups to obtain the atoms
involved.

3.7. Molecular dynamics parameters (.mdp options) 61

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

pull-group1-weights

Optional relative weights which are multiplied with the masses of the atoms to give the total weight for the
COM. The number should be 0, meaning all 1, or the number of atoms in the pull group.

pull-group1-pbcatom

(0) The reference atom for the treatment of periodic boundary conditions inside the group (this has no effect
on the treatment of the pbc between groups). This option is only important when the diameter of the pull
group is larger than half the shortest box vector. For determining the COM, all atoms in the group are put at
their periodic image which is closest to pull-group1-pbcatom (page 62). A value of 0 means that the
middle atom (number wise) is used, which is only safe for small groups. gmx grompp (page 190) checks
that the maximum distance from the reference atom (specifically chosen, or not) to the other atoms in the
group is not too large. This parameter is not used with pull-coord1-geometry (page 62) cylinder. A
value of -1 turns on cosine weighting, which is useful for a group of molecules in a periodic system, e.g. a
water slab (see Engin et al. J. Chem. Phys. B 2010).

pull-coord1-type

umbrella

Center of mass pulling using an umbrella potential between the reference group and one or more
groups.

constraint

Center of mass pulling using a constraint between the reference group and one or more groups. The
setup is identical to the option umbrella, except for the fact that a rigid constraint is applied instead of
a harmonic potential. Note that this type is not supported in combination with multiple time stepping.

constant-force

Center of mass pulling using a linear potential and therefore a constant force. For this option
there is no reference position and therefore the parameters pull-coord1-init (page 64) and
pull-coord1-rate (page 64) are not used.

flat-bottom

At distances above pull-coord1-init (page 64) a harmonic potential is applied, otherwise no
potential is applied.

flat-bottom-high

At distances below pull-coord1-init (page 64) a harmonic potential is applied, otherwise no
potential is applied.

external-potential

An external potential that needs to be provided by another module.

pull-coord1-potential-provider

The name of the external module that provides the potential for the case where pull-coord1-type
(page 62) is external-potential.

pull-coord1-geometry

distance

Pull along the vector connecting the two groups. Components can be selected with
pull-coord1-dim (page 63).

direction

Pull in the direction of pull-coord1-vec (page 64).

direction-periodic

As pull-coord1-geometry=direction (page 62), but does not apply periodic box vector cor-
rections to keep the distance within half the box length. This is (only) useful for pushing groups apart
by more than half the box length by continuously changing the reference location using a pull rate.
With this geometry the box should not be dynamic (e.g. no pressure scaling) in the pull dimensions
and the pull force is not added to the virial.

3.7. Molecular dynamics parameters (.mdp options) 62

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

direction-relative

As pull-coord1-geometry=direction (page 62), but the pull vector is the vector that points
from the COM of a third to the COM of a fourth pull group. This means that 4 groups need to be
supplied in pull-coord1-groups (page 63). Note that the pull force will give rise to a torque on
the pull vector, which is turn leads to forces perpendicular to the pull vector on the two groups defining
the vector. If you want a pull group to move between the two groups defining the vector, simply use
the union of these two groups as the reference group.

cylinder

Designed for pulling with respect to a layer where the reference COM is given by a local cylindrical
part of the reference group. The pulling is in the direction of pull-coord1-vec (page 64). From
the first of the two groups in pull-coord1-groups (page 63) a cylinder is selected around the
axis going through the COM of the second group with direction pull-coord1-vec (page 64)
with radius pull-cylinder-r (page 60). Weights of the atoms decrease continously to zero as
the radial distance goes from 0 to pull-cylinder-r (page 60) (mass weighting is also used). The
radial dependence gives rise to radial forces on both pull groups. Note that the radius should be smaller
than half the box size. For tilted cylinders they should be even smaller than half the box size since the
distance of an atom in the reference group from the COM of the pull group has both a radial and an
axial component. This geometry is not supported with constraint pulling.

angle

Pull along an angle defined by four groups. The angle is defined as the angle between two vectors:
the vector connecting the COM of the first group to the COM of the second group and the vector
connecting the COM of the third group to the COM of the fourth group.

angle-axis

As pull-coord1-geometry=angle (page 63) but the second vector is given by
pull-coord1-vec (page 64). Thus, only the two groups that define the first vector need to be
given.

dihedral

Pull along a dihedral angle defined by six groups. These pairwise define three vectors: the vector
connecting the COM of group 1 to the COM of group 2, the COM of group 3 to the COM of group 4,
and the COM of group 5 to the COM group 6. The dihedral angle is then defined as the angle between
two planes: the plane spanned by the the two first vectors and the plane spanned the two last vectors.

transformation

Transforms other pull coordinates using a mathematical expression defined by
pull-coord1-expression (page 63). Pull coordinates of lower indices, and time, can be
used as variables to this pull coordinate. Thus, pull transformation coordinates should have a higher
pull coordinate index than all pull coordinates they transform.

pull-coord1-expression

Mathematical expression to transform pull coordinates of lower indices to a new one. The pull coordinates
are referred to as variables in the equation so that pull-coord1’s value becomes ‘x1’, pull-coord2 value
becomes ‘x2’ etc. Time can also be used a variable, becoming ‘t’. Note that angular coordinates use units
of radians in the expression. The mathematical expression are evaluated using muParser. Only relevant if
pull-coord1-geometry (page 62) is set to transformation.

pull-coord1-dx

(1e-9) Size of finite difference to use in numerical derivation of the pull coordinate with respect to other
pull coordinates. The current implementation uses a simple first order finite difference method to perform
derivation so that f’(x) = (f(x+dx)-f(x))/dx Only relevant if pull-coord1-geometry (page 62) is set
to transformation.

pull-coord1-groups

The group indices on which this pull coordinate will operate. The number of group indices required is geom-
etry dependent. The first index can be 0, in which case an absolute reference of pull-coord1-origin
(page 64) is used. With an absolute reference the system is no longer translation invariant and one should
think about what to do with the center of mass motion.

3.7. Molecular dynamics parameters (.mdp options) 63

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

pull-coord1-dim

(Y Y Y) Selects the dimensions that this pull coordinate acts on and that are printed to the output
files when pull-print-components (page 61) = pull-coord1-start=yes (page 64). With
pull-coord1-geometry (page 62) = pull-coord1-geometry=distance (page 62), only
Cartesian components set to Y contribute to the distance. Thus setting this to Y Y N results in a dis-
tance in the x/y plane. With other geometries all dimensions with non-zero entries in pull-coord1-vec
(page 64) should be set to Y, the values for other dimensions only affect the output.

pull-coord1-origin

(0.0 0.0 0.0) The pull reference position for use with an absolute reference.

pull-coord1-vec

(0.0 0.0 0.0) The pull direction. gmx grompp (page 190) normalizes the vector.

pull-coord1-start

no

do not modify pull-coord1-init (page 64)

yes

add the COM distance of the starting conformation to pull-coord1-init (page 64)

pull-coord1-init

(0.0) [nm] or [deg] The reference distance or reference angle at t=0.

pull-coord1-rate

(0) [nm/ps] or [deg/ps] The rate of change of the reference position or reference angle.

pull-coord1-k

(0) [kJ mol-1 nm-2] or [kJ mol-1 nm-1] or [kJ mol-1 rad-2] or [kJ mol-1 rad-1] The force constant. For umbrella
pulling this is the harmonic force constant in kJ mol-1 nm-2 (or kJ mol-1 rad-2 for angles). For constant force
pulling this is the force constant of the linear potential, and thus the negative (!) of the constant force in
kJ mol-1 nm-1 (or kJ mol-1 rad-1 for angles). Note that for angles the force constant is expressed in terms
of radians (while pull-coord1-init (page 64) and pull-coord1-rate (page 64) are expressed in
degrees).

pull-coord1-kB

(pull-k1) [kJ mol-1 nm-2] or [kJ mol-1 nm-1] or [kJ mol-1 rad-2] or [kJ mol-1 rad-1] As pull-coord1-k
(page 64), but for state B. This is only used when free-energy (page 71) is turned on. The force constant
is then (1 - lambda) * pull-coord1-k (page 64) + lambda * pull-coord1-kB (page 64).

AWH adaptive biasing

awh

no

No biasing.

yes

Adaptively bias a reaction coordinate using the AWH method and estimate the corresponding PMF.
This requires a constant ensemble temperature to be available. The PMF and other AWH data are
written to energy file at an interval set by awh-nstout (page 65) and can be extracted with the gmx
awh tool. The AWH coordinate can be multidimensional and is defined by mapping each dimension to
a pull coordinate index. This is only allowed if pull-coord1-type=external-potential
(page 62) and pull-coord1-potential-provider (page 62) = awh for the concerned pull
coordinate indices. Pull geometry ‘direction-periodic’ and transformation coordinates that depend on
time are not supported by AWH.

awh-potential

3.7. Molecular dynamics parameters (.mdp options) 64

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

convolved

The applied biasing potential is the convolution of the bias function and a set of harmonic umbrella
potentials (see awh-potential=umbrella (page 65) below). This results in a smooth potential
function and force. The resolution of the potential is set by the force constant of each umbrella,
see awh1-dim1-force-constant (page 68). This option is not compatible with using the free
energy lambda state as an AWH reaction coordinate.

umbrella

The potential bias is applied by controlling the position of an harmonic potential using Monte-Carlo
sampling. The force constant is set with awh1-dim1-force-constant (page 68). The umbrella
location is sampled using Monte-Carlo every awh-nstsample (page 65) steps. This is option is
required when using the free energy lambda state as an AWH reaction coordinate. Apart from that,
this option is mainly for comparison and testing purposes as there are no advantages to using an
umbrella.

awh-share-multisim

no

AWH will not share biases across simulations started with gmx mdrun (page 215) option -multidir.
The biases will be independent.

yes

With gmx mdrun (page 215) and option -multidir the bias and PMF estimates for biases with
awh1-share-group (page 67) >0 will be shared across simulations with the biases with the same
awh1-share-group (page 67) value. The simulations should have the same AWH settings for
sharing to make sense. gmx mdrun (page 215) will check whether the simulations are technically
compatible for sharing, but the user should check that bias sharing physically makes sense.

awh-seed

(-1) Random seed for Monte-Carlo sampling the umbrella position, where -1 indicates to generate a seed.
Only used with awh-potential=umbrella (page 65).

awh-nstout

(100000) Number of steps between printing AWH data to the energy file, should be a multiple of
nstenergy (page 47).

awh-nstsample

(10) Number of steps between sampling of the coordinate value. This sampling is the basis for updating the
bias and estimating the PMF and other AWH observables.

awh-nsamples-update

(100) The number of coordinate samples used for each AWH update. The update interval in steps is
awh-nstsample (page 65) times this value.

awh-nbias

(1) The number of biases, each acting on its own coordinate. The following options should be specified for
each bias although below only the options for bias number 1 is shown. Options for other bias indices are
obtained by replacing ‘1’ by the bias index.

awh1-error-init

(10.0) [kJ mol-1] Estimated initial average error of the PMF for this bias. This value together with an
estimate of the crossing time, based on the length of the sampling interval and the given diffusion con-
stant(s) awh1-dim1-diffusion (page 68), determine the initial biasing rate. With multiple dimen-
sions, the longest crossing time is used. The error is obviously not known a priori. Only a rough estimate
of awh1-error-init (page 65) is needed however. As a general guideline, leave awh1-error-init
(page 65) to its default value when starting a new simulation. On the other hand, when there is a pri-
ori knowledge of the PMF (e.g. when an initial PMF estimate is provided, see the awh1-user-data
(page 66) option) then awh1-error-init (page 65) should reflect that knowledge.

awh1-growth

3.7. Molecular dynamics parameters (.mdp options) 65

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

exp-linear

Each bias keeps a reference weight histogram for the coordinate samples. Its size sets the magnitude of the
bias function and free energy estimate updates (few samples corresponds to large updates and vice versa).
Thus, its growth rate sets the maximum convergence rate. By default, there is an initial stage in which the
histogram grows close to exponentially (but slower than the sampling rate). In the final stage that follows,
the growth rate is linear and equal to the sampling rate (set by awh-nstsample (page 65)). The initial
stage is typically necessary for efficient convergence when starting a new simulation where high free energy
barriers have not yet been flattened by the bias.

linear

As awh1-growth=exp-linear (page 65) but skip the initial stage. This may be useful if there is a
priori knowledge (see awh1-error-init (page 65)) which eliminates the need for an initial stage. This
is also the setting compatible with awh1-target=local-boltzmann (page 66).

awh1-growth-factor

(2) [] The growth factor 𝛾 during the exponential phase with awh1-growth=exp-linear (page 65).
Should be larger than 1.

awh1-equilibrate-histogram

no

Do not equilibrate histogram.

yes

Before entering the initial stage (see awh1-growth=exp-linear (page 65)), make sure the his-
togram of sampled weights is following the target distribution closely enough (specifically, at least
80% of the target region needs to have a local relative error of less than 20%). This option would typ-
ically only be used when awh1-share-group (page 67) > 0 and the initial configurations poorly
represent the target distribution.

awh1-target

constant

The bias is tuned towards a constant (uniform) coordinate distribution in the defined sampling interval
(defined by [awh1-dim1-start (page 68), awh1-dim1-end (page 68)]).

cutoff

Similar to awh1-target=constant (page 66), but the target distribution is proportional to 1/(1
+ exp(F - awh1-target=cutoff (page 66))), where F is the free energy relative to the estimated
global minimum. This provides a smooth switch of a flat target distribution in regions with free energy
lower than the cut-off to a Boltzmann distribution in regions with free energy higher than the cut-off.

boltzmann

The target distribution is a Boltzmann distribtution with a scaled beta (inverse temperature) factor
given by awh1-target-beta-scaling (page 66). E.g., a value of 0.1 would give the same
coordinate distribution as sampling with a simulation temperature scaled by 10.

local-boltzmann

Same target distribution and use of awh1-target-beta-scaling (page 66) but the convergence
towards the target distribution is inherently local i.e., the rate of change of the bias only depends on the
local sampling. This local convergence property is only compatible with awh1-growth=linear
(page 66), since for awh1-growth=exp-linear (page 65) histograms are globally rescaled in the
initial stage.

awh1-target-beta-scaling

(0) For awh1-target=boltzmann (page 66) and awh1-target=local-boltzmann (page 66) it
is the unitless beta scaling factor taking values in (0,1).

awh1-target-cutoff

(0) [kJ mol-1] For awh1-target=cutoff (page 66) this is the cutoff, should be > 0.

3.7. Molecular dynamics parameters (.mdp options) 66

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

awh1-user-data

no

Initialize the PMF and target distribution with default values.

yes

Initialize the PMF and target distribution with user provided data. For awh-nbias (page 65) =
1, gmx mdrun (page 215) will expect a file awhinit.xvg to be present in the run directory. For
multiple biases, gmx mdrun (page 215) expects files awhinit1.xvg, awhinit2.xvg, etc. The
file name can be changed with the -awh option. The first awh1-ndim (page 67) columns of each
input file should contain the coordinate values, such that each row defines a point in coordinate space.
Column awh1-ndim (page 67) + 1 should contain the PMF value (in kT) for each point. The target
distribution column can either follow the PMF (column awh1-ndim (page 67) + 2) or be in the same
column as written by gmx awh (page 130).

awh1-share-group

0

Do not share the bias.

positive

Share the bias and PMF estimates between simulations. This currently only works between biases
with the same index. Note that currently sharing within a single simulation is not supported. The bias
will be shared across simulations that specify the same value for awh1-share-group (page 67).
To enable this, use awh-share-multisim=yes (page 65) and the gmx mdrun (page 215) option
-multidir. Sharing may increase convergence initially, although the starting configurations can be
critical, especially when sharing between many biases.

awh1-target-metric-scaling

no

Do not scale the target distribution based on the AWH friction metric.

yes

Scale the target distribution based on the AWH friction metric. Regions with high friction (long
autocorrelation times) will be sampled more. The diffusion metric is the inverse of the fric-
tion metric. This scaling can be used with any awh1-target (page 66) type and is applied
after user provided target distribution modifications (awh1-user-data (page 66)), if any. If
awh1-growth=exp-linear (page 65), the target distribution scaling starts after leaving the initial
phase.

awh1-target-metric-scaling-limit

(10) The upper limit of scaling, relative to the average, when awh1-target-metric-scaling is
enabled. The lower limit will be the inverse of this value. This upper limit should be > 1.

awh1-ndim

(1) [integer] Number of dimensions of the coordinate, each dimension maps to 1 pull coordinate. The
following options should be specified for each such dimension. Below only the options for dimension
number 1 is shown. Options for other dimension indices are obtained by replacing ‘1’ by the dimension
index.

awh1-dim1-coord-provider

pull

The pull module is providing the reaction coordinate for this dimension. With multiple time-stepping,
AWH and pull should be in the same MTS level.

fep-lambda

The free energy lambda state is the reaction coordinate for this dimension. The lambda states
to use are specified by fep-lambdas (page 71), vdw-lambdas (page 71), coul-lambdas
(page 71) etc. This is not compatible with delta-lambda. It also requires calc-lambda-neighbors

3.7. Molecular dynamics parameters (.mdp options) 67

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

to be -1. With multiple time-stepping, AWH should be in the slow level. This option requires
awh-potential=umbrella (page 65).

awh1-dim1-coord-index

(1) Index of the pull coordinate defining this coordinate dimension.

awh1-dim1-force-constant

(0) [kJ mol-1 nm-2] or [kJ mol-1 rad-2] Force constant for the (convolved) umbrella potential(s) along this
coordinate dimension.

awh1-dim1-start

(0.0) [nm] or [deg] Start value of the sampling interval along this dimension. The range of allowed values
depends on the relevant pull geometry (see pull-coord1-geometry (page 62)). For dihedral geome-
tries awh1-dim1-start (page 68) greater than awh1-dim1-end (page 68) is allowed. The interval
will then wrap around from +period/2 to -period/2. For the direction geometry, the dimension is made pe-
riodic when the direction is along a box vector and covers more than 95% of the box length. Note that one
should not apply pressure coupling along a periodic dimension.

awh1-dim1-end

(0.0) [nm] or [deg] End value defining the sampling interval together with awh1-dim1-start (page 68).

awh1-dim1-diffusion

(10-5) [nm2/ps], [rad2/ps] or [ps-1] Estimated diffusion constant for this coordinate dimension determining
the initial biasing rate. This needs only be a rough estimate and should not critically affect the results unless
it is set to something very low, leading to slow convergence, or very high, forcing the system far from
equilibrium. Not setting this value explicitly generates a warning.

awh1-dim1-cover-diameter

(0.0) [nm] or [deg] Diameter that needs to be sampled by a single simulation around a coordinate value be-
fore the point is considered covered in the initial stage (see awh1-growth=exp-linear (page 65)). A
value > 0 ensures that for each covering there is a continuous transition of this diameter across each coordi-
nate value. This is trivially true for independent simulations but not for for multiple bias-sharing simulations
(awh1-share-group (page 67)>0). For a diameter = 0, covering occurs as soon as the simulations have
sampled the whole interval, which for many sharing simulations does not guarantee transitions across free
energy barriers. On the other hand, when the diameter >= the sampling interval length, covering occurs
when a single simulation has independently sampled the whole interval.

Enforced rotation

These mdp (page 488) parameters can be used enforce the rotation of a group of atoms, e.g. a protein subunit. The
reference manual describes in detail 13 different potentials that can be used to achieve such a rotation.

rotation

no

No enforced rotation will be applied. All enforced rotation options will be ignored (and if present in
the mdp (page 488) file, they unfortunately generate warnings).

yes

Apply the rotation potential specified by rot-type0 (page 68) to the group of atoms given under
the rot-group0 (page 68) option.

rot-ngroups

(1) Number of rotation groups.

rot-group0

Name of rotation group 0 in the index file.

rot-type0

(iso) Type of rotation potential that is applied to rotation group 0. Can be of of the following: iso, iso-pf,
pm, pm-pf, rm, rm-pf, rm2, rm2-pf, flex, flex-t, flex2, or flex2-t.

3.7. Molecular dynamics parameters (.mdp options) 68

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

rot-massw0

(no) Use mass weighted rotation group positions.

rot-vec0

(1.0 0.0 0.0) Rotation vector, will get normalized.

rot-pivot0

(0.0 0.0 0.0) [nm] Pivot point for the potentials iso, pm, rm, and rm2.

rot-rate0

(0) [degree ps-1] Reference rotation rate of group 0.

rot-k0

(0) [kJ mol-1 nm-2] Force constant for group 0.

rot-slab-dist0

(1.5) [nm] Slab distance, if a flexible axis rotation type was chosen.

rot-min-gauss0

(0.001) Minimum value (cutoff) of Gaussian function for the force to be evaluated (for the flexible axis
potentials).

rot-eps0

(0.0001) [nm2] Value of additive constant epsilon for rm2* and flex2* potentials.

rot-fit-method0

(rmsd) Fitting method when determining the actual angle of a rotation group (can be one of rmsd, norm,
or potential).

rot-potfit-nsteps0

(21) For fit type potential, the number of angular positions around the reference angle for which the
rotation potential is evaluated.

rot-potfit-step0

(0.25) For fit type potential, the distance in degrees between two angular positions.

rot-nstrout

(100) Output frequency (in steps) for the angle of the rotation group, as well as for the torque and the
rotation potential energy.

rot-nstsout

(1000) Output frequency for per-slab data of the flexible axis potentials, i.e. angles, torques and slab centers.

NMR refinement

disre

no

ignore distance restraint information in topology file

simple

simple (per-molecule) distance restraints.

ensemble

distance restraints over an ensemble of molecules in one simulation box. Normally, one would per-
form ensemble averaging over multiple simulations, using mdrun -multidir. The environment
variable GMX_DISRE_ENSEMBLE_SIZE sets the number of systems within each ensemble (usually
equal to the number of directories supplied to mdrun -multidir).

disre-weighting

3.7. Molecular dynamics parameters (.mdp options) 69

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

equal

divide the restraint force equally over all atom pairs in the restraint

conservative

the forces are the derivative of the restraint potential, this results in an weighting of the atom pairs
to the reciprocal seventh power of the displacement. The forces are conservative when disre-tau
(page 70) is zero.

disre-mixed

no

the violation used in the calculation of the restraint force is the time-averaged violation

yes

the violation used in the calculation of the restraint force is the square root of the product of the
time-averaged violation and the instantaneous violation

disre-fc

(1000) [kJ mol-1 nm-2] force constant for distance restraints, which is multiplied by a (possibly) different
factor for each restraint given in the fac column of the interaction in the topology file.

disre-tau

(0) [ps] time constant for distance restraints running average. A value of zero turns off time averaging.

nstdisreout

(100) [steps] period between steps when the running time-averaged and instantaneous distances of all atom
pairs involved in restraints are written to the energy file (can make the energy file very large)

orire

no

ignore orientation restraint information in topology file

yes

use orientation restraints, ensemble averaging can be performed with mdrun -multidir

orire-fc

(0) [kJ mol-1] force constant for orientation restraints, which is multiplied by a (possibly) different weight
factor for each restraint, can be set to zero to obtain the orientations from a free simulation

orire-tau

(0) [ps] time constant for orientation restraints running average. A value of zero turns off time averaging.

orire-fitgrp

fit group for orientation restraining. This group of atoms is used to determine the rotation R of the system
with respect to the reference orientation. The reference orientation is the starting conformation of the first
subsystem. For a protein, backbone is a reasonable choice

nstorireout

(100) [steps] period between steps when the running time-averaged and instantaneous orientations for all
restraints, and the molecular order tensor are written to the energy file (can make the energy file very large)

3.7. Molecular dynamics parameters (.mdp options) 70

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Free energy calculations

free-energy

no

Only use topology A.

yes

Interpolate between topology A (lambda=0) to topology B (lambda=1) and write the derivative of
the Hamiltonian with respect to lambda (as specified with dhdl-derivatives (page 74)), or the
Hamiltonian differences with respect to other lambda values (as specified with foreign lambda) to the
energy file and/or to dhdl.xvg, where they can be processed by, for example gmx bar (page 131).
The potentials, bond-lengths and angles are interpolated linearly as described in the manual. When
sc-alpha (page 72) is larger than zero, soft-core potentials are used for the LJ and Coulomb inter-
actions.

expanded

Turns on expanded ensemble simulation, where the alchemical state becomes a dynamic variable, allowing
jumping between different Hamiltonians. See the expanded ensemble options for controlling how expanded
ensemble simulations are performed. The different Hamiltonians used in expanded ensemble simulations
are defined by the other free energy options.

init-lambda

(-1) starting value for lambda (float). Generally, this should only be used with slow growth (i.e. nonzero
delta-lambda (page 71)). In other cases, init-lambda-state (page 71) should be specified in-
stead. If a lambda vector is given, init-lambda (page 71) is used to interpolate the vector instead of
setting lambda directly. Must be greater than or equal to 0.

delta-lambda

(0) increment per time step for lambda

init-lambda-state

(-1) starting value for the lambda state (integer). Specifies which columm of the lambda
vector (coul-lambdas (page 71), vdw-lambdas (page 71), bonded-lambdas (page 71),
restraint-lambdas (page 72), mass-lambdas (page 72), temperature-lambdas (page 72),
fep-lambdas (page 71)) should be used. This is a zero-based index: init-lambda-state (page 71)
0 means the first column, and so on.

fep-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are
allowed but should be used carefully. Free energy differences between different lambda values can then
be determined with gmx bar (page 131). fep-lambdas (page 71) is different from the other -lambdas
keywords because all components of the lambda vector that are not specified will use fep-lambdas
(page 71) (including restraint-lambdas (page 72) and therefore the pull code restraints).

coul-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. If soft-core potentials are used, values must be between 0 and 1. Only the
electrostatic interactions are controlled with this component of the lambda vector (and only if the lambda=0
and lambda=1 states have differing electrostatic interactions).

vdw-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. If soft-core potentials are used, values must be between 0 and 1. Only the van
der Waals interactions are controlled with this component of the lambda vector.

3.7. Molecular dynamics parameters (.mdp options) 71

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

bonded-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the bonded interactions are controlled with this component of the lambda
vector.

restraint-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the restraint interactions: dihedral restraints, and the pull code restraints
are controlled with this component of the lambda vector.

mass-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the particle masses are controlled with this component of the lambda
vector.

temperature-lambdas

[array] Zero, one or more lambda values for which Delta H values will be determined and written to dhdl.xvg
every nstdhdl (page 73) steps. Values must be greater than or equal to 0; values greater than 1 are allowed
but should be used carefully. Only the temperatures are controlled with this component of the lambda vector.
Note that these lambdas should not be used for replica exchange, only for simulated tempering.

calc-lambda-neighbors

(1) Controls the number of lambda values for which Delta H values will be calculated and written
out, if init-lambda-state (page 71) has been set. A positive value will limit the number of
lambda points calculated to only the nth neighbors of init-lambda-state (page 71): for example,
if init-lambda-state (page 71) is 5 and this parameter has a value of 2, energies for lambda points
3-7 will be calculated and writen out. A value of -1 means all lambda points will be written out. For normal
BAR such as with gmx bar (page 131), a value of 1 is sufficient, while for MBAR -1 should be used.

sc-function

(beutler)

beutler

Beutler et al. soft-core function

gapsys

Gapsys et al. soft-core function

sc-alpha

(0) for sc-function=beutler (page 72) the soft-core alpha parameter, a value of 0 results in linear
interpolation of the LJ and Coulomb interactions. Used only with sc-function=beutler (page 72)

sc-r-power

(6) power 6 for the radial term in the soft-core equation. Used only with sc-function=beutler
(page 72)

sc-coul

(no) Whether to apply the soft-core free energy interaction transformation to the Coulombic interaction of
a molecule. Default is no, as it is generally more efficient to turn off the Coulombic interactions linearly
before turning off the van der Waals interactions. Note that it is only taken into account when lambda states
are used, not with couple-lambda0 (page 73) / couple-lambda1 (page 73), and you can still turn
off soft-core interactions by setting sc-alpha (page 72) to 0. Used only with sc-function=beutler
(page 72)

sc-power

(1) the power for lambda in the soft-core function, only the values 1 and 2 are supported. Used only with
sc-function=beutler (page 72)

3.7. Molecular dynamics parameters (.mdp options) 72

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

sc-sigma

(0.3) [nm] for sc-function=beutler (page 72) the soft-core sigma for particles which have a
C6 or C12 parameter equal to zero or a sigma smaller than sc-sigma (page 72). Used only with
sc-function=beutler (page 72)

sc-gapsys-scale-linpoint-lj

(0.85) for sc-function=gapsys (page 72) it is the unitless alphaLJ parameter. It controls the softness
of the van der Waals interactions by scaling the point for linearizing the vdw force. Setting it to 0 will result
in the standard hard-core van der Waals interactions. Used only with sc-function=gapsys (page 72)

sc-gapsys-scale-linpoint-q

(0.3) [nm/e^2] For sc-function=gapsys (page 72) the alphaQ parameter with the unit of [nm/e^2]
and default value of 0.3. It controls the softness of the Coulombic interactions. Setting it to 0 will result in
the standard hard-core Coulombic interactions. Used only with sc-function=gapsys (page 72)

sc-gapsys-sigma-lj

(0.3) [nm] for sc-function=gapsys (page 72) the soft-core sigma for particles which have a C6 or
C12 parameter equal to zero. Used only with sc-function=gapsys (page 72)

couple-moltype

Here one can supply a molecule type (as defined in the topology) for calculating solvation or coupling free
energies. There is a special option system that couples all molecule types in the system. This can be
useful for equilibrating a system starting from (nearly) random coordinates. free-energy (page 71) has
to be turned on. The Van der Waals interactions and/or charges in this molecule type can be turned on
or off between lambda=0 and lambda=1, depending on the settings of couple-lambda0 (page 73) and
couple-lambda1 (page 73). If you want to decouple one of several copies of a molecule, you need to
copy and rename the molecule definition in the topology.

couple-lambda0

vdw-q

all interactions are on at lambda=0

vdw

the charges are zero (no Coulomb interactions) at lambda=0

q

the Van der Waals interactions are turned at lambda=0; soft-core interactions will be required to avoid
singularities

none

the Van der Waals interactions are turned off and the charges are zero at lambda=0; soft-core interac-
tions will be required to avoid singularities.

couple-lambda1

analogous to couple-lambda0 (page 73), but for lambda=1

couple-intramol

no

All intra-molecular non-bonded interactions for moleculetype couple-moltype (page 73) are re-
placed by exclusions and explicit pair interactions. In this manner the decoupled state of the molecule
corresponds to the proper vacuum state without periodicity effects.

yes

The intra-molecular Van der Waals and Coulomb interactions are also turned on/off. This can be use-
ful for partitioning free-energies of relatively large molecules, where the intra-molecular non-bonded
interactions might lead to kinetically trapped vacuum conformations. The 1-4 pair interactions are not
turned off.

3.7. Molecular dynamics parameters (.mdp options) 73

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

nstdhdl

(100) the frequency for writing dH/dlambda and possibly Delta H to dhdl.xvg, 0 means no ouput, should be
a multiple of nstcalcenergy (page 47).

dhdl-derivatives

(yes)

If yes (the default), the derivatives of the Hamiltonian with respect to lambda at each nstdhdl (page 73)
step are written out. These values are needed for interpolation of linear energy differences with gmx bar
(page 131) (although the same can also be achieved with the right foreign lambda setting, that may not be
as flexible), or with thermodynamic integration

dhdl-print-energy

(no)

Include either the total or the potential energy in the dhdl file. Options are ‘no’, ‘potential’, or ‘total’. This
information is needed for later free energy analysis if the states of interest are at different temperatures. If all
states are at the same temperature, this information is not needed. ‘potential’ is useful in case one is using
mdrun -rerun to generate the dhdl.xvg file. When rerunning from an existing trajectory, the kinetic
energy will often not be correct, and thus one must compute the residual free energy from the potential
alone, with the kinetic energy component computed analytically.

separate-dhdl-file

yes

The free energy values that are calculated (as specified with the foreign lambda and
dhdl-derivatives (page 74) settings) are written out to a separate file, with the default name
dhdl.xvg. This file can be used directly with gmx bar (page 131).

no

The free energy values are written out to the energy output file (ener.edr, in accumulated blocks at
every nstenergy (page 47) steps), where they can be extracted with gmx energy (page 177) or used
directly with gmx bar (page 131).

dh-hist-size

(0) If nonzero, specifies the size of the histogram into which the Delta H values (specified with foreign
lambda) and the derivative dH/dl values are binned, and written to ener.edr. This can be used to save disk
space while calculating free energy differences. One histogram gets written for each foreign lambda and
two for the dH/dl, at every nstenergy (page 47) step. Be aware that incorrect histogram settings (too
small size or too wide bins) can introduce errors. Do not use histograms unless you’re certain you need it.

dh-hist-spacing

(0.1) Specifies the bin width of the histograms, in energy units. Used in conjunction with dh-hist-size
(page 74). This size limits the accuracy with which free energies can be calculated. Do not use histograms
unless you’re certain you need it.

Expanded Ensemble calculations

nstexpanded

The number of integration steps beween attempted moves changing the system Hamiltonian in expanded
ensemble simulations. Must be a multiple of nstcalcenergy (page 47), but can be greater or less than
nstdhdl (page 73).

lmc-stats

no

No Monte Carlo in state space is performed.

metropolis-transition

Uses the Metropolis weights to update the expanded ensemble weight of each state. Min{1,exp(-
(beta_new u_new - beta_old u_old)}

3.7. Molecular dynamics parameters (.mdp options) 74

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

barker-transition

Uses the Barker transition critera to update the expanded ensemble weight of each state i, defined by
exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

wang-landau

Uses the Wang-Landau algorithm (in state space, not energy space) to update the expanded ensemble
weights.

min-variance

Uses the minimum variance updating method of Escobedo et al. to update the expanded ensemble
weights. Weights will not be the free energies, but will rather emphasize states that need more sampling
to give even uncertainty.

lmc-mc-move

no

No Monte Carlo in state space is performed.

metropolis-transition

Randomly chooses a new state up or down, then uses the Metropolis criteria to decide whether to
accept or reject: Min{1,exp(-(beta_new u_new - beta_old u_old)}

barker-transition

Randomly chooses a new state up or down, then uses the Barker transition criteria to decide whether
to accept or reject: exp(-beta_new u_new)/(exp(-beta_new u_new)+exp(-beta_old u_old))

gibbs

Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k exp(beta_i
u_i) to decide which state to move to.

metropolized-gibbs

Uses the conditional weights of the state given the coordinate (exp(-beta_i u_i) / sum_k exp(beta_i u_i)
to decide which state to move to, EXCLUDING the current state, then uses a rejection step to ensure
detailed balance. Always more efficient that Gibbs, though only marginally so in many situations,
such as when only the nearest neighbors have decent phase space overlap.

lmc-seed

(-1) random seed to use for Monte Carlo moves in state space. When lmc-seed (page 75) is set to -1, a
pseudo random seed is us

mc-temperature

Temperature used for acceptance/rejection for Monte Carlo moves. If not specified, the temperature of the
simulation specified in the first group of ref-t (page 55) is used.

wl-ratio

(0.8) The cutoff for the histogram of state occupancies to be reset, and the free energy incrementor to be
changed from delta to delta * wl-scale (page 75). If we define the Nratio = (number of samples at each
histogram) / (average number of samples at each histogram). wl-ratio (page 75) of 0.8 means that means
that the histogram is only considered flat if all Nratio > 0.8 AND simultaneously all 1/Nratio > 0.8.

wl-scale

(0.8) Each time the histogram is considered flat, then the current value of the Wang-Landau incrementor for
the free energies is multiplied by wl-scale (page 75). Value must be between 0 and 1.

init-wl-delta

(1.0) The initial value of the Wang-Landau incrementor in kT. Some value near 1 kT is usually most efficient,
though sometimes a value of 2-3 in units of kT works better if the free energy differences are large.

wl-oneovert

(no) Set Wang-Landau incrementor to scale with 1/(simulation time) in the large sample limit. There is
significant evidence that the standard Wang-Landau algorithms in state space presented here result in free
energies getting ‘burned in’ to incorrect values that depend on the initial state. when wl-oneovert

3.7. Molecular dynamics parameters (.mdp options) 75

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(page 75) is true, then when the incrementor becomes less than 1/N, where N is the number of samples
collected (and thus proportional to the data collection time, hence ‘1 over t’), then the Wang-Lambda in-
crementor is set to 1/N, decreasing every step. Once this occurs, wl-ratio (page 75) is ignored, but the
weights will still stop updating when the equilibration criteria set in lmc-weights-equil (page 77) is
achieved.

lmc-repeats

(1) Controls the number of times that each Monte Carlo swap type is performed each iteration. In the limit
of large numbers of Monte Carlo repeats, then all methods converge to Gibbs sampling. The value will
generally not need to be different from 1.

lmc-gibbsdelta

(-1) Limit Gibbs sampling to selected numbers of neighboring states. For Gibbs sampling, it is some-
times inefficient to perform Gibbs sampling over all of the states that are defined. A positive value of
lmc-gibbsdelta (page 76) means that only states plus or minus lmc-gibbsdelta (page 76) are
considered in exchanges up and down. A value of -1 means that all states are considered. For less than 100
states, it is probably not that expensive to include all states.

lmc-forced-nstart

(0) Force initial state space sampling to generate weights. In order to come up with reasonable ini-
tial weights, this setting allows the simulation to drive from the initial to the final lambda state, with
lmc-forced-nstart (page 76) steps at each state before moving on to the next lambda state. If
lmc-forced-nstart (page 76) is sufficiently long (thousands of steps, perhaps), then the weights
will be close to correct. However, in most cases, it is probably better to simply run the standard weight
equilibration algorithms.

nst-transition-matrix

(-1) Frequency of outputting the expanded ensemble transition matrix. A negative number means it will
only be printed at the end of the simulation.

symmetrized-transition-matrix

(no) Whether to symmetrize the empirical transition matrix. In the infinite limit the matrix will be sym-
metric, but will diverge with statistical noise for short timescales. Forced symmetrization, by using the
matrix T_sym = 1/2 (T + transpose(T)), removes problems like the existence of (small magnitude) negative
eigenvalues.

mininum-var-min

(100) The min-variance strategy (option of lmc-stats (page 74) is only valid for larger number of sam-
ples, and can get stuck if too few samples are used at each state. mininum-var-min (page 76) is the
minimum number of samples that each state that are allowed before the min-variance strategy is activated if
selected.

init-lambda-weights

The initial weights (free energies) used for the expanded ensemble states. Default is a vector of zero weights.
format is similar to the lambda vector settings in fep-lambdas (page 71), except the weights can be any
floating point number. Units are kT. Its length must match the lambda vector lengths.

init-wl-histogram-counts

The initial counts used for the Wang-Landau histogram of visiting expanded ensemble states. The flatness
of this histogram is used to decide whether to decrement the histogram-building incrementor. This option is
only generally useful if continuing a shorter simulation from a previous one, as the smaller the incrementor
gets, the longer it takes for the histogram to become flat, often longer than a short simulation takes, requiring
the histogram population to be carried over from the previous simulation. The default is a vector of zeros.
The format is similar to the lambda vector settings in fep-lambdas (page 71). The value can be a
floating point number or an integer, as some methods increment multiple histogram bins at the same time
with fractional weights. Its length must match the lambda vector lengths.

init-lambda-counts

The initial counts used for the number of times each expanded ensemble state is visited states. Several
algorithms set by lmc-weights-equil (page 77) use various functions of the number of visits to
each state states to decide whether to switch to different phases of weight determination. These include

3.7. Molecular dynamics parameters (.mdp options) 76

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

number-all-lambda which requires the mumber of times each lambda state is visited to be equal to or
greater than this number, number-samples, which requires the total number of visits to all lambda states
to be greater than or equal to this, and count-ratio, which requires the number of states visited at each
state to be within a given ratio of equal visitation. This option is only generally useful if continuing a shorter
simulation from a previous one, as most methods will reach the triggering conditions with relatively low
number of samples collected. The default is a vector of zeros. The format is similar to the lambda vector
settings in fep-lambdas (page 71). Unlike init-wl-histogram, the value can only be an integer.
Its length must match the lambda vector lengths.

lmc-weights-equil

no

Expanded ensemble weights continue to be updated throughout the simulation.

yes

The input expanded ensemble weights are treated as equilibrated, and are not updated throughout the
simulation.

wl-delta

Expanded ensemble weight updating is stopped when the Wang-Landau incrementor falls below this
value.

number-all-lambda

Expanded ensemble weight updating is stopped when the number of samples at all of the lambda states
is greater than this value.

number-steps

Expanded ensemble weight updating is stopped when the number of steps is greater than the level
specified by this value.

number-samples

Expanded ensemble weight updating is stopped when the number of total samples across all lambda
states is greater than the level specified by this value.

count-ratio

Expanded ensemble weight updating is stopped when the ratio of samples at the least sampled lambda
state and most sampled lambda state greater than this value.

simulated-tempering

(no) Turn simulated tempering on or off. Simulated tempering is implemented as expanded ensemble sam-
pling with different temperatures instead of different Hamiltonians.

sim-temp-low

(300) [K] Low temperature for simulated tempering.

sim-temp-high

(300) [K] High temperature for simulated tempering.

simulated-tempering-scaling

Controls the way that the temperatures at intermediate lambdas are calculated from the
temperature-lambdas (page 72) part of the lambda vector.

linear

Linearly interpolates the temperatures using the values of temperature-lambdas (page 72), i.e.
if sim-temp-low (page 77) =300, sim-temp-high (page 77) =400, then lambda=0.5 correspond
to a temperature of 350. A nonlinear set of temperatures can always be implemented with uneven
spacing in lambda.

geometric

Interpolates temperatures geometrically between sim-temp-low (page 77) and sim-temp-high
(page 77). The i:th state has temperature sim-temp-low (page 77) * (sim-temp-high (page 77)
/ sim-temp-low (page 77)) raised to the power of (i/(ntemps-1)). This should give roughly equal

3.7. Molecular dynamics parameters (.mdp options) 77

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

exchange for constant heat capacity, though of course things simulations that involve protein folding
have very high heat capacity peaks.

exponential

Interpolates temperatures exponentially between sim-temp-low (page 77) and sim-temp-high
(page 77). The i:th state has temperature sim-temp-low (page 77) + (sim-temp-high (page 77)
- sim-temp-low (page 77))*((exp(temperature-lambdas (page 72) (i))-1)/(exp(1.0)-i)).

Non-equilibrium MD

acc-grps

groups for constant acceleration (e.g. Protein Sol) all atoms in groups Protein and Sol will experience
constant acceleration as specified in the accelerate (page 78) line. Note that the kinetic energy of the
center of mass of accelerated groups contributes to the kinetic energy and temperature of the system. If this
is not desired, make each accelerate group also a separate temperature coupling group.

accelerate

(0) [nm ps-2] acceleration for acc-grps (page 78); x, y and z for each group (e.g. 0.1 0.0 0.0 -0.1
0.0 0.0 means that first group has constant acceleration of 0.1 nm ps-2 in X direction, second group the
opposite).

freezegrps

Groups that are to be frozen (i.e. their X, Y, and/or Z position will not be updated; e.g. Lipid SOL).
freezedim (page 78) specifies for which dimension(s) the freezing applies. To avoid spurious contribu-
tions to the virial and pressure due to large forces between completely frozen atoms you need to use energy
group exclusions, this also saves computing time. Note that coordinates of frozen atoms are not scaled by
pressure-coupling algorithms.

freezedim

dimensions for which groups in freezegrps (page 78) should be frozen, specify Y or N for X, Y and Z
and for each group (e.g. Y Y N N N Nmeans that particles in the first group can move only in Z direction.
The particles in the second group can move in any direction).

cos-acceleration

(0) [nm ps-2] the amplitude of the acceleration profile for calculating the viscosity. The acceleration is in
the X-direction and the magnitude is cos-acceleration (page 78) cos(2 pi z/boxheight). Two terms
are added to the energy file: the amplitude of the velocity profile and 1/viscosity.

deform

(0 0 0 0 0 0) [nm ps-1] The velocities of deformation for the box elements: a(x) b(y) c(z) b(x) c(x) c(y). Each
step the box elements for which deform (page 78) is non-zero are calculated as: box(ts)+(t-ts)*deform,
off-diagonal elements are corrected for periodicity. The time ts is set to t at the first step and at steps at
which x and v are written to trajectory to ensure exact restarts. Deformation can be used together with
semiisotropic or anisotropic pressure coupling when the appropriate compressibilities are set to zero. The
diagonal elements can be used to strain a solid. The off-diagonal elements can be used to shear a solid
or a liquid. Note that the atom positions are not affected directly by this option. Instead, the deform
option only modifies the velocities of particles that are shifted by a periodic box vector such that their new
velocities match the virtual velocity flow field corresponding to the box deformation. As the deform option
never accelerates the remaining particles in the system, the matching velocity flow field should be set up
at the beginning of the simulation to make the particles follow the deformation. This can be done with the
deform-init-flow (page 78) option. The flow field is removed from the kinetic energy by gmx mdrun
(page 215) so the actual temperature and pressure of the system are reported.

deform-init-flow

no

Do not modify the velocities. Only use this option when the velocities of the atoms in the initial
configuration already obey the flow field.

3.7. Molecular dynamics parameters (.mdp options) 78

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

yes

When the deform (page 78) option is active, add a velocity profile corresponding to the box defor-
mation to the initial velocities. This is done after computing observables from the initial state such as
the initial temperature.

Electric fields

electric-field-x

electric-field-y

electric-field-z

Here you can specify an electric field that optionally can be alternating and pulsed. The general expression
for the field has the form of a gaussian laser pulse:

𝐸(𝑡) = 𝐸0 exp

[︂
− (𝑡− 𝑡0)

2

2𝜎2

]︂
cos [𝜔(𝑡− 𝑡0)]

For example, the four parameters for direction x are set in the fields of electric-field-x (page 79)
(and similar for electric-field-y and electric-field-z) like

electric-field-x = E0 omega t0 sigma

with units (respectively) V nm-1, ps-1, ps, ps.

In the special case that sigma = 0, the exponential term is omitted and only the cosine term is used. In
this case, t0 must be set to 0. If also omega = 0 a static electric field is applied.

Read more at Electric fields (page 524) and in ref. 146 (page 583).

Mixed quantum/classical molecular dynamics

QMMM-grps

groups to be described at the QM level for MiMiC QM/MM

QMMM

no

QM/MM is no longer supported via these .mdp options. For MiMic, use no here.

Computational Electrophysiology

Use these options to switch on and control ion/water position exchanges in “Computational Electrophysiology”
simulation setups. (See the reference manual for details).

swapcoords

no

Do not enable ion/water position exchanges.

X ; Y ; Z

Allow for ion/water position exchanges along the chosen direction. In a typical setup with the mem-
branes parallel to the x-y plane, ion/water pairs need to be exchanged in Z direction to sustain the
requested ion concentrations in the compartments.

swap-frequency

(1) The swap attempt frequency, i.e. every how many time steps the ion counts per compartment are de-
termined and exchanges made if necessary. Normally it is not necessary to check at every time step. For
typical Computational Electrophysiology setups, a value of about 100 is sufficient and yields a negligible
performance impact.

3.7. Molecular dynamics parameters (.mdp options) 79

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

split-group0

Name of the index group of the membrane-embedded part of channel #0. The center of mass of these
atoms defines one of the compartment boundaries and should be chosen such that it is near the center of the
membrane.

split-group1

Channel #1 defines the position of the other compartment boundary.

massw-split0

(no) Defines whether or not mass-weighting is used to calculate the split group center.

no

Use the geometrical center.

yes

Use the center of mass.

massw-split1

(no) As above, but for split-group #1.

solvent-group

Name of the index group of solvent molecules.

coupl-steps

(10) Average the number of ions per compartment over these many swap attempt steps. This can be used to
prevent that ions near a compartment boundary (diffusing through a channel, e.g.) lead to unwanted back
and forth swaps.

iontypes

(1) The number of different ion types to be controlled. These are during the simulation exchanged with
solvent molecules to reach the desired reference numbers.

iontype0-name

Name of the first ion type.

iontype0-in-A

(-1) Requested (=reference) number of ions of type 0 in compartment A. The default value of -1 means: use
the number of ions as found in time step 0 as reference value.

iontype0-in-B

(-1) Reference number of ions of type 0 for compartment B.

bulk-offsetA

(0.0) Offset of the first swap layer from the compartment A midplane. By default (i.e. bulk offset = 0.0),
ion/water exchanges happen between layers at maximum distance (= bulk concentration) to the split group
layers. However, an offset b (-1.0 < b < +1.0) can be specified to offset the bulk layer from the middle at 0.0
towards one of the compartment-partitioning layers (at +/- 1.0).

bulk-offsetB

(0.0) Offset of the other swap layer from the compartment B midplane.

threshold

(1) Only swap ions if threshold difference to requested count is reached.

cyl0-r

(2.0) [nm] Radius of the split cylinder #0. Two split cylinders (mimicking the channel pores) can optionally
be defined relative to the center of the split group. With the help of these cylinders it can be counted which
ions have passed which channel. The split cylinder definition has no impact on whether or not ion/water
swaps are done.

cyl0-up

(1.0) [nm] Upper extension of the split cylinder #0.

3.7. Molecular dynamics parameters (.mdp options) 80

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

cyl0-down

(1.0) [nm] Lower extension of the split cylinder #0.

cyl1-r

(2.0) [nm] Radius of the split cylinder #1.

cyl1-up

(1.0) [nm] Upper extension of the split cylinder #1.

cyl1-down

(1.0) [nm] Lower extension of the split cylinder #1.

Density-guided simulations

These options enable and control the calculation and application of additional forces that are derived from three-
dimensional densities, e.g., from cryo electron-microscopy experiments. (See the reference manual for details)

density-guided-simulation-active

(no) Activate density-guided simulations.

density-guided-simulation-group

(protein) The atoms that are subject to the forces from the density-guided simulation and contribute to the
simulated density.

density-guided-simulation-similarity-measure

(inner-product) Similarity measure between the density that is calculated from the atom positions and the
reference density.

inner-product

Takes the sum of the product of reference density and simulated density voxel values.

relative-entropy

Uses the negative relative entropy (or Kullback-Leibler divergence) between reference density and
simulated density as similarity measure. Negative density values are ignored.

cross-correlation

Uses the Pearson correlation coefficient between reference density and simulated density as similarity
measure.

density-guided-simulation-atom-spreading-weight

(unity) Determines the multiplication factor for the Gaussian kernel when spreading atoms on the grid.

unity

Every atom in the density fitting group is assigned the same unit factor.

mass

Atoms contribute to the simulated density proportional to their mass.

charge

Atoms contribute to the simulated density proportional to their charge.

density-guided-simulation-force-constant

(1e+09) [kJ mol-1] The scaling factor for density-guided simulation forces. May also be negative.

density-guided-simulation-gaussian-transform-spreading-width

(0.2) [nm] The Gaussian RMS width for the spread kernel for the simulated density.

density-guided-simulation-gaussian-transform-spreading-range-in-multiples-of-width

(4) The range after which the gaussian is cut off in multiples of the Gaussian RMS width described above.

3.7. Molecular dynamics parameters (.mdp options) 81

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

density-guided-simulation-reference-density-filename

(reference.mrc) Reference density file name using an absolute path or a path relative to the to the folder
from which gmx mdrun (page 215) is called.

density-guided-simulation-nst

(1) Interval in steps at which the density fitting forces are evaluated and applied. The forces are scaled by
this number when applied (See the reference manual for details).

density-guided-simulation-normalize-densities

(true) Normalize the sum of density voxel values to one for the reference density as well as the simulated
density.

density-guided-simulation-adaptive-force-scaling

(false) Adapt the force constant to ensure a steady increase in similarity between simulated and reference
density.

true

Use adaptive force scaling.

density-guided-simulation-adaptive-force-scaling-time-constant

(4) [ps] Couple force constant to increase in similarity with reference density with this time constant. Larger
times result in looser coupling.

density-guided-simulation-shift-vector

(0,0,0) [nm] Add this vector to all atoms in the density-guided-simulation-group before calculating forces
and energies for density-guided-simulations. Affects only the density-guided-simulation forces and en-
ergies. Corresponds to a shift of the input density in the opposite direction by (-1) * density-guided-
simulation-shift-vector.

density-guided-simulation-transformation-matrix

(1,0,0,0,1,0,0,0,1) Multiply all atoms with this matrix in the density-guided-simulation-group before calcu-
lating forces and energies for density-guided-simulations. Affects only the density-guided-simulation forces
and energies. Corresponds to a transformation of the input density by the inverse of this matrix. The matrix
is given in row-major order. This option allows, e.g., rotation of the density-guided atom group around the
z-axis by 𝜃 degrees by using the following input: (cos 𝜃,− sin 𝜃, 0, sin 𝜃, cos 𝜃, 0, 0, 0, 1) .

QM/MM simulations with CP2K Interface

These options enable and control the calculation and application of additional QM/MM forces that are computed
by the CP2K package if it is linked into GROMACS. For further details about QM/MM interface implementation
follow Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface (page 534).

qmmm-cp2k-active

(false) Activate QM/MM simulations. Requires CP2K to be linked with GROMACS

qmmm-cp2k-qmgroup

(System) Index group with atoms that are treated with QM.

qmmm-cp2k-qmmethod

(PBE) Method used to describe the QM part of the system.

PBE

DFT using PBE functional and DZVP-MOLOPT basis set.

BLYP

DFT using BLYP functional and DZVP-MOLOPT basis set.

INPUT

Provide an external input file for CP2K when running gmx grompp (page 190) with the -qmi
command-line option. External input files are subject to the limitations that are described in Hybrid
Quantum-Classical simulations (QM/MM) with CP2K interface (page 534).

3.7. Molecular dynamics parameters (.mdp options) 82

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

qmmm-cp2k-qmcharge

(0) Total charge of the QM part.

qmmm-cp2k-qmmultiplicity

(1) Multiplicity or spin-state of QM part. Default value 1 means singlet state.

qmmm-cp2k-qmfilenames

() Names of the CP2K files that will be generated during the simulation. When using the default, empty,
value the name of the simulation input file will be used with an additional _cp2k suffix.

Collective variables (Colvars) module

These options enable and control the features provided by the collective variables (Colvars) module (link), a
software library for enhanced sampling methods in molecular simulations. The Colvars module is described in
ref. 195 (page 585) as well as other references that are reported in the log file when the corresponding features are
used. For further details about Colvars interface implementation follow Collective Variable simulations with the
Colvars module (page 546).

colvars-active

(false) Activate Colvars computation in the current run. Requires that the Colvars library was compiled with
GROMACS, which is the default in a typical installation.

colvars-configfile

Name of the Colvars configuration file, using options specific to Colvars that are documented at: https:
//colvars.github.io/gromacs-2024/colvars-refman-gromacs.html. The file name can be either an absolute
path, or a path relative to the working directory when gmx grompp (page 190) is called.

colvars-seed

(-1) [integer] Seed used to initialize the random generator associated with certain stochastic methods imple-
mented within Colvars. The default value of -1 generates a random seed.

The current implementation of the Colvars-GROMACS interface gathers the relevant atomic coordinates on one
MPI rank, where all collective variables and their forces are computed. Take this fact into account when choosing
how many atoms to include in selections.

User defined thingies

user1-grps

user2-grps

userint1 (0)

userint2 (0)

userint3 (0)

userint4 (0)

userreal1 (0)

userreal2 (0)

userreal3 (0)

userreal4 (0)

These you can use if you modify code. You can pass integers and reals and groups to your subroutine.
Check the inputrec definition in src/gromacs/mdtypes/inputrec.h

3.7. Molecular dynamics parameters (.mdp options) 83

https://colvars.github.io/
https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Removed features

These features have been removed from GROMACS, but so that old mdp (page 488) and tpr (page 494) files
cannot be mistakenly misused, we still parse this option. gmx grompp (page 190) and gmx mdrun (page 215) will
issue a fatal error if this is set.

adress

(no)

implicit-solvent

(no)

3.8 Useful mdrun features

This section discusses features in gmx mdrun (page 215) that don’t fit well elsewhere.

3.8.1 Re-running a simulation

The rerun feature allows you to take any trajectory file traj.trr and compute quantities based upon the coordi-
nates in that file using the model physics supplied in the topol.tpr file. It can be used with command lines like
mdrun -s topol -rerun traj.trr. That tpr (page 494) could be different from the one that generated
the trajectory. This can be used to compute the energy or forces for exactly the coordinates supplied as input, or
to extract quantities based on subsets of the molecular system (see gmx convert-tpr (page 146) and gmx trjconv
(page 281)). It is easier to do a correct “single-point” energy evaluation with this feature than a 0-step simulation.

Neighbor searching is performed for every frame in the trajectory independently of the value in nstlist
(page 48), since gmx mdrun (page 215) can no longer assume anything about how the structures were generated.
Naturally, no update or constraint algorithms are ever used.

The rerun feature cannot, in general, compute many of the quantities reported during full simulations. It does only
take positions as input (ignoring potentially present velocities), and does only report potential energies, volume
and density, dH/dl terms, and restraint information. It does notably not report kinetic, total or conserved energy,
temperature, virial or pressure.

3.8.2 Running a simulation in reproducible mode

It is generally difficult to run an efficient parallel MD simulation that is based primarily on floating-point arithmetic
and is fully reproducible. By default, gmx mdrun (page 215) will observe how things are going and vary how the
simulation is conducted in order to optimize throughput. However, there is a “reproducible mode” available with
mdrun -reprod that will systematically eliminate all sources of variation within that run; repeated invocations
on the same input and hardware will be binary identical. However, running in this mode on different hardware,
or with a different compiler, etc. will not be reproducible. This should normally only be used when investigating
possible problems.

3.8.3 Halting running simulations

When gmx mdrun (page 215) receives a TERM or INT signal (e.g. when ctrl+C is pressed), it will stop at the
next neighbor search step or at the second global communication step, whichever happens later. When gmx mdrun
(page 215) receives a second TERM or INT signal and reproducibility is not requested, it will stop at the first
global communication step. In both cases all the usual output will be written to file and a checkpoint file is written
at the last step. When gmx mdrun (page 215) receives an ABRT signal or the third TERM or INT signal, it will
abort directly without writing a new checkpoint file. When running with MPI, a signal to one of the gmx mdrun
(page 215) ranks is sufficient, this signal should not be sent to mpirun or the gmx mdrun (page 215) process that
is the parent of the others.

3.8. Useful mdrun features 84

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.8.4 Running multi-simulations

There are numerous situations where running a related set of simulations within the same invocation of mdrun are
necessary or useful. Running a replica-exchange simulation requires it, as do simulations using ensemble-based
distance or orientation restraints. Running a related series of lambda points for a free-energy computation is also
convenient to do this way, but beware of the potential side-effects related to resource utilization and load balance
discussed later.

This feature requires configuring GROMACS with an external MPI library (page 8) so that the set of simulations
can communicate. The n simulations within the set can use internal MPI parallelism also, so that mpirun -np
x gmx_mpi mdrun for x a multiple of n will use x/n ranks per simulation.

To launch a multi-simulation, the -multidir option is used. For the input and output files of a multi-simulation a
set of n subdirectories is required, one for each simulation. Place all the relevant input files in those directories (e.g.
named topol.tpr), and launch a multi-simualtion with mpirun -np x gmx_mpi mdrun -s topol
-multidir <names-of-directories>. If the order of the simulations within the multi-simulation is
significant, you are responsible for ordering their names when you provide them to -multidir. Be careful with
shells that do filename globbing dictionary-style, e.g. dir1 dir10 dir11 ... dir2

Examples running multi-simulations

mpirun -np 32 gmx_mpi mdrun -multidir a b c d

Starts a multi-simulation on 32 ranks with 4 simulations. The input and output files are found in directories a, b,
c, and d.

mpirun -np 32 gmx_mpi mdrun -multidir a b c d -gputasks 0000000011111111

Starts the same multi-simulation as before. On a machine with two physical nodes and two GPUs per node, there
will be 16 MPI ranks per node, and 8 MPI ranks per simulation. The 16 MPI ranks doing PP work on a node
are mapped to the GPUs with IDs 0 and 1, even though they come from more than one simulation. They are
mapped in the order indicated, so that the PP ranks from each simulation use a single GPU. However, the order
0101010101010101 could run faster.

Running replica-exchange simulations

When running a multi-simulation, using gmx mdrun -replex n means that a replica exchange is attempted
every given number of steps. The number of replicas is set with -multidir option, described above. All run
input files should use a different value for the coupling parameter (e.g. temperature), which ascends over the set of
input files. The random seed for replica exchange is set with -reseed. After every exchange, the velocities are
scaled and neighbor searching is performed. See the Reference Manual for more details on how replica exchange
functions in GROMACS.

Multi-simulation performance considerations

The frequency of communication across a multi-simulation can have an impact on performance. This is highly
algorithm dependent, but in general it is recommended to set up a multi-simulation to do inter-simulation com-
munication as infrequently as possible but as frequently as necessary. However, even when members of multi-
simulation do not communicate frequently (or at all), and therefore the associated performance overhead is small
or even negligible, load imbalance can still have a significant impact on performance and resource utilization.
Current multi-simulation algorithms use a fixed interval for data exchange (e.g. replica exchange every N steps)
and therefore all members of a multi-simulation need to reach this step before the collective communication can
happen and any of them can proceed to step N+1. Hence, the slowest member of the multi-simulation will de-
termine the performance of the entire ensemble. This load imbalance will not only limit performance but will
also leave resources idle; e.g. if one of the simulations in an n-way multi-simulation runs at half the performance
than the rest, the resources assigned to the n-1 faster running simulations will be left idle for approximately
half of the wall-time of the entire multi-simulation job. The source of this imbalance can range from inherent

3.8. Useful mdrun features 85

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

workload imbalance across the simulations within a multi-simulation to differences in hardware speed or inter-
node network performance variability affecting a subset of ranks and therefore only some of the simulations.
Reducing the amount of resources left idle requires reducing the load imbalance, which may involve splitting up
non-communicating multi-simulations, or making sure to request a “compact” allocation on a cluster (if the job
scheduler allows). Note that imbalance also applies to non-communicating multi-simulations like FEP calcula-
tions since the resources assigned to earlier finishing simulations can not be relinquished until the entire MPI job
can finish.

3.8.5 Controlling the length of the simulation

Normally, the length of an MD simulation is best managed through the mdp (page 488) option nsteps (page 44),
however there are situations where more control is useful. gmx mdrun -nsteps 100 overrides the mdp
(page 488) file and executes 100 steps. gmx mdrun -maxh 2.5 will terminate the simulation shortly before
2.5 hours elapse, which can be useful when running under cluster queues (as long as the queuing system does not
ever suspend the simulation).

3.9 Getting good performance from mdrun

Here we give an overview on the parallelization and acceleration schemes employed by GROMACS. The aim is
to provide an understanding of the underlying mechanisms that make GROMACS one of the fastest molecular
dynamics packages. The information presented should help choosing appropriate parallelization options, run
configuration, as well as acceleration options to achieve optimal simulation performance.

The GROMACS build system and the gmx mdrun (page 215) tool have a lot of built-in and configurable intelli-
gence to detect your hardware and make pretty effective use of it. For a lot of casual and serious use of gmx mdrun
(page 215), the automatic machinery works well enough. But to get the most from your hardware to maximize
your scientific quality, read on!

3.9.1 Hardware background information

Modern computer hardware is complex and heterogeneous, so we need to discuss a little bit of background infor-
mation and set up some definitions. Experienced HPC users can skip this section.

core
A hardware compute unit that actually executes instructions. There is normally more than one core in a
processor, often many more.

cache
A special kind of memory local to core(s) that is much faster to access than main memory, kind of like the
top of a human’s desk, compared to their filing cabinet. There are often several layers of caches associated
with a core.

socket
A group of cores that share some kind of locality, such as a shared cache. This makes it more efficient to
spread computational work over cores within a socket than over cores in different sockets. Modern server
and workstation class machines often have more than one CPU socket.

node
A group of sockets that share coarser-level locality, such as shared access to the same memory without
requiring any network hardware. A normal personal computer or racked server is a node. A node is often
the smallest amount of a large compute cluster that a user can request to use.

thread
A stream of instructions for a core to execute. There are many different programming abstractions that
create and manage spreading computation over multiple threads, such as OpenMP, pthreads, winthreads,
CUDA, SYCL, OpenCL, and OpenACC. Some kinds of hardware can map more than one software thread
to a core; on Intel x86 processors this is called “hyper-threading”, while the more general concept is often
called SMT for “simultaneous multi-threading”. IBM Power8 can for instance use up to 8 hardware threads

3.9. Getting good performance from mdrun 86

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

per core. This feature can usually be enabled or disabled either in the hardware BIOS or through a setting
in the Linux operating system. GROMACS can typically make use of this, for a moderate free performance
boost. In most cases it will be enabled by default e.g. on new x86 processors, but in some cases the system
administrators might have disabled it. If that is the case, ask if they can re-enable it for you. If you are
not sure if it is enabled, check the output of the CPU information in the log file and compare with CPU
specifications you find online.

thread affinity (pinning)
By default, most operating systems allow software threads to migrate between cores (or hardware threads) to
help automatically balance workload. However, the performance of gmx mdrun (page 215) can deteriorate if
this is permitted and will degrade dramatically especially when relying on multi-threading within a rank. To
avoid this, gmx mdrun (page 215) will by default set the affinity of its threads to individual cores/hardware
threads, unless the user or software environment has already done so (or not the entire node is used for the
run, i.e. there is potential for node sharing). Setting thread affinity is sometimes called thread “pinning”.

MPI (Message Passing Interface)
The dominant multi-node parallelization-scheme, which provides a standardized language in which pro-
grams can be written that work across more than one node.

rank
In MPI, a rank is the smallest grouping of hardware used in the multi-node parallelization scheme. That
grouping can be controlled by the user, and might correspond to a core, a socket, a node, or a group of
nodes. The best choice varies with the hardware, software and compute task. Sometimes an MPI rank is
called an MPI process.

GPU
A graphics processing unit, which is often faster and more efficient than conventional processors for partic-
ular kinds of compute workloads. A GPU is always associated with a particular node, and often a particular
socket within that node.

OpenMP
A standardized technique supported by many compilers to share a compute workload over multiple cores.
Often combined with MPI to achieve hybrid MPI/OpenMP parallelism.

CUDA
A proprietary parallel computing framework and API developed by NVIDIA that allows targeting their
accelerator hardware. GROMACS uses CUDA for GPU acceleration support with NVIDIA hardware.

OpenCL
An open standard-based parallel computing framework that consists of a C99-based compiler and a pro-
gramming API for targeting heterogeneous and accelerator hardware. GROMACS uses OpenCL for GPU
acceleration on AMD devices (both GPUs and APUs), Intel integrated GPUs, and Apple Silicon integrated
GPUs; some NVIDIA hardware is also supported. In GROMACS, OpenCL has been deprecated in favor of
SYCL.

SYCL
An open standard based on C++17 for targeting heterogeneous systems. SYCL has several implementations,
of which GROMACS supports two: Intel oneAPI DPC++ and AdaptiveCpp. GROMACS uses SYCL for
GPU acceleration on AMD and Intel GPUs. There is experimental support for NVIDIA GPUs too.

SIMD
A type of CPU instruction by which modern CPU cores can execute multiple floating-point instructions in
a single cycle.

3.9. Getting good performance from mdrun 87

https://www.intel.com/content/www/us/en/developer/tools/oneapi/dpc-compiler.html
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.9.2 Work distribution by parallelization in GROMACS

The algorithms in gmx mdrun (page 215) and their implementations are most relevant when choosing how to make
good use of the hardware. For details, see the Reference Manual (page 351). The most important of these are

Domain Decomposition
The domain decomposition (DD) algorithm decomposes the (short-ranged) component of the non-bonded
interactions into domains that share spatial locality, which permits the use of efficient algorithms. Each
domain handles all of the particle-particle (PP) interactions for its members, and is mapped to a single MPI
rank. Within a PP rank, OpenMP threads can share the workload, and some work can be offloaded to a GPU.
The PP rank also handles any bonded interactions for the members of its domain. A GPU may perform work
for more than one PP rank, but it is normally most efficient to use a single PP rank per GPU and for that
rank to have thousands of particles. When the work of a PP rank is done on the CPU, mdrun (page 215) will
make extensive use of the SIMD capabilities of the core. There are various command-line options (page 90)
to control the behaviour of the DD algorithm.

Particle-mesh Ewald
The particle-mesh Ewald (PME) algorithm treats the long-ranged component of the non-bonded interactions
(Coulomb and possibly also Lennard-Jones). Either all, or just a subset of ranks may participate in the
work for computing the long-ranged component (often inaccurately called simply the “PME” component).
Because the algorithm uses a 3D FFT that requires global communication, its parallel efficiency gets worse
as more ranks participate, which can mean it is fastest to use just a subset of ranks (e.g. one-quarter to one-
half of the ranks). If there are separate PME ranks, then the remaining ranks handle the PP work. Otherwise,
all ranks do both PP and PME work.

3.9.3 Parallelization schemes

GROMACS, being performance-oriented, has a strong focus on efficient parallelization. There are multiple paral-
lelization schemes available, therefore a simulation can be run on a given hardware with different choices of run
configuration.

Intra-core parallelization via SIMD: SSE, AVX, etc.

One level of performance improvement available in GROMACS is through the use of Single Instruction
Multiple Data (SIMD) instructions. In detail information for those can be found under SIMD support
(page 14) in the installation guide.

In GROMACS, SIMD instructions are used to parallelize the parts of the code with the highest impact on per-
formance (nonbonded and bonded force calculation, PME and neighbour searching), through the use of hardware
specific SIMD kernels. Those form one of the three levels of non-bonded kernels that are available: reference
or generic kernels (slow but useful for producing reference values for testing), optimized plain-C kernels (can be
used cross-platform but still slow) and SIMD intrinsics accelerated kernels.

The SIMD intrinsic code is compiled by the compiler. Technically, it is possible to compile different levels of
acceleration into one binary, but this is difficult to manage with acceleration in many parts of the code. Thus,
you need to configure and compile GROMACS for the SIMD capabilities of the target CPU. By default, the build
system will detect the highest supported acceleration of the host where the compilation is carried out. For cross-
compiling for a machine with a different highest SIMD instructions set, in order to set the target acceleration,
the -DGMX_SIMD CMake option can be used. To use a single installation on multiple different machines, it is
convenient to compile the analysis tools with the lowest common SIMD instruction set (as these rely little on
SIMD acceleration), but for best performance mdrun (page 215) should be compiled be compiled separately with
the highest (latest) native SIMD instruction set of the target architecture (supported by GROMACS).

Recent Intel CPU architectures bring tradeoffs between the maximum clock frequency of the CPU (ie. its speed),
and the width of the SIMD instructions it executes (ie its throughput at a given speed). In particular, the In-
tel Skylake and Cascade Lake processors (e.g. Xeon SP Gold/Platinum), can offer better throughput when
using narrower SIMD because of the better clock frequency available. Consider building mdrun (page 215) config-
ured with GMX_SIMD=AVX2_256 instead of GMX_SIMD=AVX512 for better performance in GPU accelerated
or highly parallel MPI runs.

3.9. Getting good performance from mdrun 88

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Some of the latest ARM based CPU, such as the Fujitsu A64fx, support the Scalable Vector Extensions (SVE).
Though SVE can be used to generate fairly efficient Vector Length Agnostic (VLA) code, this is not a good fit
for GROMACS (as the SIMD vector length assumed to be known at CMake time). Consequently, the SVE vector
length must be fixed at CMake time. The default is to automatically detect the default vector length at CMake
time (via the /proc/sys/abi/sve_default_vector_length pseudo-file, and this can be changed by
configuring with GMX_SIMD_ARM_SVE_LENGTH=<len>. The supported vector lengths are 128, 256, 512 and
1024. Since the SIMD short-range non-bonded kernels only support up to 16 floating point numbers per SIMD
vector, 1024 bits vector length is only valid in double precision (e.g. -DGMX_DOUBLE=on). Note that even if
mdrun (page 215) does check the SIMD vector length at runtime, running with a different vector length than the
one used at CMake time is undefined behavior, and mdrun (page 215) might crash before reaching the check (that
would abort with a user-friendly error message).

Process(-or) level parallelization via OpenMP

GROMACS mdrun (page 215) supports OpenMP multithreading for all parts of the code. OpenMP is enabled by
default and can be turned on/off at configure time with the GMX_OPENMP CMake variable and at run-time with
the -ntomp option (or the OMP_NUM_THREADS environment variable). The OpenMP implementation is quite
efficient and scales well for up to 12-24 threads on Intel and 6-8 threads on AMD CPUs.

Node level parallelization via GPU offloading and thread-MPI

Multithreading with thread-MPI

The thread-MPI library implements a subset of the MPI 1.1 specification, based on the system threading support.
Both POSIX pthreads and Windows threads are supported, thus providing great portability to most UNIX/Linux
and Windows operating systems. Acting as a drop-in replacement for MPI, thread-MPI enables compiling and
running mdrun (page 215) on a single machine (i.e. not across a network) without MPI. Additionally, it not only
provides a convenient way to use computers with multicore CPU(s), but thread-MPI does in some cases make
mdrun (page 215) run slightly faster than with MPI.

Thread-MPI is included in the GROMACS source and it is the default parallelization mode, practically rendering
the serial mdrun (page 215) deprecated. Compilation with thread-MPI is controlled by the GMX_THREAD_MPI
CMake variable.

Thread-MPI is compatible with most mdrun (page 215) features and parallelization schemes, including OpenMP,
GPUs; it is not compatible with MPI and multi-simulation runs.

By default, the thread-MPI mdrun (page 215) will use all available cores in the machine by starting an appropriate
number of ranks or OpenMP threads to occupy all of them. The number of ranks can be controlled using the -nt
and -ntmpi options. -nt represents the total number of threads to be used (which can be a mix of thread-MPI
and OpenMP threads).

Hybrid/heterogeneous acceleration

Hybrid acceleration means distributing compute work between available CPUs and GPUs to improve simulation
performance. New non-bonded algorithms have been developed with the aim of efficient acceleration both on
CPUs and GPUs.

The most compute-intensive parts of simulations, non-bonded force calculation, as well as possibly the PME,
bonded force calculation and update and constraints can be offloaded to GPUs and carried out simultaneously
with remaining CPU work. Native GPU acceleration is supported for the most commonly used algorithms in
GROMACS. For more information about the GPU kernels, please see the Installation guide (page 8).

The native GPU acceleration can be turned on or off, either at run-time using the mdrun (page 215) -nb option,
or at configuration time using the GMX_GPU CMake variable.

To efficiently use all compute resource available, CPU and GPU computation is done simultaneously. Overlapping
with the OpenMP multithreaded bonded force and PME long-range electrostatic calculations on the CPU, non-
bonded forces are calculated on the GPU. Multiple GPUs, both in a single node as well as across multiple nodes,

3.9. Getting good performance from mdrun 89

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

are supported using domain-decomposition. A single GPU is assigned to the non-bonded workload of a domain,
therefore, the number GPUs used has to match the number of of MPI processes (or thread-MPI threads) the
simulation is started with. The available CPU cores are partitioned among the processes (or thread-MPI threads)
and a set of cores with a GPU do the calculations on the respective domain.

With PME electrostatics, mdrun (page 215) supports automated CPU-GPU load-balancing by shifting workload
from the PME mesh calculations, done on the CPU, to the particle-particle non-bonded calculations, done on the
GPU. At startup a few iterations of tuning are executed during the first 100 to 1000 MD steps. These iterations
involve scaling the electrostatics cut-off and PME grid spacing to determine the value that gives optimal CPU-
GPU load balance. The cut-off value provided using the rcoulomb (page 50) =rvdw mdp (page 488) option
represents the minimum electrostatics cut-off the tuning starts with and therefore should be chosen as small as
possible (but still reasonable for the physics simulated). The Lennard-Jones cut-off rvdw is kept fixed. We don’t
allow scaling to shorter cut-off as we don’t want to change rvdw and there would be no performance gain.

While the automated CPU-GPU load balancing always attempts to find the optimal cut-off setting, it might not
always be possible to balance CPU and GPU workload. This happens when the CPU threads finish calculating
the bonded forces and PME faster than the GPU the non-bonded force calculation, even with the shortest possible
cut-off. In such cases the CPU will wait for the GPU and this time will show up as Wait GPU NB local in
the cycle and timing summary table at the end of the log file.

Parallelization over multiple nodes via MPI

At the heart of the MPI parallelization in GROMACS is the neutral-territory domain decomposition (page 88)
with dynamic load balancing. To parallelize simulations across multiple machines (e.g. nodes of a cluster) mdrun
(page 215) needs to be compiled with MPI which can be enabled using the GMX_MPI CMake variable.

Controlling the domain decomposition algorithm

This section lists options that affect how the domain decomposition algorithm decomposes the workload to the
available parallel hardware.

-rdd
Can be used to set the required maximum distance for inter charge-group bonded interactions. Communi-
cation for two-body bonded interactions below the non-bonded cut-off distance always comes for free with
the non-bonded communication. Particles beyond the non-bonded cut-off are only communicated when
they have missing bonded interactions; this means that the extra cost is minor and nearly independent of
the value of -rdd. With dynamic load balancing, option -rdd also sets the lower limit for the domain
decomposition cell sizes. By default -rdd is determined by gmx mdrun (page 215) based on the initial
coordinates. The chosen value will be a balance between interaction range and communication cost.

-ddcheck
On by default. When inter charge-group bonded interactions are beyond the bonded cut-off distance, gmx
mdrun (page 215) terminates with an error message. For pair interactions and tabulated bonds that do not
generate exclusions, this check can be turned off with the option -noddcheck.

-rcon
When constraints are present, option -rcon influences the cell size limit as well. Particles connected by
NC constraints, where NC is the LINCS order plus 1, should not be beyond the smallest cell size. A error
message is generated when this happens, and the user should change the decomposition or decrease the
LINCS order and increase the number of LINCS iterations. By default gmx mdrun (page 215) estimates the
minimum cell size required for P-LINCS in a conservative fashion. For high parallelization, it can be useful
to set the distance required for P-LINCS with -rcon.

-dds
Sets the minimum allowed x, y and/or z scaling of the cells with dynamic load balancing. gmx mdrun
(page 215) will ensure that the cells can scale down by at least this factor. This option is used for the
automated spatial decomposition (when not using -dd) as well as for determining the number of grid
pulses, which in turn sets the minimum allowed cell size. Under certain circumstances the value of -dds
might need to be adjusted to account for high or low spatial inhomogeneity of the system.

3.9. Getting good performance from mdrun 90

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Multi-level parallelization: MPI and OpenMP

The multi-core trend in CPU development substantiates the need for multi-level parallelization. Current multi-
processor machines can have 2-4 CPUs with a core count as high as 64. As the memory and cache subsystem
is lagging more and more behind the multicore evolution, this emphasizes non-uniform memory access (NUMA)
effects, which can become a performance bottleneck. At the same time, all cores share a network interface. In a
purely MPI-parallel scheme, all MPI processes use the same network interface, and although MPI intra-node com-
munication is generally efficient, communication between nodes can become a limiting factor to parallelization.
This is especially pronounced in the case of highly parallel simulations with PME (which is very communication
intensive) and with ''fat'' nodes connected by a slow network. Multi-level parallelism aims to address the
NUMA and communication related issues by employing efficient intra-node parallelism, typically multithreading.

Combining OpenMP with MPI creates an additional overhead especially when running separate multi-threaded
PME ranks. Depending on the architecture, input system size, as well as other factors, MPI+OpenMP runs can
be as fast and faster already at small number of processes (e.g. multi-processor Intel Westmere or Sandy Bridge),
but can also be considerably slower (e.g. multi-processor AMD Interlagos machines). However, there is a more
pronounced benefit of multi-level parallelization in highly parallel runs.

Separate PME ranks

On CPU ranks, particle-particle (PP) and PME calculations are done in the same process one after another. As
PME requires all-to-all global communication, this is most of the time the limiting factor to scaling on a large
number of cores. By designating a subset of ranks for PME calculations only, performance of parallel runs can be
greatly improved.

OpenMP multithreading in PME ranks is also possible. Using multi-threading in PME can can improve perfor-
mance at high parallelization. The reason for this is that with N>1 threads the number of processes communi-
cating, and therefore the number of messages, is reduced by a factor of N. But note that modern communication
networks can process several messages simultaneously, such that it could be advantageous to have more processes
communicating.

Separate PME ranks are not used at low parallelization, the switch at higher parallelization happens automatically
(at > 16 processes). The number of PME ranks is estimated by mdrun. If the PME load is higher than the PP load,
mdrun will automatically balance the load, but this leads to additional (non-bonded) calculations. This avoids
the idling of a large fraction of the ranks; usually 3/4 of the ranks are PP ranks. But to ensure the best absolute
performance of highly parallel runs, it is advisable to tweak this number which is automated by the tune_pme
(page 286) tool.

The number of PME ranks can be set manually on the mdrun (page 215) command line using the -npme option,
the number of PME threads can be specified on the command line with -ntomp_pme or alternatively using the
GMX_PME_NUM_THREADS environment variable. The latter is especially useful when running on compute nodes
with different number of cores as it enables setting different number of PME threads on different nodes.

3.9.4 Running mdrun within a single node

gmx mdrun (page 215) can be configured and compiled in several different ways that are efficient to use within
a single node. The default configuration using a suitable compiler will deploy a multi-level hybrid parallelism
that uses CUDA/SYCL/OpenCL, OpenMP and the threading platform native to the hardware. For programming
convenience, in GROMACS, those native threads are used to implement on a single node the same MPI scheme
as would be used between nodes, but much more efficient; this is called thread-MPI. From a user’s perspective,
real MPI and thread-MPI look almost the same, and GROMACS refers to MPI ranks to mean either kind, except
where noted. A real external MPI can be used for gmx mdrun (page 215) within a single node, but runs more
slowly than the thread-MPI version.

By default, gmx mdrun (page 215) will inspect the hardware available at run time and do its best to make fairly
efficient use of the whole node. The log file, stdout and stderr are used to print diagnostics that inform the user
about the choices made and possible consequences.

A number of command-line parameters are available to modify the default behavior.

3.9. Getting good performance from mdrun 91

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-nt
The total number of threads to use. The default, 0, will start as many threads as available cores. Whether
the threads are thread-MPI ranks, and/or OpenMP threads within such ranks depends on other settings.

-ntmpi
The total number of thread-MPI ranks to use. The default, 0, will start one rank per GPU (if present), and
otherwise one rank per core.

-ntomp
The total number of OpenMP threads per rank to start. The default, 0, will start one thread on each available
core. Alternatively, mdrun (page 215) will honor the appropriate system environment variable (e.g. OMP_-
NUM_THREADS) if set. Note that the maximum number of OpenMP threads (per rank) is, for efficiency
reasons, limited to 64. While it is rarely beneficial to use a number of threads higher than this, the GMX_-
OPENMP_MAX_THREADS CMake variable can be used to increase the limit.

-npme
The total number of ranks to dedicate to the long-ranged component of PME, if used. The default, -1, will
dedicate ranks only if the total number of threads is at least 12, and will use around a quarter of the ranks
for the long-ranged component.

-ntomp_pme
When using PME with separate PME ranks, the total number of OpenMP threads per separate PME rank.
The default, 0, copies the value from -ntomp.

-pin
Can be set to “auto,” “on” or “off” to control whether mdrun (page 215) will attempt to set the affinity of
threads to cores. Defaults to “auto,” which means that if mdrun (page 215) detects that all the cores on the
node are being used for mdrun (page 215), then it should behave like “on,” and attempt to set the affinities
(unless they are already set by something else).

-pinoffset
If -pin on, specifies the logical core number to which mdrun (page 215) should pin the first thread. When
running more than one instance of mdrun (page 215) on a node, use this option to to avoid pinning threads
from different mdrun (page 215) instances to the same core.

-pinstride
If -pin on, specifies the stride in logical core numbers for the cores to which mdrun (page 215) should
pin its threads. When running more than one instance of mdrun (page 215) on a node, use this option to
avoid pinning threads from different mdrun (page 215) instances to the same core. Use the default, 0, to
minimize the number of threads per physical core - this lets mdrun (page 215) manage the hardware-, OS-
and configuration-specific details of how to map logical cores to physical cores.

-ddorder
Can be set to “interleave,” “pp_pme” or “cartesian.” Defaults to “interleave,” which means that any separate
PME ranks will be mapped to MPI ranks in an order like PP, PP, PME, PP, PP, PME, etc. This generally
makes the best use of the available hardware. “pp_pme” maps all PP ranks first, then all PME ranks.
“cartesian” is a special-purpose mapping generally useful only on special torus networks with accelerated
global communication for Cartesian communicators. Has no effect if there are no separate PME ranks.

-nb
Used to set where to execute the short-range non-bonded interactions. Can be set to “auto”, “cpu”, “gpu.”
Defaults to “auto,” which uses a compatible GPU if available. Setting “cpu” requires that no GPU is used.
Setting “gpu” requires that a compatible GPU is available and will be used.

-pme
Used to set where to execute the long-range non-bonded interactions. Can be set to “auto”, “cpu”, “gpu.”
Defaults to “auto,” which uses a compatible GPU if available. Setting “gpu” requires that a compatible GPU
is available. Multiple PME ranks are not supported with PME on GPU, so if a GPU is used for the PME
calculation -npme must be set to 1.

-bonded
Used to set where to execute the bonded interactions that are part of the PP workload for a domain. Can be
set to “auto”, “cpu”, “gpu.” Defaults to “auto,” which uses a compatible CUDA or SYCL GPU only when

3.9. Getting good performance from mdrun 92

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

one is available, a GPU is handling short-ranged interactions, and the CPU is handling long-ranged inter-
action work (electrostatic or LJ). The work for the bonded interactions takes place on the same GPU as the
short-ranged interactions, and cannot be independently assigned. Setting “gpu” requires that a compatible
GPU is available and will be used.

-update
Used to set where to execute update and constraints, when present. Can be set to “auto”, “cpu”, “gpu.” De-
faults to “auto,” which currently always uses the CPU. Setting “gpu” requires that a compatible CUDA or
SYCL GPU is available, the simulation uses a single rank. Update and constraints on a GPU is currently not
supported with mass and constraints free-energy perturbation, domain decomposition, virtual sites, Ewald
surface correction, replica exchange, constraint pulling, orientation restraints and computational electro-
physiology.

-gpu_id
A string that specifies the ID numbers of the GPUs that are available to be used by ranks on each node.
For example, “12” specifies that the GPUs with IDs 1 and 2 (as reported by the GPU runtime) can be
used by mdrun (page 215). This is useful when sharing a node with other computations, or if a GPU that
is dedicated to a display should not be used by GROMACS. Without specifying this parameter, mdrun
(page 215) will utilize all GPUs. When many GPUs are present, a comma may be used to separate the
IDs, so “12,13” would make GPUs 12 and 13 available to mdrun (page 215). It could be necessary to use
different GPUs on different nodes of a simulation, in which case the environment variable GMX_GPU_-
ID can be set differently for the ranks on different nodes to achieve that result. In GROMACS versions
preceding 2018 this parameter used to specify both GPU availability and GPU task assignment. The latter
is now done with the -gputasks parameter.

-gputasks
A string that specifies the ID numbers of the GPUs to be used by corresponding GPU tasks on this node.
For example, “0011” specifies that the first two GPU tasks will use GPU 0, and the other two use GPU 1.
When using this option, the number of ranks must be known to mdrun (page 215), as well as where tasks of
different types should be run, such as by using -nb gpu - only the tasks which are set to run on GPUs count
for parsing the mapping. See Assigning tasks to GPUs (page 101) for more details. Note that -gpu_id and
-gputasks can not be used at the same time! In GROMACS versions preceding 2018 only a single type
of GPU task (“PP”) could be run on any rank. Now that there is some support for running PME on GPUs,
the number of GPU tasks (and the number of GPU IDs expected in the -gputasks string) can actually be
3 for a single-rank simulation. The IDs still have to be the same in this case, as using multiple GPUs per
single rank is not yet implemented. The order of GPU tasks per rank in the string is PP first, PME second.
The order of ranks with different kinds of GPU tasks is the same by default, but can be influenced with the
-ddorder option and gets quite complex when using multiple nodes. Note that the bonded interactions
for a PP task may run on the same GPU as the short-ranged work, or on the CPU, which can be controlled
with the -bonded flag. The GPU task assignment (whether manually set, or automated), will be reported
in the mdrun (page 215) output on the first physical node of the simulation. For example:

gmx mdrun -gputasks 0001 -nb gpu -pme gpu -npme 1 -ntmpi 4

will produce the following output in the log file/terminal:

On host tcbl14 2 GPUs selected for this run.
Mapping of GPU IDs to the 4 GPU tasks in the 4 ranks on this node:
PP:0,PP:0,PP:0,PME:1

In this case, 3 ranks are set by user to compute PP work on GPU 0, and 1 rank to compute PME on GPU 1.
The detailed indexing of the GPUs is also reported in the log file.

For more information about GPU tasks, please refer to Types of GPU tasks (page 99).

-pmefft
Allows choosing whether to execute the 3D FFT computation on a CPU or GPU. Can be set to “auto”, “cpu”,
“gpu.”. When PME is offloaded to a GPU -pmefft gpu is the default, and the entire PME calculation
is executed on the GPU. However, in some cases, e.g. with a relatively slow or older generation GPU
combined with fast CPU cores in a run, moving some work off of the GPU back to the CPU by computing
FFTs on the CPU can improve performance.

3.9. Getting good performance from mdrun 93

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Examples for mdrun on one node

gmx mdrun

Starts mdrun (page 215) using all the available resources. mdrun (page 215) will automatically choose a fairly
efficient division into thread-MPI ranks, OpenMP threads and assign work to compatible GPUs. Details will vary
with hardware and the kind of simulation being run.

gmx mdrun -nt 8

Starts mdrun (page 215) using 8 threads, which might be thread-MPI or OpenMP threads depending on hardware
and the kind of simulation being run.

gmx mdrun -ntmpi 2 -ntomp 4

Starts mdrun (page 215) using eight total threads, with two thread-MPI ranks and four OpenMP threads per rank.
You should only use these options when seeking optimal performance, and must take care that the ranks you create
can have all of their OpenMP threads run on the same socket. The number of ranks should be a multiple of the
number of sockets, and the number of cores per node should be a multiple of the number of threads per rank.

gmx mdrun -ntmpi 4 -nb gpu -pme cpu

Starts mdrun (page 215) using four thread-MPI ranks. The CPU cores available will be split evenly between the
ranks using OpenMP threads. The long-range component of the forces are calculated on CPUs. This may be
optimal on hardware where the CPUs are relatively powerful compared to the GPUs. The bonded part of force
calculation will automatically be assigned to the GPU, since the long-range component of the forces are calculated
on CPU(s).

gmx mdrun -ntmpi 1 -nb gpu -pme gpu -bonded gpu -update gpu

Starts mdrun (page 215) using a single thread-MPI rank that will use all available CPU cores. All interaction
types that can run on a GPU will do so. This may be optimal on hardware where the CPUs are extremely weak
compared to the GPUs.

gmx mdrun -ntmpi 4 -nb gpu -pme cpu -gputasks 0011

Starts mdrun (page 215) using four thread-MPI ranks, and maps them to GPUs with IDs 0 and 1. The CPU
cores available will be split evenly between the ranks using OpenMP threads, with the first two ranks offloading
short-range nonbonded force calculations to GPU 0, and the last two ranks offloading to GPU 1. The long-range
component of the forces are calculated on CPUs. This may be optimal on hardware where the CPUs are relatively
powerful compared to the GPUs.

gmx mdrun -ntmpi 4 -nb gpu -pme gpu -npme 1 -gputasks 0001

Starts mdrun (page 215) using four thread-MPI ranks, one of which is dedicated to the long-range PME calculation.
The first 3 threads offload their short-range non-bonded calculations to the GPU with ID 0, the 4th (PME) thread
offloads its calculations to the GPU with ID 1.

gmx mdrun -ntmpi 4 -nb gpu -pme gpu -npme 1 -gputasks 0011

Similar to the above example, with 3 ranks assigned to calculating short-range non-bonded forces, and one rank
assigned to calculate the long-range forces. In this case, 2 of the 3 short-range ranks offload their nonbonded force
calculations to GPU 0. The GPU with ID 1 calculates the short-ranged forces of the 3rd short-range rank, as well
as the long-range forces of the PME-dedicated rank. Whether this or the above example is optimal will depend on
the capabilities of the individual GPUs and the system composition.

gmx mdrun -gpu_id 12

Starts mdrun (page 215) using GPUs with IDs 1 and 2 (e.g. because GPU 0 is dedicated to running a display).
This requires two thread-MPI ranks, and will split the available CPU cores between them using OpenMP threads.

3.9. Getting good performance from mdrun 94

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx mdrun -nt 6 -pin on -pinoffset 0 -pinstride 1
gmx mdrun -nt 6 -pin on -pinoffset 6 -pinstride 1

Starts two mdrun (page 215) processes, each with six total threads arranged so that the processes affect each other
as little as possible by being assigned to disjoint sets of physical cores. Threads will have their affinities set to
particular logical cores, beginning from the first and 7th logical cores, respectively. The above would work well
on an Intel CPU with six physical cores and hyper-threading enabled. Use this kind of setup only if restricting
mdrun (page 215) to a subset of cores to share a node with other processes. A word of caution: The mapping of
logical CPUs/cores to physical cores may differ between operating systems. On Linux, cat /proc/cpuinfo
can be examined to determine this mapping.

mpirun -np 2 gmx_mpi mdrun

When using an gmx mdrun (page 215) compiled with external MPI, this will start two ranks and as many OpenMP
threads as the hardware and MPI setup will permit. If the MPI setup is restricted to one node, then the resulting
gmx mdrun (page 215) will be local to that node.

3.9.5 Running mdrun on more than one node

This requires configuring GROMACS to build with an external MPI library. By default, this mdrun (page 215)
executable is run with gmx_mpi mdrun. All of the considerations for running single-node mdrun (page 215)
still apply, except that -ntmpi and -nt cause a fatal error, and instead the number of ranks is controlled by the
MPI environment. Settings such as -npme are much more important when using multiple nodes. Configuring the
MPI environment to produce one rank per core is generally good until one approaches the strong-scaling limit.
At that point, using OpenMP to spread the work of an MPI rank over more than one core is needed to continue
to improve absolute performance. The location of the scaling limit depends on the processor, presence of GPUs,
network, and simulation algorithm, but it is worth measuring at around ~200 particles/core if you need maximum
throughput.

There are further command-line parameters that are relevant in these cases.

-tunepme
Defaults to “on.” If “on,” a simulation will optimize various aspects of the PME and DD algorithms, shift-
ing load between ranks and/or GPUs to maximize throughput. Some mdrun (page 215) features are not
compatible with this, and these ignore this option.

-dlb
Can be set to “auto,” “no,” or “yes.” Defaults to “auto.” Doing Dynamic Load Balancing between MPI
ranks is needed to maximize performance. This is particularly important for molecular systems with het-
erogeneous particle or interaction density. When a certain threshold for performance loss is exceeded, DLB
activates and shifts particles between ranks to improve performance. If available, using -bonded gpu
is expected to improve the ability of DLB to maximize performance. DLB is not compatible with GPU-
resident parallelization (with -update gpu) and therefore it remains switched off in such simulations.

During the simulation gmx mdrun (page 215) must communicate between all PP ranks to compute quantities
such as kinetic energy for log file reporting, or perhaps temperature coupling. By default, this happens whenever
necessary to honor several mdp options (page 42), so that the period between communication phases is the least
common denominator of nstcalcenergy (page 47), nsttcouple (page 54), and nstpcouple (page 56).

Note that -tunepme has more effect when there is more than one node, because the cost of communication for
the PP and PME ranks differs. It still shifts load between PP and PME ranks, but does not change the number of
separate PME ranks in use.

Note also that -dlb and -tunepme can interfere with each other, so if you experience performance variation
that could result from this, you may wish to tune PME separately, and run the result with mdrun -notunepme
-dlb yes.

The gmx tune_pme (page 286) utility is available to search a wider range of parameter space, including making
safe modifications to the tpr (page 494) file, and varying -npme. It is only aware of the number of ranks created
by the MPI environment, and does not explicitly manage any aspect of OpenMP during the optimization.

3.9. Getting good performance from mdrun 95

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Examples for mdrun on more than one node

The examples and explanations for for single-node mdrun (page 215) are still relevant, but -ntmpi is no longer
the way to choose the number of MPI ranks.

mpirun -np 16 gmx_mpi mdrun

Starts gmx mdrun (page 215) with 16 ranks, which are mapped to the hardware by the MPI library, e.g. as specified
in an MPI hostfile. The available cores will be automatically split among ranks using OpenMP threads, depending
on the hardware and any environment settings such as OMP_NUM_THREADS.

mpirun -np 16 gmx_mpi mdrun -npme 5

Starts gmx mdrun (page 215) with 16 ranks, as above, and require that 5 of them are dedicated to the PME
component.

mpirun -np 11 gmx_mpi mdrun -ntomp 2 -npme 6 -ntomp_pme 1

Starts gmx mdrun (page 215) with 11 ranks, as above, and require that six of them are dedicated to the PME
component with one OpenMP thread each. The remaining five do the PP component, with two OpenMP threads
each.

mpirun -np 4 gmx_mpi mdrun -ntomp 6 -nb gpu -gputasks 00

Starts gmx mdrun (page 215) on a machine with two nodes, using four total ranks, each rank with six OpenMP
threads, and both ranks on a node sharing GPU with ID 0.

mpirun -np 8 gmx_mpi mdrun -ntomp 3 -gputasks 0000

Using a same/similar hardware as above, starts gmx mdrun (page 215) on a machine with two nodes, using eight
total ranks, each rank with three OpenMP threads, and all four ranks on a node sharing GPU with ID 0. This may
or may not be faster than the previous setup on the same hardware.

mpirun -np 20 gmx_mpi mdrun -ntomp 4 -gputasks 00

Starts gmx mdrun (page 215) with 20 ranks, and assigns the CPU cores evenly across ranks each to one OpenMP
thread. This setup is likely to be suitable when there are ten nodes, each with one GPU, and each node has two
sockets each of four cores.

mpirun -np 10 gmx_mpi mdrun -gpu_id 1

Starts gmx mdrun (page 215) with 20 ranks, and assigns the CPU cores evenly across ranks each to one OpenMP
thread. This setup is likely to be suitable when there are ten nodes, each with two GPUs, but another job on each
node is using GPU 0. The job scheduler should set the affinity of threads of both jobs to their allocated cores, or
the performance of mdrun (page 215) will suffer greatly.

mpirun -np 20 gmx_mpi mdrun -gpu_id 01

Starts gmx mdrun (page 215) with 20 ranks. This setup is likely to be suitable when there are ten nodes, each
with two GPUs, but there is no need to specify -gpu_id for the normal case where all the GPUs on the node are
available for use.

3.9. Getting good performance from mdrun 96

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.9.6 Avoiding communication for constraints

Because of the very short time it takes to perform an MD step, in particular close to the scaling limit, any com-
munication will have a negative effect on performance due to latency overhead and synchronization. Most of the
communication can not be avoided, but sometimes one can completely avoid communication of coordinates for
constraints. The points listed below will improve performance in general and can have a particularly strong effect
at the scaling limit which is around ~100 atoms/core or ~10000 atoms/GPU. Simulations that need to be done as
fast as possible, or strong-scaling benchmarks should be constructed with these points in mind.

When possible, one should avoid the use of constraints = all-bonds with P-LINCS. This not only re-
quires a lot of communication, it also sets an artificial minimum on the size of domains. If you are using an atom-
istic force field and integrating with a time step of 2 fs, you can usually change to constraints constraints =
h-bonds without changing other settings. These are actually the settings most force fields were parameterized
with, so this is also scientifically better.

To completely avoid communication for constraints and/or to have the update run on a GPU when using domain
decomposition, the system needs to support so-called “update groups” (or no constraints at all). Update groups
are grouped of atoms that are moved as one group between domains, thereby avoiding the need to communicate
for constraints or virtual sites involving only atoms within the group. Update groups are supported when all atoms
involved in coupled constraints are coupled directly to one central atom and consecutively ordered, not interdis-
persed with non-constrained atoms. An example is a compactly described methyl group. For atomistic force
fields with constraints = h-bonds this means in practice that in the topology hydrogens come adjacent
to their connected heavy atom. In addition, when virtual sites are present, the constructing atoms should all be
constrained together and the virtual site and constructing atoms should be consecutive, but the order does not
matter. The TIP4P water model is an example of this. Whether or not update groups are used is noted in the log
file. When they cannot be used, the reason for disabling them is also noted.

3.9.7 Finding out how to run mdrun better

The Wallcycle module is used for runtime performance measurement of gmx mdrun (page 215). At the end of the
log file of each run, the “Real cycle and time accounting” section provides a table with runtime statistics for differ-
ent parts of the gmx mdrun (page 215) code in rows of the table. The table contains columns indicating the number
of ranks and threads that executed the respective part of the run, wall-time and cycle count aggregates (across all
threads and ranks) averaged over the entire run. The last column also shows what percentage of the total run-
time each row represents. Note that the gmx mdrun (page 215) timer resetting functionalities (-resethway and
-resetstep) reset the performance counters and therefore are useful to avoid startup overhead and performance
instability (e.g. due to load balancing) at the beginning of the run.

The performance counters are:

• Particle-particle during Particle mesh Ewald

• Domain decomposition

• Domain decomposition communication load

• Domain decomposition communication bounds

• Virtual site constraints

• Send X to Particle mesh Ewald

• Neighbor search

• Launch GPU operations

• Communication of coordinates

• Force

• Waiting + Communication of force

• Particle mesh Ewald

• PME redist. X/F

3.9. Getting good performance from mdrun 97

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• PME spread

• PME gather

• PME 3D-FFT

• PME 3D-FFT Communication

• PME solve Lennard-Jones

• PME solve LJ

• PME solve Elec

• PME wait for particle-particle

• Wait + Receive PME force

• Wait GPU nonlocal

• Wait GPU local

• Wait PME GPU spread

• Wait PME GPU gather

• Reduce PME GPU Force

• Non-bonded position/force buffer operations

• Virtual site spread

• COM pull force

• AWH (accelerated weight histogram method)

• Write trajectory

• Update

• Constraints

• Communication of energies

• Enforced rotation

• Add rotational forces

• Position swapping

• Interactive MD

• MD Graph

As performance data is collected for every run, they are essential to assessing and tuning the performance of gmx
mdrun (page 215) performance. Therefore, they benefit both code developers as well as users of the program.
The counters are an average of the time/cycles different parts of the simulation take, hence can not directly reveal
fluctuations during a single run (although comparisons across multiple runs are still very useful).

Counters will appear in an MD log file only if the related parts of the code were executed during the gmx mdrun
(page 215) run. There is also a special counter called “Rest” which indicates the amount of time not accounted
for by any of the counters above. Therefore, a significant amount “Rest” time (more than a few percent) will
often be an indication of parallelization inefficiency (e.g. serial code) and it is recommended to be reported to the
developers.

An additional set of subcounters can offer more fine-grained inspection of performance. They are:

• Domain decomposition redistribution

• DD neighbor search grid + sort

• DD setup communication

• DD make topology

3.9. Getting good performance from mdrun 98

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• DD make constraints

• DD topology other

• Neighbor search grid local

• NS grid non-local

• NS search local

• NS search non-local

• Bonded force

• Bonded-FEP force

• Restraints force

• Listed buffer operations

• Nonbonded pruning

• Nonbonded force

• Launch non-bonded GPU tasks

• Launch PME GPU tasks

• Ewald force correction

• Non-bonded position buffer operations

• Non-bonded force buffer operations

Subcounters are geared toward developers and have to be enabled during compilation. See Build system overview
(page 635) for more information.

3.9.8 Running mdrun with GPUs

Types of GPU tasks

To better understand the later sections on different GPU use cases for calculation of short range (page 100), PME
(page 100), bonded interactions (page 100) and update and constraints (page 100) we first introduce the concept
of different GPU tasks. When thinking about running a simulation, several different kinds of interactions between
the atoms have to be calculated (for more information please refer to the reference manual). The calculation can
thus be split into several distinct parts that are largely independent of each other (hence can be calculated in any
order, e.g. sequentially or concurrently), with the information from each of them combined at the end of time
step to obtain the final forces on each atom and to propagate the system to the next time point. For a better
understanding also please see the section on domain decomposition (page 88).

Of all calculations required for an MD step, GROMACS aims to optimize performance bottom-up for each step
from the lowest level (SIMD unit, cores, sockets, accelerators, etc.). Therefore many of the individual computation
units are highly tuned for the lowest level of hardware parallelism: the SIMD units. Additionally, with GPU accel-
erators used as co-processors, some of the work can be offloaded, that is calculated simultaneously/concurrently
with the CPU on the accelerator device, with the result being communicated to the CPU. Right now, GROMACS
supports GPU accelerator offload of two tasks: the short-range nonbonded interactions in real space (page 100),
and PME (page 100).

GROMACS supports two major offload modes: force-offload and GPU-resident. The former involves offloading
some of or all interaction calculations with integration on the CPU (hence requiring per-step data movement). In
the GPU-resident mode by offloading integration and constraints (when used) less data movement is necessary.

The force-offload mode is the more broadly supported GPU-acceleration mode with short-range nonbonded of-
fload supported on a wide range of GPU accelerators (NVIDIA, AMD, and Intel). This is compatible with the
grand majority of the features and parallelization modes and can be used to scale to large machines. Simultane-
ously offloading both short-range nonbonded and long-range PME work to GPU accelerators has some restrictions
in terms of feature and parallelization compatibility (please see the section below (page 100)). Offloading (most

3.9. Getting good performance from mdrun 99

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

types of) bonded interactions is supported in CUDA and SYCL. The GPU-resident mode is supported with CUDA
and SYCL, but it has additional limitations as described in the GPU update section (page 100).

GPU computation of short range nonbonded interactions

Using the GPU for the short-ranged nonbonded interactions provides the majority of the available speed-up com-
pared to run using only the CPU. Here, the GPU acts as an accelerator that can effectively parallelize this problem
and thus reduce the calculation time.

GPU accelerated calculation of PME (not for AMD HIP)

GROMACS allows offloading of the PME calculation to the GPU, to further reduce the load on the CPU and
improve usage overlap between CPU and GPU. Here, the solving of PME will be performed in addition to the
calculation of the short range interactions on the same GPU as the short range interactions.

Known limitations

Please note again the limitations outlined below!

• Only a PME order of 4 is supported on GPUs.

• Multiple ranks (hence multiple GPUs) computing PME have limited support: experimental PME decompo-
sition in hybrid mode (-pmefft cpu) with CUDA from the 2022 release and full GPU PME decompo-
sition since the 2023 release with CUDA or SYCL (when GROMACS is built with cuFFTMp (page 11) or
HeFFTe (page 11)).

• Only dynamical integrators are supported (ie. leap-frog, Velocity Verlet, stochastic dynamics)

• LJ PME is not supported on GPUs.

• When GROMACS is built without a GPU FFT library (-DGMX_GPU_FFT_LIBRARY=none), only hybrid
mode (-pmefft cpu) is supported.

GPU accelerated calculation of bonded interactions (CUDA and SYCL)

GROMACS allows the offloading of the bonded part of the PP workload to a compatible GPU. This is treated as
part of the PP work, and requires that the short-ranged non-bonded task also runs on a GPU. Typically, there is
a performance advantage to offloading bonded interactions in particular when the amount of CPU resources per
GPU is relatively little (either because the CPU is weak or there are few CPU cores assigned to a GPU in a run)
or when there are other computations on the CPU. A typical case for the latter is free-energy calculations.

GPU accelerated calculation of constraints and coordinate update (CUDA and SYCL only)

GROMACS makes it possible to also perform the coordinate update and (if requested) constraint calculation
on a GPU. This parallelization mode is referred to as “GPU-resident” as all force and coordinate data can remain
resident on the GPU for a number of steps (typically between temperature/pressure coupling or neighbor searching
steps). The GPU-resident mode allows executing all (supported) computation of a simulation step on the GPU.
This has the benefit that there is less coupling between CPU host and GPU and on typical MD steps data does
not need to be transferred between CPU and GPU in contrast to the force-offload scheme requires coordinates and
forces to be transferred every step between the CPU and GPU. The GPU-resident scheme however is still able to
carry out part of the computation on the CPU concurrently with GPU calculation. This helps supporting the broad
range of GROMACS features not all of which are ported to GPUs. At the same time, it also allows improving
performance by making use of the otherwise mostly idle CPU. It can often be advantageous to move the bonded
or PME calculation back to the CPU, but the details of this will depending on the relative performance if the CPU
cores paired in a simulation with a GPU.

3.9. Getting good performance from mdrun 100

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GPU-resident mode is enabled by default (when supported) with an automatic fallback to CPU update when the
build configuration or simulation settings are incompatible with it. It is possible to change the default behaviour
by setting the GMX_FORCE_UPDATE_DEFAULT_CPU environment variable. In this case simulations following
the default behavior (ie. -update auto) will run the update on the CPU.

Using this parallelization mode is typically advantageous in cases where a fast GPU is used with a slower CPU,
in particular if there is only single simulation assigned to a GPU. However, in typical throughput cases where
multiple runs are assigned to each GPU, offloading everything, especially without moving back some of the work
to the CPU can perform worse than the parallelization mode where only force computation is offloaded.

Assigning tasks to GPUs

Depending on which tasks should be performed on which hardware, different kinds of calculations can be com-
bined on the same or different GPUs, according to the information provided for running mdrun (page 215).

It is possible to assign the calculation of the different computational tasks to the same GPU, meaning that they
will share the computational resources on the same device, or to different processing units that will each perform
one task each.

One overview over the possible task assignments is given below:

GROMACS version 2018:

Two different types of assignable GPU accelerated tasks are available, (short-range) nonbonded and
PME. Each PP rank has a nonbnonded task that can be offloaded to a GPU. If there is only one rank
with a PME task (including if that rank is a PME-only rank), then that task can be offloaded to a GPU.
Such a PME task can run wholly on the GPU, or have its latter stages run only on the CPU.

Limitations are that PME on GPU does not support PME domain decomposition, so that only one
PME task can be offloaded to a single GPU assigned to a separate PME rank, while the nonbonded
can be decomposed and offloaded to multiple GPUs.

GROMACS version 2019:

No new assignable GPU tasks are available, but any bonded interactions may run on the same GPU
as the short-ranged interactions for a PP task. This can be influenced with the -bonded flag.

GROMACS version 2020:

Update and constraints can run on the same GPU as the short-ranged nonbonded and bonded interac-
tions for a PP task. This can be influenced with the -update flag.

GROMACS version 2021/2022:

Communication and auxiliary tasks can also be offloaded in CUDA builds. In domain-decomposition
halo exchange and PP-PME communication, instead of staging transfers between GPUs though the
CPU, direct GPU–GPU communication is possible. As an auxiliary tasks for halo exchange data
packing and unpacking is performed which is also offloaded to the GPU. In the 2021 release this
is supported with thread-MPI and from the 2022 release it is also supported using GPU-aware MPI.
Direct GPU communication is not enabled by default and can be triggered using the GMX_ENABLE_-
DIRECT_GPU_COMM environment variable (will only have an effect on supported systems).

GROMACS version 2023:

Update now runs by default on the GPU with supported simulation settings; note that this is only
available with CUDA and SYCL not with OpenCL.

PME decomposition support adds additional parallelization-related auxiliary GPU tasks including
grid packing and reduction operations as well as distributed GPU FFT computation.

Experimental support for CUDA-graphs scheduling has been added, which supports most GPU-
resident runs that don’t require CPU force computation.

3.9. Getting good performance from mdrun 101

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Performance considerations for GPU tasks

1) The performance balance depends on the speed and number of CPU cores you have vs the speed and number
of GPUs you have.

2) The GPU-resident parallelization mode (with update/constraints offloaded) is less sensitive to the appropri-
ate CPU-GPU balance than the force-offload mode.

3) With slow/old GPUs and/or fast/modern CPUs with many cores, it might make more sense to let the CPU
do PME calculation, with the GPUs focused on the nonbonded calculation.

4) With fast/modern GPUs and/or slow/old CPUs with few cores, it generally helps to have the GPU do PME.

5) Offloading bonded work to a GPU will often not improve simulation performance as efficient CPU-based
kernels can complete the bonded computation before the GPU is done with other offloaded work. Therefore,
gmx mdrun (page 215) will default to no bonded offload when PME is offloaded. Typical cases where
performance can improve with bonded offload are: with significant bonded work (e.g. pure lipid or mostly
polymer systems with little solvent), with very few and/or slow CPU cores per GPU, or when the CPU does
other computation (e.g. PME, free energy).

6) On most modern hardware GPU-resident mode (default) is faster than force-offload mode, although it may
leave the CPU idle. Moving back the bonded work to the CPU (-bonded cpu) is a better way to make
use of a fast CPU than leaving integration and constraints on the CPU. The only exception may be multi-
simulations with a significant number of simulations assigned to each GPU.

7) Direct GPU communication will in most cases outperform staged communication (both with thread-MPI
and MPI). Ideally it should be combined with GPU-resident mode to maximize the benefit.

8) The only way to know for sure which alternative is best for your machine is to test and check performance.

Reducing overheads in GPU accelerated runs

In order for CPU cores and GPU(s) to execute concurrently, tasks are launched and executed asynchronously
on the GPU(s) while the CPU cores execute non-offloaded force computation (like computing bonded forces or
free energy computation). Asynchronous task launches are handled by the GPU device driver and require CPU
involvement. Therefore, scheduling GPU tasks requires CPU resources that can compete with other CPU tasks
and cause interference that could lead to slowdown.

Delays in CPU execution are caused by the latency of launching GPU tasks, an overhead that can become sig-
nificant as simulation ns/day increases (i.e. with shorter wall-time per step). The cost of launching GPU work is
measured by gmx mdrun (page 215) and reported in the performance summary section of the log file (“Launch
PP GPU ops.”/”Launch PME GPU ops.” rows). A few percent of runtime spent in launching work is normal, but
in fast-iterating and multi-GPU parallel runs, costs of 10% or larger can be observed. Whether this has a signif-
icant performance impact depends on how much work within the main MD step is assigned to the CPU. With
most or all force computation offloaded, and when the CPU is not involved in communication (e.g. with thread-
MPI and direct GPU communication enabled) it may be that large launch costs do not lead to large performance
losses. However, when the CPU is assigned computation (e.g. in free energy or pull/AWH simulations) or MPI
communication is launched from the CPU (even with GPU-aware MPI), the GPU launch cost will compete with
other CPU work and therefore represent overheads. In general, a user can do little to avoid such overheads, but
there are a few cases where tweaks can give performance benefits. In OpenCL runs, timing of GPU tasks is by
default enabled and, while in most cases its impact is small, in fast runs performance can be affected. In these
cases, when more than a few percent of “Launch GPU ops” time is observed, it is recommended to turn off timing
by setting the GMX_DISABLE_GPU_TIMING environment variable. In parallel runs with many ranks sharing a
GPU, launch overheads can also be reduced by starting fewer thread-MPI or MPI ranks per GPU; e.g. most often
one rank per thread or core is not optimal. The CUDA graphs functionality (added in GROMACS 2023) targets
reducing such overheads and improving GPU work scheduling efficiency and therefore it can provide significant
improvements especially for small simulation systems running on fast GPUs. Since it is a new feature, in the 2023
release CUDA-graph support needs to be triggered using the GMX_CUDA_GRAPH environment variable.

The second type of overhead, interference of the GPU runtime or driver with CPU computation, is caused by
the scheduling and coordination of GPU tasks. A separate GPU runtime/driver thread requires CPU resources

3.9. Getting good performance from mdrun 102

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

which may compete with the concurrently running non-offloaded tasks (if present), potentially degrading the per-
formance of this CPU work. To minimize the overhead it can be useful to leave at least one CPU hardware thread
unused when launching gmx mdrun (page 215), especially on CPUs with high core counts and/or simultaneous
multithreading enabled. E.g. on a machine with a 16-core CPU and 32 threads, try gmx mdrun -ntomp 31
-pin on. This will leave some CPU resources for the GPU task scheduling potentially reducing interference
with CPU computation. Note that assigning fewer resources to gmx mdrun (page 215) CPU computation involves
a tradeoff which, with many CPU cores per GPU, may not be significant, but in some cases (e.g. with multi-rank
MPI runs) it may lead to complex resource assignment and may outweigh the benefits of reduced GPU scheduling
overheads, so we recommend to test the alternatives before adopting such techniques.

3.9.9 Running the OpenCL version of mdrun

Currently supported hardware architectures are:

• GCN-based and CDNA-based AMD GPUs;

• NVIDIA GPUs prior to Volta;

• Intel iGPUs.

Make sure that you have the latest drivers installed. For AMD GPUs, the compute-oriented ROCm stack is
recommended; alternatively, the AMDGPU-PRO stack is also compatible; using the outdated and unsupported
fglrx proprietary driver and runtime is not recommended (but for certain older hardware that may be the only
way to obtain support). In addition Mesa version 17.0 or newer with LLVM 4.0 or newer is also supported. For
NVIDIA GPUs, using the proprietary driver is required as the open source nouveau driver (available in Mesa)
does not provide the OpenCL support. For Intel integrated GPUs, the Neo driver is recommended.

The minimum OpenCL version required is unknown. See also the known limitations (page 103).

Devices from the AMD GCN architectures (all series) are compatible and regularly tested; NVIDIA Kepler and
later (compute capability 3.0) are known to work, but before doing production runs always make sure that the
GROMACS tests pass successfully on the hardware.

The OpenCL GPU kernels are compiled at run time. Hence, building the OpenCL program can take a few seconds,
introducing a slight delay in the gmx mdrun (page 215) startup. This is not normally a problem for long production
MD, but you might prefer to do some kinds of work, e.g. that runs very few steps, on just the CPU (e.g. see -nb
above).

The same -gpu_id option (or GMX_GPU_ID environment variable) used to select CUDA or SYCL devices, or
to define a mapping of GPUs to PP ranks, is used for OpenCL devices.

Some other OpenCL management (page 337) environment variables may be of interest to developers.

Known limitations of the OpenCL support

Limitations in the current OpenCL support of interest to GROMACS users:

• Intel integrated GPUs are supported. Intel CPUs and Xeon Phi are not supported. Set -DGMX_GPU_NB_-
CLUSTER_SIZE=4 when compiling GROMACS to run on consumer Intel GPUs (as opposed to Ponte
Vecchio / Data Center Max GPUs).

• Due to blocking behavior of some asynchronous task enqueuing functions in the NVIDIA OpenCL runtime,
with the affected driver versions there is almost no performance gain when using NVIDIA GPUs. The issue
affects NVIDIA driver versions up to 349 series, but it known to be fixed 352 and later driver releases.

• On NVIDIA GPUs the OpenCL kernels achieve much lower performance than the equivalent CUDA kernels
due to limitations of the NVIDIA OpenCL compiler.

• On the NVIDIA Volta and Turing architectures the OpenCL code is known to produce incorrect results with
driver version up to 440.x (most likely due to compiler issues). Runs typically fail on these architectures.

3.9. Getting good performance from mdrun 103

https://rocm.docs.amd.com/en/latest/index.html
https://github.com/intel/compute-runtime/releases

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.9.10 Running SYCL version of mdrun

Make sure that you have the latest drivers installed and check the installation guide (page 17) for the list of
compatible hardware and software and the recommended compile-time options.

Please keep in mind the following environment variables that might be useful:

• When using oneAPI runtime:

– SYCL_CACHE_PERSISTENT=1: enables caching of GPU kernels, reducing gmx mdrun (page 215)
startup time.

In addition to -gpu_id option, backend-specific environment variables, like SYCL_DEVICE_FILTER or
ROCR_VISIBLE_DEVICES, could be used to select GPUs.

3.9.11 Running HIP version of mdrun

Currently only limited offload capabilities are implemented for AMD HIP support. Please ensure you have a
recent version of the ROCm toolkit and check the AMD HIP installation guide (page 19).

If you are using CDNA hardware, please ensure that your GROMACS build has been configured to use 64-wide
execution on the device.

3.9.12 Performance checklist

There are many different aspects that affect the performance of simulations in GROMACS. Most simulations
require a lot of computational resources, therefore it can be worthwhile to optimize the use of those resources.
Several issues mentioned in the list below could lead to a performance difference of a factor of 2. So it can be
useful go through the checklist.

GROMACS configuration

• Don’t use double precision unless you’re absolute sure you need it.

• Compile the FFTW library (yourself) with the correct flags on x86 (in most cases, the correct flags are
automatically configured).

• On x86, use gcc as the compiler (not icc, pgi or the Cray compiler).

• On POWER, use gcc instead of IBM’s xlc.

• Use a new compiler version, especially for gcc (e.g. from version 5 to 6 the performance of the compiled
code improved a lot).

• MPI library: OpenMPI usually has good performance and causes little trouble.

• Make sure your compiler supports OpenMP (some versions of Clang don’t).

• If you have GPUs that support either CUDA, OpenCL, or SYCL, use them.

– Configure with -DGMX_GPU=CUDA, -DGMX_GPU=OpenCL, or -DGMX_GPU=SYCL.

– For GPUs, use the newest available SDK for your GPU to take advantage of the latest performance
enhancements.

– Use a recent GPU driver.

– Make sure you use an gmx mdrun (page 215) with GMX_SIMD appropriate for the CPU architecture;
the log file will contain a warning note if suboptimal setting is used. However, prefer AVX2 over
AVX512 in GPU or highly parallel MPI runs (for more information see the intra-core parallelization
information (page 88)).

– If compiling on a cluster head node, make sure that GMX_SIMD is appropriate for the compute nodes.

3.9. Getting good performance from mdrun 104

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Run setup

• For an approximately spherical solute, use a rhombic dodecahedron unit cell.

• When using a time-step of <=2.5 fs, use constraints=h-bonds (page 58) (and not
constraints=all-bonds (page 58)), since:

– this is faster, especially with GPUs;

– it is necessary to be able to use GPU-resident mode;

– and most force fields have been parametrized with only bonds involving hydrogens constrained.

• You can often increase the time-step to 4 fs by repartitioning hydrogen masses using the
mass-repartition-factor mdp option. This does not affect equilibrium distributions, but makes
dynamics slightly slower.

• You can increase the time-step to 4 or 5 fs when using virtual interaction sites (gmx pdb2gmx -vsite
h).

• For massively parallel runs with PME, you might need to try different numbers of PME ranks (gmx mdrun
-npme ???) to achieve best performance; gmx tune_pme (page 286) can help automate this search.

• For massively parallel runs (also gmx mdrun -multidir), or with a slow network, global communi-
cation can become a bottleneck and you can reduce it by choosing larger periods for algorithms such as
temperature and pressure coupling).

Checking and improving performance

• Look at the end of the md.log file to see the performance and the cycle counters and wall-clock time for
different parts of the MD calculation. The PP/PME load ratio is also printed, with a warning when a lot of
performance is lost due to imbalance.

• Adjust the number of PME ranks and/or the cut-off and PME grid-spacing when there is a large PP/PME
imbalance. Note that even with a small reported imbalance, the automated PME-tuning might have reduced
the initial imbalance. You could still gain performance by changing the mdp parameters or increasing the
number of PME ranks.

• (Especially) In GPU-resident runs (-update gpu):

– Frequent virial or energy computation can have a large overhead (and this will not show up in the cycle
counters). To reduce this overhead, increase nstcalcenergy;

– Frequent temperature or pressure coupling can have significant overhead; to reduce this, make sure to
have as infrequent coupling as your algorithms allow (typically >=50-100 steps).

• If the neighbor searching and/or domain decomposition takes a lot of time, increase nstlist. If a Verlet
buffer tolerance is used, this is done automatically by gmx mdrun (page 215) and the pair-list buffer is
increased to keep the energy drift constant.

– especially with multi-GPU runs, the automatic increasing of nstlist at mdrun startup can be con-
servative and larger value is often be optimal (e.g. nstlist=200-300 with PME and default Verlet
buffer tolerance).

– odd values of nstlist should be avoided when using CUDA Graphs to minimize the overhead associated
with graph instantiation.

• If Comm. energies takes a lot of time (a note will be printed in the log file), increase nstcalcenergy.

• If all communication takes a lot of time, you might be running on too many cores, or you could try running
combined MPI/OpenMP parallelization with 2 or 4 OpenMP threads per MPI process.

• In multi-GPU runs avoid using as many ranks as cores (or hardware threads) since this introduces a major
inefficiency due to overheads associated to GPUs sharing by several MPI ranks. Use at most a few ranks per
GPU, 1-3 ranks is generally optimal; with GPU-resident mode and direct GPU communication typically 1
rank/GPU is best.

3.9. Getting good performance from mdrun 105

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.10 Common errors when using GROMACS

The vast majority of error messages generated by GROMACS are descriptive, informing the user where the exact
error lies. Some errors that arise are noted below, along with more details on what the issue is and how to solve it.

3.10.1 Common errors during usage

Out of memory when allocating

The program has attempted to assign memory to be used in the calculation, but is unable to due to insufficient
memory.

Possible solutions are:

• reduce the scope of the number of atoms selected for analysis.

• reduce the length of trajectory file being processed.

• in some cases confusion between Ångström and nm may lead to users generating a pdb2gmx (page 235)
water box that is 103 times larger than what they think it is (e.g. gmx solvate (page 268)).

• use a computer with more memory.

• install more memory in the computer.

The user should bear in mind that the cost in time and/or memory for various activities will scale with the number
of atoms/groups/residues N or the simulation length T as order N, NlogN, or N2 (or maybe worse!) and the same
for T, depending on the type of activity. If it takes a long time, have a think about what you are doing, and the
underlying algorithm (see the Reference manual, man page, or use the -h flag for the utility), and see if there’s
something sensible you can do that has better scaling properties.

3.10.2 Errors in pdb2gmx

Residue ‘XXX’ not found in residue topology database

This means that the force field you have selected while running pdb2gmx (page 235) does not have an entry in
the residue database (page 491) for XXX. The residue database (page 491) entry is necessary both for stand-
alone molecules (e.g. formaldehyde) or a peptide (standard or non-standard). This entry defines the atom types,
connectivity, bonded and non-bonded interaction types for the residue and is necessary to use pdb2gmx (page 235)
to build a top (page 492) file. A residue database (page 491) entry may be missing simply because the database
does not contain the residue at all, or because the name is different.

For new users, this error appears because they are running pdb2gmx (page 235) on a PDB (page 490) file they
have, without consideration of the contents of the file. A force field (page 331) is not magical, it can only deal
with molecules or residues (building blocks) that are provided in the residue database (page 491) or included
otherwise.

If you want to use pdb2gmx (page 235) to automatically generate your topology, you have to ensure that the
appropriate rtp (page 491) entry is present within the desired force field (page 331) and has the same name as the
building block you are trying to use. If you call your molecule “HIS,” then pdb2gmx (page 235) will try to build
histidine, based on the [HIS] entry in the rtp (page 491) file, so it will look for the exact atomic entries for
histidine, no more no less.

If you want a topology (page 492) for an arbitrary molecule, you cannot use pdb2gmx (page 235) (unless you
build the rtp (page 491) entry yourself). You will have to build that entry by hand, or use another program (such
as x2top (page 299) or one of the scripts contributed by users) to build the top (page 492) file.

If there is not an entry for this residue in the database, then the options for obtaining the force field parameters are:

• see if there is a different name being used for the residue in the residue database (page 491) and rename as
appropriate,

3.10. Common errors when using GROMACS 106

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• parameterize the residue / molecule yourself (lots of work, even for an expert),

• find a topology file (page 492) for the molecule, convert it to an itp (page 487) file and include it in your top
(page 492) file,

• use another force field (page 331) which has parameters available for this,

• search the primary literature for publications for parameters for the residue that are consistent with the force
field that is being used.

Once you have determined the parameters and topology for your residue, see adding a residue to a force field
(page 341) for instructions on how to proceed.

Long bonds and/or missing atoms

There are probably atoms missing earlier in the pdb (page 490) file which makes pdb2gmx (page 235) go crazy.
Check the screen output of pdb2gmx (page 235), as it will tell you which one is missing. Then add the atoms in
your pdb (page 490) file, energy minimization will put them in the right place, or fix the side chain with e.g. the
WHAT IF program.

Chain identifier ‘X’ was used in two non-sequential blocks

This means that within the coordinate file (page 483) fed to pdb2gmx (page 235), the X chain has been split,
possibly by the incorrect insertion of one molecule within another. The solution is simple: move the inserted
molecule to a location within the file so that it is not splitting another molecule. This message may also mean that
the same chain identifier has been used for two separate chains. In that case, rename the second chain to a unique
identifier.

WARNING: atom X is missing in residue XXX Y in the pdb file

Related to the long bonds/missing atoms error above, this error is usually quite obvious in its meaning. That is,
pdb2gmx (page 235) expects certain atoms within the given residue, based on the entries in the force field rtp
(page 491) file. There are several cases to which this error applies:

• Missing hydrogen atoms; the error message may be suggesting that an entry in the hdb (page 487) file is
missing. More likely, the nomenclature of your hydrogen atoms simply does not match what is expected by
the rtp (page 491) entry. In this case, use -ignh to allow pdb2gmx (page 235) to add the correct hydrogens
for you, or re-name the problematic atoms.

• A terminal residue (usually the N-terminus) is missing H atoms; this usually suggests that the proper -ter
option has not been supplied or chosen properly. In the case of the AMBER force fields (page 41), nomencla-
ture is typically the problem. N-terminal and C-terminal residues must be prefixed by N and C, respectively.
For example, an N-terminal alanine should not be listed in the pdb (page 490) file as ALA, but rather NALA,
as specified in the ffamber instructions.

• Atoms are simply missing in the structure file provided to pdb2gmx (page 235); look for REMARK 465 and
REMARK 470 entries in the pdb (page 490) file. These atoms will have to be modeled in using external
software. There is no GROMACS tool to re-construct incomplete models.

Contrary to what the error message says, the use of the option -missing is almost always inappropriate. The
-missing option should only be used to generate specialized topologies for amino acid-like molecules to take
advantage of rtp (page 491) entries. If you find yourself using -missing in order to generate a topology for a
protein or nucleic acid, don’t; the topology produced is likely physically unrealistic.

3.10. Common errors when using GROMACS 107

https://swift.cmbi.umcn.nl/whatif/
http://ffamber.cnsm.csulb.edu/ffamber.php

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Atom X in residue YYY not found in rtp entry

If you are attempting to assemble a topology using pdb2gmx (page 235), the atom names are expected to match
those found in the rtp (page 491) file that define the building block(s) in your structure. In most cases, the problem
arises from a naming mismatch, so simply re-name the atoms in your coordinate file (page 483) appropriately. In
other cases, you may be supplying a structure that has residues that do not conform to the expectations of the force
field (page 331), in which case you should investigate why such a difference is occurring and make a decision
based on what you find - use a different force field (page 331), manually edit the structure, etc.

No force fields found (files with name ‘forcefield.itp’ in subdirectories ending on ‘.ff’)

This means your environment is not configured to use GROMACS properly, because pdb2gmx (page 235) cannot
find its databases of forcefield information. This could happen because a GROMACS installation was moved
from one location to another. Either follow the instructions about Getting access to GROMACS after installation
(page 24) or re-install GROMACS before doing so.

3.10.3 Errors in grompp

Found a second defaults directive file

This is caused by the [defaults] directive appearing more than once in the topology (page 492) or force field
(page 331) files for the system - it can only appear once. A typical cause of this is a second defaults being set in an
included topology (page 492) file, itp (page 487), that has been sourced from somewhere else. For specifications
on how the topology files work, see the reference manual, Section 5.6.:

[defaults]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
1 1 no 1.0 1.0

One solution is to simply comment out (or delete) the lines of code out in the file where it is included for the
second time i.e.,:

;[defaults]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
;1 1 no 1.0 1.0

A better approach to finding a solution is to re-think what you are doing. The [defaults] directive should only
be appearing at the top of your top (page 492) file where you choose the force field (page 331). If you are trying
to mix two force fields (page 331), then you are asking for trouble. If a molecule itp (page 487) file tries to choose
a force field, then whoever produced it is asking for trouble.

Invalid order for directive xxx

The directives in the .top and .itp files have rules about the order in which they can appear, and this error is seen
when the order is violated. Consider the examples and discussion in chapter 5 of the reference manual, and/or
from tutorial material. The include file mechanism (page 32) cannot be used to #include a file in just any old
location, because they contain directives and these have to be properly placed.

In particular, Invalid order for directive defaults is a result of defaults being set in the topology
(page 492) or force field (page 331) files in the inappropriate location; the [defaults] section can only appear
once and must be the first directive in the topology (page 492). The [defaults] directive is typically present in
the force field (page 331) file (forcefield.itp), and is added to the topology (page 492) when you #include this
file in the system topology.

If the directive in question is [atomtypes] (which is the most common source of this error) or any other bonded
or nonbonded [*types] directive, typically the user is adding some non-standard species (ligand, solvent, etc)
that introduces new atom types or parameters into the system. As indicated above, these new types and parameters

3.10. Common errors when using GROMACS 108

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

must appear before any [moleculetype] directive. The force field (page 331) has to be fully constructed
before any molecules can be defined.

Atom index n in position_restraints out of bounds

A common problem is placing position restraint files for multiple molecules out of order. Recall that a posi-
tion restraint itp (page 487) file containing a [position_restraints] block can only belong to the [
moleculetype] block that contains it. For example:

WRONG:

#include "topol_A.itp"
#include "topol_B.itp"
#include "ligand.itp"

#ifdef POSRES
#include "posre_A.itp"
#include "posre_B.itp"
#include "ligand_posre.itp"
#endif

RIGHT:

#include "topol_A.itp"
#ifdef POSRES
#include "posre_A.itp"
#endif

#include "topol_B.itp"
#ifdef POSRES
#include "posre_B.itp"
#endif

#include "ligand.itp"
#ifdef POSRES
#include "ligand_posre.itp"
#endif

Further, the atom index of each [position_restraint] must be relative to the [moleculetype], not
relative to the system (because the parsing has not reached [molecules] yet, there is no such concept as
“system”). So you cannot use the output of a tool like genrestr (page 189) blindly (as genrestr -h warns).

System has non-zero total charge

Notifies you that counter-ions may be required for the system to neutralize the charge or there may be problems
with the topology.

If the charge is not very close to an integer, then this indicates that there is a problem with the topology (page 492).
If pdb2gmx (page 235) has been used, then look at the right-hand comment column of the atom listing, which lists
the cumulative charge. This should be an integer after every residue (and/or charge group where applicable). This
will assist in finding the residue where things start departing from integer values. Also check the terminal capping
groups that have been used.

If the charge is already close to an integer, then the difference is caused by rounding errors (page 339) and not a
major problem.

Note for PME users: It is possible to use a uniform neutralizing background charge in PME to compensate for
a system with a net background charge. This may however, especially for non-homogeneous systems, lead to

3.10. Common errors when using GROMACS 109

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

unwanted artifacts, as shown in 181 (page 584) (http://pubs.acs.org/doi/abs/10.1021/ct400626b). Nevertheless, it
is a standard practice to actually add counter-ions to make the system net neutral.

Incorrect number of parameters

Look at the topology (page 492) file for the system. You’ve not given enough parameters for one of the bonded
definitions. Sometimes this also occurs if you’ve mangled the Include File Mechanism (page 32) or the topology
file format (see: reference manual Chapter 5) when you edited the file.

Number of coordinates in coordinate file does not match topology

This is pointing out that, based on the information provided in the topology (page 492) file, top (page 492), the
total number of atoms or particles within the system does not match exactly with what is provided within the
coordinate file (page 483), often a gro (page 486) or a pdb (page 490).

The most common reason for this is simply that the user has failed to update the topology file after solvating or
adding additional molecules to the system, or made a typographical error in the number of one of the molecules
within the system. Ensure that the end of the topology file being used contains something like the following, that
matches exactly with what is within the coordinate file being used, in terms of both numbers and order of the
molecules:

[molecules]
; Compound #mol
Protein 1
SOL 10189
NA+ 10

Fatal error: No such moleculetype XXX

Each type of molecule in your [molecules] section of your top (page 492) file must have a corresponding
[moleculetype] section defined previously, either in the top (page 492) file or an included (page 32) itp
(page 487) file. See the reference manual section 5.6.1 for the syntax description. Your top (page 492) file doesn’t
have such a definition for the indicated molecule. Check the contents of the relevant files, how you have named
your molecules, and how you have tried to refer to them later. Pay attention to the status of #ifdef and / or
#include statements.

T-Coupling group XXX has fewer than 10% of the atoms

It is possible to specify separate thermostats (page 327) (temperature coupling groups) for every molecule type
within a simulation. This is a particularly bad practice employed by many new users to molecular dynamics
simulations. Doing so is a bad idea, as you can introduce errors and artifacts that are hard to predict. In some cases
it is best to have all molecules within a single group, using the default System group. If separate coupling groups
are required to avoid the hot-solvent, cold-solute problem, then ensure that they are of sufficient
size and combine molecule types that appear together within the simulation. For example, for a protein in water
with counter-ions, one would likely want to use Protein and Non-Protein.

3.10. Common errors when using GROMACS 110

http://pubs.acs.org/doi/abs/10.1021/ct400626b

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The cut-off length is longer than half the shortest box vector or longer than the smallest box
diagonal element. Increase the box size or decrease rlist

This error is generated in the cases as noted within the message. The dimensions of the box are such that an atom
will interact with itself (when using periodic boundary conditions), thus violating the minimum image convention.
Such an event is totally unrealistic and will introduce some serious artefacts. The solution is again what is noted
within the message, either increase the size of the simulation box so that it is at an absolute minimum twice the
cut-off length in all three dimensions (take care here if are using pressure coupling, as the box dimensions will
change over time and if they decrease even slightly, you will still be violating the minimum image convention) or
decrease the cut-off length (depending on the force field (page 331) utilised, this may not be an option).

Atom index (1) in bonds out of bounds

This kind of error looks like:

Fatal error:
[file spc.itp, line 32]
Atom index (1) in bonds out of bounds (1-0).
This probably means that you have inserted topology
section "settles" in a part belonging to a different
molecule than you intended to. in that case move the
"settles" section to the right molecule.

This error is fairly self-explanatory. You should look at your top (page 492) file and check that all of the
[molecules] sections contain all of the data pertaining to that molecule, and no other data. That is, you cannot
#include another molecule type (itp (page 487) file) before the previous [moleculetype] has ended. Con-
sult the examples in chapter 5 of the reference manual for information on the required ordering of the different
[sections]. Pay attention to the contents of any files you have included (page 32) with #include directives.

This error can also arise if you are using a water model that is not enabled for use with your chosen force field
(page 331) by default. For example, if you are attempting to use the SPC water model with an AMBER force field
(page 41), you will see this error. The reason is that, in spc.itp, there is no #ifdef statement defining atom
types for any of the AMBER force fields (page 41). You can either add this section yourself, or use a different
water model.

XXX non-matching atom names

This error usually indicates that the order of the topology (page 492) file does not match that of the coordinate file
(page 483). When running grompp (page 190), the program reads through the topology (page 492), mapping the
supplied parameters to the atoms in the coordinate (page 483) file. If there is a mismatch, this error is generated.
To remedy the problem, make sure that the contents of your [molecules] directive matches the exact order
of the atoms in the coordinate file.

In a few cases, the error is harmless. Perhaps you are using a coordinate (page 483) file that has the old (pre-
4.5) ion nomenclature. In this case, allowing grompp (page 190) to re-assign names is harmless. For just about
any other situation, when this error comes up, it should not be ignored. Just because the -maxwarn option is
available does not mean you should use it in the blind hope of your simulation working. It will undoubtedly blow
up (page 329).

3.10. Common errors when using GROMACS 111

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The sum of the two largest charge group radii (X) is larger than rlist - rvdw/rcoulomb

This error warns that some combination of settings will result in poor energy conservation at the longest cutoff,
which occurs when charge groups move in or out of pair list range. The error can have two sources:

• Your charge groups encompass too many atoms. Most charge groups should be less than 4 atoms or less.

• Your mdp (page 488) settings are incompatible with the chosen algorithms. For switch or shift functions,
rlist must be larger than the longest cutoff (rvdw or rcoulomb) to provide buffer space for charge groups
that move beyond the neighbor searching radius. If set incorrectly, you may miss interactions, contributing
to poor energy conservation.

A similar error (“The sum of the two largest charge group radii (X) is larger than rlist”) can arise under two
following circumstances:

• The charge groups are inappropriately large or rlist is set too low.

• Molecules are broken across periodic boundaries, which is not a problem in a periodic system. In this case,
the sum of the two largest charge groups will correspond to a value of twice the box vector along which the
molecule is broken.

Invalid line in coordinate file for atom X

This error arises if the format of the gro (page 486) file is broken in some way. The most common explanation is
that the second line in the gro (page 486) file specifies an incorrect number of atoms, causing grompp (page 190)
to continue searching for atoms but finding box vectors.

3.10.4 Errors in mdrun

Stepsize too small, or no change in energy. Converged to machine precision, but not to the
requested Fmax

This may not be an error as such. It is simply informing you that during the energy minimization process mdrun
reached the limit possible to minimize the structure with your current parameters. It does not mean that the system
has not been minimized fully, but in some situations that may be the case. If the system has a significant amount
of water present, then an Epot of the order of -105 to -106 (in conjunction with an Fmax between 10 and 1000 kJ
mol-1 nm-1) is typically a reasonable value for starting most MD simulations from the resulting structure. The
most important result is likely the value of Fmax, as it describes the slope of the potential energy surface, i.e. how
far from an energy minimum your structure lies. Only for special purposes, such as normal mode analysis type of
calculations, it may be necessary to minimize further. Further minimization may be achieved by using a different
energy minimization method or by making use of double precision-enabled GROMACS.

Energy minimization has stopped because the force on at least one atom is not finite

This likely indicates that (at least) two atoms are too close in the input coordinates, and the forces exerted on each
other are greater in magnitude than can be expressed to the extent of the precision of GROMACS, and therefore
minimization cannot proceed. It is sometimes possible to minimize systems that have infinite forces with the
use of soft-core potentials, which scale down the magnitude of Lennard-Jones interactions with the use of the
GROMACS free energy code. This approach is an accepted workflow for equilibration of some coarse-grained
systems such as Martini.

3.10. Common errors when using GROMACS 112

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

LINCS/SETTLE/SHAKE warnings

Sometimes, when running dynamics, mdrun (page 215) may suddenly stop (perhaps after writing several pdb
(page 490) files) after a series of warnings about the constraint algorithms (e.g. LINCS, SETTLE or SHAKE) are
written to the log (page 487) file. These algorithms often used to constrain bond lengths and/or angles. When a
system is blowing up (page 329) (i.e. exploding due to diverging forces), the constraints are usually the first thing
to fail. This doesn’t necessarily mean you need to troubleshoot the constraint algorithm. Usually it is a sign of
something more fundamentally wrong (physically unrealistic) with your system. See also the advice here about
diagnosing unstable systems (page 330).

1-4 interaction not within cut-off

Some of your atoms have moved so two atoms separated by three bonds are separated by more than the cut-
off distance. This is BAD. Most importantly, do not increase your cut-off! This error actually indicates that
the atoms have very large velocities, which usually means that (part of) your molecule(s) is (are) blowing up
(page 329). If you are using LINCS for constraints, you probably also already got a number of LINCS warnings.
When using SHAKE this will give rise to a SHAKE error, which halts your simulation before the 1-4 not
within cutoff error can appear.

There can be a number of reasons for the large velocities in your system. If it happens at the beginning of the
simulation, your system might be not equilibrated well enough (e.g. it contains some bad contacts). Try a(nother)
round of energy minimization to fix this. Otherwise you might have a very high temperature, and/or a timestep
that is too large. Experiment with these parameters until the error stops occurring. If this doesn’t help, check the
validity of the parameters in your topology (page 492)!

Simulation running but no output

Not an error as such, but mdrun appears to be chewing up CPU time but nothing is being written to the output
files. There are a number of reasons why this may occur:

• Your simulation might simply be (very) slow (page 86), and since output is buffered, it can take quite some
time for output to appear in the respective files. If you are trying to fix some problems and you want to get
output as fast as possible, you can set the environment variable GMX_LOG_BUFFER to 0.

• Something might be going wrong in your simulation, causing e.g. not-a-numbers (NAN) to be generated
(these are the result of e.g. division by zero). Subsequent calculations with NAN’s will generate floating
point exceptions which slow everything down by orders of magnitude.

• You might have all nst* parameters (see your mdp (page 488) file) set to 0, this will suppress most output.

• Your disk might be full. Eventually this will lead to mdrun (page 215) crashing, but since output is buffered,
it might take a while for mdrun to realize it can’t write.

Can not do Conjugate Gradients with constraints

This means you can’t do energy minimization with the conjugate gradient algorithm if your topology has con-
straints defined. Please check the reference manual.

3.10. Common errors when using GROMACS 113

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Pressure scaling more than 1%

This error tends to be generated when the simulation box begins to oscillate (due to large pressures and / or small
coupling constants), the system starts to resonate and then crashes (page 329). This can mean that the system isn’t
equilibrated sufficiently before using pressure coupling. Therefore, better / more equilibration may fix the issue.

It is recommended to observe the system trajectory prior and during the crash. This may indicate if a particular
part of the system / structure is the problem.

In some cases, if the system has been equilibrated sufficiently, this error can mean that the pressure coupling con-
stant, tau-p (page 56), is too small (particularly when using the Berendsen weak coupling method). Increasing
that value will slow down the response to pressure changes and may stop the resonance from occurring. You
are also more likely to see this error if you use Parrinello-Rahman pressure coupling on a system that is not yet
equilibrated - start with the much more forgiving Berendsen method first, then switch to other algorithms.

This error can also appear when using a timestep that is too large, e.g. 5 fs, in the absence of constraints and / or
virtual sites.

Range Checking error

This usually means your simulation is blowing up (page 329). Probably you need to do better energy minimization
and/or equilibration and/or topology design.

X particles communicated to PME node Y are more than a cell length out of the domain decom-
position cell of their charge group

This is another way that mdrun (page 215) tells you your system is blowing up (page 329). If you have particles
that are flying across the system, you will get this fatal error. The message indicates that some piece of your
system is tearing apart (hence out of the “cell of their charge group”). Refer to the Blowing Up (page 329) page
for advice on how to fix this issue.

A charge group moved too far between two domain decomposition steps.

See information above.

Software inconsistency error: Some interactions seem to be assigned multiple times

See information above

There is no domain decomposition for n ranks that is compatible with the given box and a mini-
mum cell size of x nm

This means you tried to run a parallel calculation, and when mdrun (page 215) tried to partition your simulation
cell into chunks, it couldn’t. The minimum cell size is controlled by the size of the largest charge group or
bonded interaction and the largest of rvdw, rlist and rcoulomb, some other effects of bond constraints, and
a safety margin. Thus it is not possible to run a small simulation with large numbers of processors. So, if grompp
(page 190) warned you about a large charge group, pay attention and reconsider its size. mdrun (page 215) prints
a breakdown of how it computed this minimum size in the log (page 487) file, so you can perhaps find a cause
there.

If you didn’t think you were running a parallel calculation, be aware that from 4.5, GROMACS uses thread-based
parallelism by default. To prevent this, give mdrun (page 215) the -ntmpi 1 command line option. Otherwise,
you might be using an MPI-enabled GROMACS and not be aware of the fact.

3.10. Common errors when using GROMACS 114

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11 Command-line reference

3.11.1 molecular dynamics simulation suite

Synopsis

gmx [-[no]h] [-[no]quiet] [-[no]version] [-[no]copyright] [-nice <int>]
[-[no]backup]

Description

GROMACS is a full-featured suite of programs to perform molecular dynamics simulations, i.e., to simulate the
behavior of systems with hundreds to millions of particles using Newtonian equations of motion. It is primarily
used for research on proteins, lipids, and polymers, but can be applied to a wide variety of chemical and biological
research questions.

Options

Other options:

-[no]h (no)
Print help and quit

-[no]quiet (no)
Do not print common startup info or quotes

-[no]version (no)
Print extended version information and quit

-[no]copyright (no)
Print copyright information on startup

-nice <int> (19)
Set the nicelevel (default depends on command)

-[no]backup (yes)
Write backups if output files exist

gmx commands

The following commands are available. Please refer to their individual man pages or gmx help <command>
for further details.

Trajectory analysis

gmx-gangle(1)
Calculate angles

gmx-convert-trj(1)
Converts between different trajectory types

gmx-distance(1)
Calculate distances between pairs of positions

gmx-dssp(1)
Calculate protein secondary structure via DSSP algorithm

gmx-extract-cluster(1)
Allows extracting frames corresponding to clusters from trajectory

3.11. Command-line reference 115

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx-freevolume(1)
Calculate free volume

gmx-hbond(1)
Compute and analyze hydrogen bonds.

gmx-msd(1)
Compute mean squared displacements

gmx-pairdist(1)
Calculate pairwise distances between groups of positions

gmx-rdf(1)
Calculate radial distribution functions

gmx-sasa(1)
Compute solvent accessible surface area

gmx-scattering(1)
Calculate small angle scattering profiles for SANS or SAXS

gmx-select(1)
Print general information about selections

gmx-trajectory(1)
Print coordinates, velocities, and/or forces for selections

gmx-gyrate(1)
Calculate radius of gyration of a molecule

Generating topologies and coordinates

gmx-editconf(1)
Edit the box and write subgroups

gmx-x2top(1)
Generate a primitive topology from coordinates

gmx-solvate(1)
Solvate a system

gmx-insert-molecules(1)
Insert molecules into existing vacancies

gmx-genconf(1)
Multiply a conformation in ‘random’ orientations

gmx-genion(1)
Generate monoatomic ions on energetically favorable positions

gmx-genrestr(1)
Generate position restraints or distance restraints for index groups

gmx-pdb2gmx(1)
Convert coordinate files to topology and FF-compliant coordinate files

3.11. Command-line reference 116

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Running a simulation

gmx-grompp(1)
Make a run input file

gmx-mdrun(1)
Perform a simulation, do a normal mode analysis or an energy minimization

gmx-convert-tpr(1)
Make a modified run-input file

Viewing trajectories

gmx-nmtraj(1)
Generate a virtual oscillating trajectory from an eigenvector

Processing energies

gmx-enemat(1)
Extract an energy matrix from an energy file

gmx-energy(1)
Writes energies to xvg files and display averages

gmx-mdrun(1)
(Re)calculate energies for trajectory frames with -rerun

Converting files

gmx-editconf(1)
Convert and manipulates structure files

gmx-eneconv(1)
Convert energy files

gmx-sigeps(1)
Convert c6/12 or c6/cn combinations to and from sigma/epsilon

gmx-trjcat(1)
Concatenate trajectory files

gmx-trjconv(1)
Convert and manipulates trajectory files

gmx-xpm2ps(1)
Convert XPM (XPixelMap) matrices to postscript or XPM

Tools

gmx-analyze(1)
Analyze data sets

gmx-awh(1)
Extract data from an accelerated weight histogram (AWH) run

gmx-filter(1)
Frequency filter trajectories, useful for making smooth movies

gmx-lie(1)
Estimate free energy from linear combinations

3.11. Command-line reference 117

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx-pme_error(1)
Estimate the error of using PME with a given input file

gmx-sham(1)
Compute free energies or other histograms from histograms

gmx-spatial(1)
Calculate the spatial distribution function

gmx-traj(1)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx-tune_pme(1)
Time mdrun as a function of PME ranks to optimize settings

gmx-wham(1)
Perform weighted histogram analysis after umbrella sampling

gmx-check(1)
Check and compare files

gmx-dump(1)
Make binary files human readable

gmx-make_ndx(1)
Make index files

gmx-mk_angndx(1)
Generate index files for ‘gmx angle’

gmx-trjorder(1)
Order molecules according to their distance to a group

gmx-xpm2ps(1)
Convert XPM (XPixelMap) matrices to postscript or XPM

gmx-report-methods(1)
Write short summary about the simulation setup to a text file and/or to the standard output.

Distances between structures

gmx-cluster(1)
Cluster structures

gmx-confrms(1)
Fit two structures and calculates the RMSD

gmx-rms(1)
Calculate RMSDs with a reference structure and RMSD matrices

gmx-rmsf(1)
Calculate atomic fluctuations

Distances in structures over time

gmx-mindist(1)
Calculate the minimum distance between two groups

gmx-mdmat(1)
Calculate residue contact maps

gmx-polystat(1)
Calculate static properties of polymers

3.11. Command-line reference 118

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx-rmsdist(1)
Calculate atom pair distances averaged with power -2, -3 or -6

Mass distribution properties over time

gmx-gyrate-legacy(1)
Calculate the radius of gyration

gmx-polystat(1)
Calculate static properties of polymers

gmx-rdf(1)
Calculate radial distribution functions

gmx-rotacf(1)
Calculate the rotational correlation function for molecules

gmx-rotmat(1)
Plot the rotation matrix for fitting to a reference structure

gmx-sans-legacy(1)
Compute small angle neutron scattering spectra

gmx-saxs-legacy(1)
Compute small angle X-ray scattering spectra

gmx-traj(1)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx-vanhove(1)
Compute Van Hove displacement and correlation functions

Analyzing bonded interactions

gmx-angle(1)
Calculate distributions and correlations for angles and dihedrals

gmx-mk_angndx(1)
Generate index files for ‘gmx angle’

Structural properties

gmx-bundle(1)
Analyze bundles of axes, e.g., helices

gmx-clustsize(1)
Calculate size distributions of atomic clusters

gmx-disre(1)
Analyze distance restraints

gmx-hbond-legacy(1)
Compute and analyze hydrogen bonds

gmx-order(1)
Compute the order parameter per atom for carbon tails

gmx-principal(1)
Calculate principal axes of inertia for a group of atoms

gmx-rdf(1)
Calculate radial distribution functions

3.11. Command-line reference 119

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx-saltbr(1)
Compute salt bridges

gmx-sorient(1)
Analyze solvent orientation around solutes

gmx-spol(1)
Analyze solvent dipole orientation and polarization around solutes

Kinetic properties

gmx-bar(1)
Calculate free energy difference estimates through Bennett’s acceptance ratio

gmx-current(1)
Calculate dielectric constants and current autocorrelation function

gmx-dos(1)
Analyze density of states and properties based on that

gmx-dyecoupl(1)
Extract dye dynamics from trajectories

gmx-principal(1)
Calculate principal axes of inertia for a group of atoms

gmx-tcaf(1)
Calculate viscosities of liquids

gmx-traj(1)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx-vanhove(1)
Compute Van Hove displacement and correlation functions

gmx-velacc(1)
Calculate velocity autocorrelation functions

Electrostatic properties

gmx-current(1)
Calculate dielectric constants and current autocorrelation function

gmx-dielectric(1)
Calculate frequency dependent dielectric constants

gmx-dipoles(1)
Compute the total dipole plus fluctuations

gmx-potential(1)
Calculate the electrostatic potential across the box

gmx-spol(1)
Analyze solvent dipole orientation and polarization around solutes

gmx-genion(1)
Generate monoatomic ions on energetically favorable positions

3.11. Command-line reference 120

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Protein-specific analysis

gmx-chi(1)
Calculate everything you want to know about chi and other dihedrals

gmx-helix(1)
Calculate basic properties of alpha helices

gmx-helixorient(1)
Calculate local pitch/bending/rotation/orientation inside helices

gmx-rama(1)
Compute Ramachandran plots

gmx-wheel(1)
Plot helical wheels

Interfaces

gmx-bundle(1)
Analyze bundles of axes, e.g., helices

gmx-density(1)
Calculate the density of the system

gmx-densmap(1)
Calculate 2D planar or axial-radial density maps

gmx-densorder(1)
Calculate surface fluctuations

gmx-h2order(1)
Compute the orientation of water molecules

gmx-hydorder(1)
Compute tetrahedrality parameters around a given atom

gmx-order(1)
Compute the order parameter per atom for carbon tails

gmx-potential(1)
Calculate the electrostatic potential across the box

Covariance analysis

gmx-anaeig(1)
Analyze the eigenvectors

gmx-covar(1)
Calculate and diagonalize the covariance matrix

gmx-make_edi(1)
Generate input files for essential dynamics sampling

3.11. Command-line reference 121

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Normal modes

gmx-anaeig(1)
Analyze the normal modes

gmx-nmeig(1)
Diagonalize the Hessian for normal mode analysis

gmx-nmtraj(1)
Generate a virtual oscillating trajectory from an eigenvector

gmx-nmens(1)
Generate an ensemble of structures from the normal modes

gmx-grompp(1)
Make a run input file

gmx-mdrun(1)
Find a potential energy minimum and calculate the Hessian

3.11.2 gmx anaeig

Synopsis

gmx anaeig [-v [<.trr/.cpt/...>]] [-v2 [<.trr/.cpt/...>]]
[-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-eig [<.xvg>]] [-eig2 [<.xvg>]]
[-comp [<.xvg>]] [-rmsf [<.xvg>]] [-proj [<.xvg>]]
[-2d [<.xvg>]] [-3d [<.gro/.g96/...>]]
[-filt [<.xtc/.trr/...>]] [-extr [<.xtc/.trr/...>]]
[-over [<.xvg>]] [-inpr [<.xpm>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-[no]w] [-xvg <enum>]
[-first <int>] [-last <int>] [-skip <int>] [-max <real>]
[-nframes <int>] [-[no]split] [-[no]entropy]
[-temp <real>] [-nevskip <int>]

Description

gmx anaeig analyzes eigenvectors. The eigenvectors can be of a covariance matrix (gmx covar (page 148)) or
of a Normal Modes analysis (gmx nmeig (page 224)).

When a trajectory is projected on eigenvectors, all structures are fitted to the structure in the eigenvector file, if
present, otherwise to the structure in the structure file. When no run input file is supplied, periodicity will not be
taken into account. Most analyses are performed on eigenvectors -first to -last, but when -first is set to
-1 you will be prompted for a selection.

-comp: plot the vector components per atom of eigenvectors -first to -last.

-rmsf: plot the RMS fluctuation per atom of eigenvectors -first to -last (requires -eig).

-proj: calculate projections of a trajectory on eigenvectors -first to -last. The projections of a trajectory
on the eigenvectors of its covariance matrix are called principal components (pc’s). It is often useful to check the
cosine content of the pc’s, since the pc’s of random diffusion are cosines with the number of periods equal to half
the pc index. The cosine content of the pc’s can be calculated with the program gmx analyze (page 125).

-2d: calculate a 2d projection of a trajectory on eigenvectors -first and -last.

-3d: calculate a 3d projection of a trajectory on the first three selected eigenvectors.

-filt: filter the trajectory to show only the motion along eigenvectors -first to -last.

3.11. Command-line reference 122

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-extr: calculate the two extreme projections along a trajectory on the average structure and interpolate
-nframes frames between them, or set your own extremes with -max. The eigenvector -first will be writ-
ten unless -first and -last have been set explicitly, in which case all eigenvectors will be written to separate
files. Chain identifiers will be added when writing a .pdb (page 490) file with two or three structures (you can use
rasmol -nmrpdb to view such a .pdb (page 490) file).

Overlap calculations between covariance analysis

Note: the analysis should use the same fitting structure

-over: calculate the subspace overlap of the eigenvectors in file -v2 with eigenvectors -first to -last in
file -v.

-inpr: calculate a matrix of inner-products between eigenvectors in files -v and -v2. All eigenvectors of both
files will be used unless -first and -last have been set explicitly.

When -v and -v2 are given, a single number for the overlap between the covariance matrices is generated. Note
that the eigenvalues are by default read from the timestamp field in the eigenvector input files, but when -eig, or
-eig2 are given, the corresponding eigenvalues are used instead. The formulas are:

difference = sqrt(tr((sqrt(M1) - sqrt(M2))^2))
normalized overlap = 1 - difference/sqrt(tr(M1) + tr(M2))

shape overlap = 1 - sqrt(tr((sqrt(M1/tr(M1)) - sqrt(M2/tr(M2)))^2))

where M1 and M2 are the two covariance matrices and tr is the trace of a matrix. The numbers are proportional
to the overlap of the square root of the fluctuations. The normalized overlap is the most useful number, it is 1 for
identical matrices and 0 when the sampled subspaces are orthogonal.

When the -entropy flag is given an entropy estimate will be computed based on the Quasiharmonic approach
and based on Schlitter’s formula.

Options

Options to specify input files:

-v [<.trr/.cpt/. . . >] (eigenvec.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-v2 [<.trr/.cpt/. . . >] (eigenvec2.trr) (Optional)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-eig [<.xvg>] (eigenval.xvg) (Optional)
xvgr/xmgr file

-eig2 [<.xvg>] (eigenval2.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

-comp [<.xvg>] (eigcomp.xvg) (Optional)
xvgr/xmgr file

-rmsf [<.xvg>] (eigrmsf.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 123

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-proj [<.xvg>] (proj.xvg) (Optional)
xvgr/xmgr file

-2d [<.xvg>] (2dproj.xvg) (Optional)
xvgr/xmgr file

-3d [<.gro/.g96/. . . >] (3dproj.pdb) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-filt [<.xtc/.trr/. . . >] (filtered.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-extr [<.xtc/.trr/. . . >] (extreme.pdb) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-over [<.xvg>] (overlap.xvg) (Optional)
xvgr/xmgr file

-inpr [<.xpm>] (inprod.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-first <int> (1)
First eigenvector for analysis (-1 is select)

-last <int> (-1)
Last eigenvector for analysis (-1 is till the last)

-skip <int> (1)
Only analyse every nr-th frame

-max <real> (0)
Maximum for projection of the eigenvector on the average structure, max=0 gives the extremes

-nframes <int> (2)
Number of frames for the extremes output

-[no]split (no)
Split eigenvector projections where time is zero

-[no]entropy (no)
Compute entropy according to the Quasiharmonic formula or Schlitter’s method.

-temp <real> (298.15)
Temperature for entropy calculations

-nevskip <int> (6)
Number of eigenvalues to skip when computing the entropy due to the quasi harmonic approximation. When

3.11. Command-line reference 124

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

you do a rotational and/or translational fit prior to the covariance analysis, you get 3 or 6 eigenvalues that
are very close to zero, and which should not be taken into account when computing the entropy.

3.11.3 gmx analyze

Synopsis

gmx analyze [-f [<.xvg>]] [-ac [<.xvg>]] [-msd [<.xvg>]] [-cc [<.xvg>]]
[-dist [<.xvg>]] [-av [<.xvg>]] [-ee [<.xvg>]]
[-fitted [<.xvg>]] [-g [<.log>]] [-[no]w] [-xvg <enum>]
[-[no]time] [-b <real>] [-e <real>] [-n <int>] [-[no]d]
[-bw <real>] [-errbar <enum>] [-[no]integrate]
[-aver_start <real>] [-[no]xydy] [-[no]regression]
[-[no]luzar] [-temp <real>] [-fitstart <real>]
[-fitend <real>] [-filter <real>] [-[no]power]
[-[no]subav] [-[no]oneacf] [-acflen <int>]
[-[no]normalize] [-P <enum>] [-fitfn <enum>]
[-beginfit <real>] [-endfit <real>]

Description

gmx analyze reads an ASCII file and analyzes data sets. A line in the input file may start with a time (see
option -time) and any number of y-values may follow. Multiple sets can also be read when they are separated
by & (option -n); in this case only one y-value is read from each line. All lines starting with # and @ are skipped.
All analyses can also be done for the derivative of a set (option -d).

All options, except for -av and -power, assume that the points are equidistant in time.

gmx analyze always shows the average and standard deviation of each set, as well as the relative deviation of
the third and fourth cumulant from those of a Gaussian distribution with the same standard deviation.

Option -ac produces the autocorrelation function(s). Be sure that the time interval between data points is much
shorter than the time scale of the autocorrelation.

Option -cc plots the resemblance of set i with a cosine of i/2 periods. The formula is:

2 (integral from 0 to T of y(t) cos(i pi t) dt)^2
/ integral from 0 to T of y^2(t) dt

This is useful for principal components obtained from covariance analysis, since the principal components of
random diffusion are pure cosines.

Option -msd produces the mean square displacement(s).

Option -dist produces distribution plot(s).

Option -av produces the average over the sets. Error bars can be added with the option -errbar. The errorbars
can represent the standard deviation, the error (assuming the points are independent) or the interval containing
90% of the points, by discarding 5% of the points at the top and the bottom.

Option -ee produces error estimates using block averaging. A set is divided in a number of blocks and averages
are calculated for each block. The error for the total average is calculated from the variance between averages of
the m blocks B_i as follows: error^2 = sum (B_i -)^2 / (m*(m-1)). These errors are plotted as a function of
the block size. Also an analytical block average curve is plotted, assuming that the autocorrelation is a sum of two
exponentials. The analytical curve for the block average is:

f(t) = sigma``*``sqrt(2/T (alpha
(tau_1 ((exp(-t/tau_1) - 1)
tau_1/t + 1)) +
(1-alpha) (tau_2

(continues on next page)

3.11. Command-line reference 125

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

((exp(-t/tau_2) - 1) tau_2/t +
1)))),

where T is the total time. alpha, tau_1 and tau_2 are obtained by fitting f^2(t) to error^2. When the actual
block average is very close to the analytical curve, the error is sigma``*``sqrt(2/T (a tau_1 + (1-a) tau_2)). The
complete derivation is given in B. Hess, J. Chem. Phys. 116:209-217, 2002.

Option -filter prints the RMS high-frequency fluctuation of each set and over all sets with respect to a filtered
average. The filter is proportional to cos(pi t/len) where t goes from -len/2 to len/2. len is supplied with the option
-filter. This filter reduces oscillations with period len/2 and len by a factor of 0.79 and 0.33 respectively.

Option -g fits the data to the function given with option -fitfn.

Option -power fits the data to b t^a, which is accomplished by fitting to a t + b on log-log scale. All points after
the first zero or with a negative value are ignored.

Option -luzar performs a Luzar & Chandler kinetics analysis on output from gmx hbond (page 197). The input
file can be taken directly from gmx hbond -ac, and then the same result should be produced.

Option -fitfn performs curve fitting to a number of different curves that make sense in the context of molecular
dynamics, mainly exponential curves. More information is in the manual. To check the output of the fitting
procedure the option -fitted will print both the original data and the fitted function to a new data file. The
fitting parameters are stored as comment in the output file.

Options

Options to specify input files:

-f [<.xvg>] (graph.xvg)
xvgr/xmgr file

Options to specify output files:

-ac [<.xvg>] (autocorr.xvg) (Optional)
xvgr/xmgr file

-msd [<.xvg>] (msd.xvg) (Optional)
xvgr/xmgr file

-cc [<.xvg>] (coscont.xvg) (Optional)
xvgr/xmgr file

-dist [<.xvg>] (distr.xvg) (Optional)
xvgr/xmgr file

-av [<.xvg>] (average.xvg) (Optional)
xvgr/xmgr file

-ee [<.xvg>] (errest.xvg) (Optional)
xvgr/xmgr file

-fitted [<.xvg>] (fitted.xvg) (Optional)
xvgr/xmgr file

-g [<.log>] (fitlog.log) (Optional)
Log file

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 126

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]time (yes)
Expect a time in the input

-b <real> (-1)
First time to read from set

-e <real> (-1)
Last time to read from set

-n <int> (1)
Read this number of sets separated by &

-[no]d (no)
Use the derivative

-bw <real> (0.1)
Binwidth for the distribution

-errbar <enum> (none)
Error bars for -av: none, stddev, error, 90

-[no]integrate (no)
Integrate data function(s) numerically using trapezium rule

-aver_start <real> (0)
Start averaging the integral from here

-[no]xydy (no)
Interpret second data set as error in the y values for integrating

-[no]regression (no)
Perform a linear regression analysis on the data. If -xydy is set a second set will be interpreted as the error
bar in the Y value. Otherwise, if multiple data sets are present a multilinear regression will be performed
yielding the constant A that minimize chi^2 = (y - A_0 x_0 - A_1 x_1 - . . . - A_N x_N)^2 where now Y is
the first data set in the input file and x_i the others. Do read the information at the option -time.

-[no]luzar (no)
Do a Luzar and Chandler analysis on a correlation function and related as produced by gmx hbond
(page 197). When in addition the -xydy flag is given the second and fourth column will be interpreted
as errors in c(t) and n(t).

-temp <real> (298.15)
Temperature for the Luzar hydrogen bonding kinetics analysis (K)

-fitstart <real> (1)
Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward
rate constants for HB breaking and formation

-fitend <real> (60)
Time (ps) where to stop fitting the correlation functions in order to obtain the forward and backward rate
constants for HB breaking and formation. Only with -gem

-filter <real> (0)
Print the high-frequency fluctuation after filtering with a cosine filter of this length

-[no]power (no)
Fit data to: b t^a

-[no]subav (yes)
Subtract the average before autocorrelating

-[no]oneacf (no)
Calculate one ACF over all sets

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

3.11. Command-line reference 127

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.4 gmx angle

Synopsis

gmx angle [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-od [<.xvg>]]
[-ov [<.xvg>]] [-of [<.xvg>]] [-ot [<.xvg>]] [-oh [<.xvg>]]
[-oc [<.xvg>]] [-or [<.trr>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-type <enum>]
[-[no]all] [-binwidth <real>] [-[no]periodic]
[-[no]chandler] [-[no]avercorr] [-acflen <int>]
[-[no]normalize] [-P <enum>] [-fitfn <enum>]
[-beginfit <real>] [-endfit <real>]

Description

gmx angle computes the angle distribution for a number of angles or dihedrals.

With option -ov, you can plot the average angle of a group of angles as a function of time. With the -all option,
the first graph is the average and the rest are the individual angles.

With the -of option, gmx angle also calculates the fraction of trans dihedrals (only for dihedrals) as function
of time, but this is probably only fun for a select few.

With option -oc, a dihedral correlation function is calculated.

It should be noted that the index file must contain atom triplets for angles or atom quadruplets for dihedrals. If
this is not the case, the program will crash.

With option -or, a trajectory file is dumped containing cos and sin of selected dihedral angles, which subsequently
can be used as input for a principal components analysis using gmx covar (page 148).

Option -ot plots when transitions occur between dihedral rotamers of multiplicity 3 and -oh records a histogram
of the times between such transitions, assuming the input trajectory frames are equally spaced in time.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (angle.ndx)
Index file

Options to specify output files:

3.11. Command-line reference 128

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-od [<.xvg>] (angdist.xvg)
xvgr/xmgr file

-ov [<.xvg>] (angaver.xvg) (Optional)
xvgr/xmgr file

-of [<.xvg>] (dihfrac.xvg) (Optional)
xvgr/xmgr file

-ot [<.xvg>] (dihtrans.xvg) (Optional)
xvgr/xmgr file

-oh [<.xvg>] (trhisto.xvg) (Optional)
xvgr/xmgr file

-oc [<.xvg>] (dihcorr.xvg) (Optional)
xvgr/xmgr file

-or [<.trr>] (traj.trr) (Optional)
Trajectory in portable xdr format

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-type <enum> (angle)
Type of angle to analyse: angle, dihedral, improper, ryckaert-bellemans

-[no]all (no)
Plot all angles separately in the averages file, in the order of appearance in the index file.

-binwidth <real> (1)
binwidth (degrees) for calculating the distribution

-[no]periodic (yes)
Print dihedral angles modulo 360 degrees

-[no]chandler (no)
Use Chandler correlation function (N[trans] = 1, N[gauche] = 0) rather than cosine correlation function.
Trans is defined as phi < -60 or phi > 60.

-[no]avercorr (no)
Average the correlation functions for the individual angles/dihedrals

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

3.11. Command-line reference 129

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

Known Issues

• Counting transitions only works for dihedrals with multiplicity 3

3.11.5 gmx awh

Synopsis

gmx awh [-f [<.edr>]] [-s [<.tpr>]] [-o [<.xvg>]] [-fric [<.xvg>]]
[-b <time>] [-e <time>] [-[no]w] [-xvg <enum>] [-skip <int>]
[-[no]more] [-[no]kt]

Description

gmx awh extracts AWH data from an energy file. One or two files are written per AWH bias per time frame. The
bias index, if more than one, is appended to the file, as well as the time of the frame. By default only the PMF is
printed. With -more the bias, target and coordinate distributions are also printed. With -more the bias, target
and coordinate distributions are also printed, as well as the metric sqrt(det(friction_tensor)) normalized such that
the average is 1. Option -fric prints all components of the friction tensor to an additional set of files.

Options

Options to specify input files:

-f [<.edr>] (ener.edr)
Energy file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (awh.xvg)
xvgr/xmgr file

-fric [<.xvg>] (friction.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-skip <int> (0)
Skip number of frames between data points

3.11. Command-line reference 130

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]more (no)
Print more output

-[no]kt (no)
Print free energy output in units of kT instead of kJ/mol

3.11.6 gmx bar

Synopsis

gmx bar [-f [<.xvg> [...]]] [-g [<.edr> [...]]] [-o [<.xvg>]]
[-oi [<.xvg>]] [-oh [<.xvg>]] [-[no]w] [-xvg <enum>]
[-b <real>] [-e <real>] [-temp <real>] [-prec <int>]
[-nbmin <int>] [-nbmax <int>] [-nbin <int>] [-[no]extp]

Description

gmx bar calculates free energy difference estimates through Bennett’s acceptance ratio method (BAR). It also
automatically adds series of individual free energies obtained with BAR into a combined free energy estimate.

Every individual BAR free energy difference relies on two simulations at different states: say state A and state
B, as controlled by a parameter, lambda (see the .mdp (page 488) parameter init_lambda). The BAR method
calculates a ratio of weighted average of the Hamiltonian difference of state B given state A and vice versa. The
energy differences to the other state must be calculated explicitly during the simulation. This can be done with the
.mdp (page 488) option foreign_lambda.

Input option -f expects multiple dhdl.xvg files. Two types of input files are supported:

• Files with more than one y-value. The files should have columns with dH/dlambda and Deltalambda. The
lambda values are inferred from the legends: lambda of the simulation from the legend of dH/dlambda and
the foreign lambda values from the legends of Delta H

• Files with only one y-value. Using the -extp option for these files, it is assumed that the y-value is
dH/dlambda and that the Hamiltonian depends linearly on lambda. The lambda value of the simulation is
inferred from the subtitle (if present), otherwise from a number in the subdirectory in the file name.

The lambda of the simulation is parsed from dhdl.xvg file’s legend containing the string ‘dH’, the foreign
lambda values from the legend containing the capitalized letters ‘D’ and ‘H’. The temperature is parsed from the
legend line containing ‘T =’.

The input option -g expects multiple .edr (page 485) files. These can contain either lists of energy differences (see
the .mdp (page 488) option separate_dhdl_file), or a series of histograms (see the .mdp (page 488) options
dh_hist_size and dh_hist_spacing). The temperature and lambda values are automatically deduced
from the ener.edr file.

In addition to the .mdp (page 488) option foreign_lambda, the energy difference can also be extrapolated
from the dH/dlambda values. This is done with the``-extp`` option, which assumes that the system’s Hamiltonian
depends linearly on lambda, which is not normally the case.

The free energy estimates are determined using BAR with bisection, with the precision of the output set with
-prec. An error estimate taking into account time correlations is made by splitting the data into blocks and
determining the free energy differences over those blocks and assuming the blocks are independent. The final error
estimate is determined from the average variance over 5 blocks. A range of block numbers for error estimation
can be provided with the options -nbmin and -nbmax.

gmx bar tries to aggregate samples with the same ‘native’ and ‘foreign’ lambda values, but always assumes
independent samples. Note that when aggregating energy differences/derivatives with different sampling intervals,
this is almost certainly not correct. Usually subsequent energies are correlated and different time intervals mean
different degrees of correlation between samples.

3.11. Command-line reference 131

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The results are split in two parts: the last part contains the final results in kJ/mol, together with the error estimate
for each part and the total. The first part contains detailed free energy difference estimates and phase space overlap
measures in units of kT (together with their computed error estimate). The printed values are:

• lam_A: the lambda values for point A.

• lam_B: the lambda values for point B.

• DG: the free energy estimate.

• s_A: an estimate of the relative entropy of B in A.

• s_B: an estimate of the relative entropy of A in B.

• stdev: an estimate expected per-sample standard deviation.

The relative entropy of both states in each other’s ensemble can be interpreted as a measure of phase space overlap:
the relative entropy s_A of the work samples of lambda_B in the ensemble of lambda_A (and vice versa for s_B),
is a measure of the ‘distance’ between Boltzmann distributions of the two states, that goes to zero for identical
distributions. See Wu & Kofke, J. Chem. Phys. 123 084109 (2005) for more information.

The estimate of the expected per-sample standard deviation, as given in Bennett’s original BAR paper: Bennett,
J. Comp. Phys. 22, p 245 (1976). Eq. 10 therein gives an estimate of the quality of sampling (not directly of the
actual statistical error, because it assumes independent samples).

To get a visual estimate of the phase space overlap, use the -oh option to write series of histograms, together with
the -nbin option.

Options

Options to specify input files:

-f [<.xvg> [. . .]] (dhdl.xvg) (Optional)
xvgr/xmgr file

-g [<.edr> [. . .]] (ener.edr) (Optional)
Energy file

Options to specify output files:

-o [<.xvg>] (bar.xvg) (Optional)
xvgr/xmgr file

-oi [<.xvg>] (barint.xvg) (Optional)
xvgr/xmgr file

-oh [<.xvg>] (histogram.xvg) (Optional)
xvgr/xmgr file

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-b <real> (0)
Begin time for BAR

-e <real> (-1)
End time for BAR

-temp <real> (-1)
Temperature (K)

-prec <int> (2)
The number of digits after the decimal point

3.11. Command-line reference 132

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-nbmin <int> (5)
Minimum number of blocks for error estimation

-nbmax <int> (5)
Maximum number of blocks for error estimation

-nbin <int> (100)
Number of bins for histogram output

-[no]extp (no)
Whether to linearly extrapolate dH/dl values to use as energies

3.11.7 gmx bundle

Synopsis

gmx bundle [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-ol [<.xvg>]] [-od [<.xvg>]] [-oz [<.xvg>]]
[-ot [<.xvg>]] [-otr [<.xvg>]] [-otl [<.xvg>]]
[-ok [<.xvg>]] [-okr [<.xvg>]] [-okl [<.xvg>]]
[-oa [<.pdb>]] [-b <time>] [-e <time>] [-dt <time>]
[-tu <enum>] [-xvg <enum>] [-na <int>] [-[no]z]

Description

gmx bundle analyzes bundles of axes. The axes can be for instance helix axes. The program reads two index
groups and divides both of them in -na parts. The centers of mass of these parts define the tops and bottoms of
the axes. Several quantities are written to file: the axis length, the distance and the z-shift of the axis mid-points
with respect to the average center of all axes, the total tilt, the radial tilt and the lateral tilt with respect to the
average axis.

With options -ok, -okr and -okl the total, radial and lateral kinks of the axes are plotted. An extra index group
of kink atoms is required, which is also divided into -na parts. The kink angle is defined as the angle between the
kink-top and the bottom-kink vectors.

With option -oa the top, mid (or kink when -ok is set) and bottom points of each axis are written to a .pdb
(page 490) file each frame. The residue numbers correspond to the axis numbers. When viewing this file with
Rasmol, use the command line option -nmrpdb, and type set axis true to display the reference axis.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-ol [<.xvg>] (bun_len.xvg)
xvgr/xmgr file

-od [<.xvg>] (bun_dist.xvg)
xvgr/xmgr file

3.11. Command-line reference 133

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-oz [<.xvg>] (bun_z.xvg)
xvgr/xmgr file

-ot [<.xvg>] (bun_tilt.xvg)
xvgr/xmgr file

-otr [<.xvg>] (bun_tiltr.xvg)
xvgr/xmgr file

-otl [<.xvg>] (bun_tiltl.xvg)
xvgr/xmgr file

-ok [<.xvg>] (bun_kink.xvg) (Optional)
xvgr/xmgr file

-okr [<.xvg>] (bun_kinkr.xvg) (Optional)
xvgr/xmgr file

-okl [<.xvg>] (bun_kinkl.xvg) (Optional)
xvgr/xmgr file

-oa [<.pdb>] (axes.pdb) (Optional)
Protein data bank file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-na <int> (0)
Number of axes

-[no]z (no)
Use the z-axis as reference instead of the average axis

3.11.8 gmx check

Synopsis

gmx check [-f [<.xtc/.trr/...>]] [-f2 [<.xtc/.trr/...>]] [-s1 [<.tpr>]]
[-s2 [<.tpr>]] [-c [<.tpr/.gro/...>]] [-e [<.edr>]]
[-e2 [<.edr>]] [-n [<.ndx>]] [-m [<.tex>]] [-vdwfac <real>]
[-bonlo <real>] [-bonhi <real>] [-[no]rmsd] [-tol <real>]
[-abstol <real>] [-[no]ab] [-lastener <string>]

3.11. Command-line reference 134

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx check reads a trajectory (.tng (page 492), .trr (page 494) or .xtc (page 496)), an energy file (.edr (page 485))
or an index file (.ndx (page 489)) and prints out useful information about them.

Option -c checks for presence of coordinates, velocities and box in the file, for close contacts (smaller than
-vdwfac and not bonded, i.e. not between -bonlo and -bonhi, all relative to the sum of both Van der Waals
radii) and atoms outside the box (these may occur often and are no problem). If velocities are present, an estimated
temperature will be calculated from them.

If an index file, is given its contents will be summarized.

If both a trajectory and a .tpr (page 494) file are given (with -s1) the program will check whether the bond
lengths defined in the tpr file are indeed correct in the trajectory. If not you may have non-matching files due to
e.g. deshuffling or due to problems with virtual sites. With these flags, gmx check provides a quick check for
such problems.

The program can compare two run input (.tpr (page 494)) files when both -s1 and -s2 are supplied. When
comparing run input files this way, the default relative tolerance is reduced to 0.000001 and the absolute tolerance
set to zero to find any differences not due to minor compiler optimization differences, although you can of course
still set any other tolerances through the options. Similarly a pair of trajectory files can be compared (using the
-f2 option), or a pair of energy files (using the -e2 option).

For free energy simulations the A and B state topology from one run input file can be compared with options -s1
and -ab.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-f2 [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s1 [<.tpr>] (top1.tpr) (Optional)
Portable xdr run input file

-s2 [<.tpr>] (top2.tpr) (Optional)
Portable xdr run input file

-c [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-e [<.edr>] (ener.edr) (Optional)
Energy file

-e2 [<.edr>] (ener2.edr) (Optional)
Energy file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-m [<.tex>] (doc.tex) (Optional)
LaTeX file

Other options:

-vdwfac <real> (0.8)
Fraction of sum of VdW radii used as warning cutoff

3.11. Command-line reference 135

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-bonlo <real> (0.4)
Min. fract. of sum of VdW radii for bonded atoms

-bonhi <real> (0.7)
Max. fract. of sum of VdW radii for bonded atoms

-[no]rmsd (no)
Print RMSD for x, v and f

-tol <real> (0.001)
Relative tolerance for comparing real values defined as 2*(a-b)/(|a|+|b|)

-abstol <real> (0.001)
Absolute tolerance, useful when sums are close to zero.

-[no]ab (no)
Compare the A and B topology from one file

-lastener <string>
Last energy term to compare (if not given all are tested). It makes sense to go up until the Pressure.

3.11.9 gmx chi

Synopsis

gmx chi [-s [<.gro/.g96/...>]] [-f [<.xtc/.trr/...>]] [-ss [<.dat>]]
[-o [<.xvg>]] [-p [<.pdb>]] [-jc [<.xvg>]] [-corr [<.xvg>]]
[-g [<.log>]] [-ot [<.xvg>]] [-oh [<.xvg>]] [-rt [<.xvg>]]
[-cp [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>] [-[no]w]
[-xvg <enum>] [-r0 <int>] [-rN <int>] [-[no]phi] [-[no]psi]
[-[no]omega] [-[no]rama] [-[no]viol] [-[no]periodic]
[-[no]all] [-[no]rad] [-[no]shift] [-binwidth <int>]
[-core_rotamer <real>] [-maxchi <enum>] [-[no]normhisto]
[-[no]ramomega] [-bfact <real>] [-[no]chi_prod] [-[no]HChi]
[-bmax <real>] [-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

Description

gmx chi computes phi, psi, omega, and chi dihedrals for all your amino acid backbone and sidechains.
It can compute dihedral angle as a function of time, and as histogram distributions. The distributions
(histo-(dihedral)(RESIDUE).xvg) are cumulative over all residues of each type.

If option -corr is given, the program will calculate dihedral autocorrelation functions. The function used is
C(t) = <cos(chi(tau)) cos(chi(tau+t))>. The use of cosines rather than angles themselves, resolves the problem of
periodicity. (Van der Spoel & Berendsen (1997), Biophys. J. 72, 2032-2041). Separate files for each dihedral
of each residue (corr(dihedral)(RESIDUE)(nresnr).xvg) are output, as well as a file containing the
information for all residues (argument of -corr).

With option -all, the angles themselves as a function of time for each residue are printed to separate files
(dihedral)(RESIDUE)(nresnr).xvg. These can be in radians or degrees.

A log file (argument -g) is also written. This contains

• information about the number of residues of each type.

• The NMR ^3J coupling constants from the Karplus equation.

• a table for each residue of the number of transitions between rotamers per nanosecond, and the order pa-
rameter S^2 of each dihedral.

• a table for each residue of the rotamer occupancy.

3.11. Command-line reference 136

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

All rotamers are taken as 3-fold, except for omega and chi dihedrals to planar groups (i.e. chi_2 of aromatics, Asp
and Asn; chi_3 of Glu and Gln; and chi_4 of Arg), which are 2-fold. “rotamer 0” means that the dihedral was not
in the core region of each rotamer. The width of the core region can be set with -core_rotamer

The S^2 order parameters are also output to an .xvg (page 497) file (argument -o) and optionally as a .pdb
(page 490) file with the S^2 values as B-factor (argument -p). The total number of rotamer transitions per timestep
(argument -ot), the number of transitions per rotamer (argument -rt), and the ^3J couplings (argument -jc),
can also be written to .xvg (page 497) files. Note that the analysis of rotamer transitions assumes that the supplied
trajectory frames are equally spaced in time.

If -chi_prod is set (and -maxchi > 0), cumulative rotamers, e.g. 1+9(chi_1-1)+3(chi_2-1)+ (chi_3-1)
(if the residue has three 3-fold dihedrals and -maxchi >= 3) are calculated. As before, if any dihedral is
not in the core region, the rotamer is taken to be 0. The occupancies of these cumulative rotamers (starting
with rotamer 0) are written to the file that is the argument of -cp, and if the -all flag is given, the ro-
tamers as functions of time are written to chiproduct(RESIDUE)(nresnr).xvg and their occupancies
to histo-chiproduct(RESIDUE)(nresnr).xvg.

The option -r generates a contour plot of the average omega angle as a function of the phi and psi angles, that is,
in a Ramachandran plot the average omega angle is plotted using color coding.

Options

Options to specify input files:

-s [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-ss [<.dat>] (ssdump.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (order.xvg)
xvgr/xmgr file

-p [<.pdb>] (order.pdb) (Optional)
Protein data bank file

-jc [<.xvg>] (Jcoupling.xvg)
xvgr/xmgr file

-corr [<.xvg>] (dihcorr.xvg) (Optional)
xvgr/xmgr file

-g [<.log>] (chi.log)
Log file

-ot [<.xvg>] (dihtrans.xvg) (Optional)
xvgr/xmgr file

-oh [<.xvg>] (trhisto.xvg) (Optional)
xvgr/xmgr file

-rt [<.xvg>] (restrans.xvg) (Optional)
xvgr/xmgr file

-cp [<.xvg>] (chiprodhisto.xvg) (Optional)
xvgr/xmgr file

Other options:

3.11. Command-line reference 137

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-r0 <int> (1)
starting residue

-rN <int> (-1)
last residue

-[no]phi (no)
Output for phi dihedral angles

-[no]psi (no)
Output for psi dihedral angles

-[no]omega (no)
Output for omega dihedrals (peptide bonds)

-[no]rama (no)
Generate phi/psi and chi_1/chi_2 Ramachandran plots

-[no]viol (no)
Write a file that gives 0 or 1 for violated Ramachandran angles

-[no]periodic (yes)
Print dihedral angles modulo 360 degrees

-[no]all (no)
Output separate files for every dihedral.

-[no]rad (no)
in angle vs time files, use radians rather than degrees.

-[no]shift (no)
Compute chemical shifts from phi/psi angles

-binwidth <int> (1)
bin width for histograms (degrees)

-core_rotamer <real> (0.5)
only the central -core_rotamer*(360/multiplicity) belongs to each rotamer (the rest is assigned to ro-
tamer 0)

-maxchi <enum> (0)
calculate first ndih chi dihedrals: 0, 1, 2, 3, 4, 5, 6

-[no]normhisto (yes)
Normalize histograms

-[no]ramomega (no)
compute average omega as a function of phi/psi and plot it in an .xpm (page 495) plot

-bfact <real> (-1)
B-factor value for .pdb (page 490) file for atoms with no calculated dihedral order parameter

-[no]chi_prod (no)
compute a single cumulative rotamer for each residue

3.11. Command-line reference 138

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]HChi (no)
Include dihedrals to sidechain hydrogens

-bmax <real> (0)
Maximum B-factor on any of the atoms that make up a dihedral, for the dihedral angle to be considered
in the statistics. Applies to database work where a number of X-Ray structures is analyzed. -bmax <= 0
means no limit.

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

Known Issues

• N-terminal phi and C-terminal psi dihedrals are calculated in a non-standard way, using H-N-CA-C for
phi instead of C(-)-N-CA-C, and N-CA-C-O for psi instead of N-CA-C-N(+). This causes (usually small)
discrepancies with the output of other tools like gmx rama (page 243).

• Rotamers with multiplicity 2 are printed in chi.log as if they had

• multiplicity 3, with the 3rd (g(+)) always having probability 0

3.11.10 gmx cluster

Synopsis

gmx cluster [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-dm [<.xpm>]] [-om [<.xpm>]] [-o [<.xpm>]] [-g [<.log>]]
[-dist [<.xvg>]] [-ev [<.xvg>]] [-conv [<.xvg>]]
[-sz [<.xvg>]] [-tr [<.xpm>]] [-ntr [<.xvg>]]
[-clid [<.xvg>]] [-cl [<.xtc/.trr/...>]]
[-clndx [<.ndx>]] [-b <time>] [-e <time>] [-dt <time>]
[-tu <enum>] [-[no]w] [-xvg <enum>] [-[no]dista]
[-nlevels <int>] [-cutoff <real>] [-[no]fit]
[-max <real>] [-skip <int>] [-[no]av] [-wcl <int>]
[-nst <int>] [-rmsmin <real>] [-method <enum>]
[-minstruct <int>] [-[no]binary] [-M <int>] [-P <int>]
[-seed <int>] [-niter <int>] [-nrandom <int>]
[-kT <real>] [-[no]pbc]

3.11. Command-line reference 139

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx cluster can cluster structures using several different methods. Distances between structures can be de-
termined from a trajectory or read from an .xpm (page 495) matrix file with the -dm option. RMS deviation after
fitting or RMS deviation of atom-pair distances can be used to define the distance between structures.

single linkage: add a structure to a cluster when its distance to any element of the cluster is less than cutoff.

Jarvis Patrick: add a structure to a cluster when this structure and a structure in the cluster have each other as
neighbors and they have a least P neighbors in common. The neighbors of a structure are the M closest structures
or all structures within cutoff.

Monte Carlo: reorder the RMSD matrix using Monte Carlo such that the order of the frames is using the smallest
possible increments. With this it is possible to make a smooth animation going from one structure to another with
the largest possible (e.g.) RMSD between them, however the intermediate steps should be as small as possible.
Applications could be to visualize a potential of mean force ensemble of simulations or a pulling simulation.
Obviously the user has to prepare the trajectory well (e.g. by not superimposing frames). The final result can be
inspect visually by looking at the matrix .xpm (page 495) file, which should vary smoothly from bottom to top.

diagonalization: diagonalize the RMSD matrix.

gromos: use algorithm as described in Daura et al. (Angew. Chem. Int. Ed. 1999, 38, pp 236-240). Count number
of neighbors using cut-off, take structure with largest number of neighbors with all its neighbors as cluster and
eliminate it from the pool of clusters. Repeat for remaining structures in pool.

When the clustering algorithm assigns each structure to exactly one cluster (single linkage, Jarvis Patrick and
gromos) and a trajectory file is supplied, the structure with the smallest average distance to the others or the
average structure or all structures for each cluster will be written to a trajectory file. When writing all structures,
separate numbered files are made for each cluster.

Two output files are always written:

• -o writes the RMSD values in the upper left half of the matrix and a graphical depiction of the clusters in
the lower right half When -minstruct = 1 the graphical depiction is black when two structures are in the
same cluster. When -minstruct > 1 different colors will be used for each cluster.

• -g writes information on the options used and a detailed list of all clusters and their members.

Additionally, a number of optional output files can be written:

• -dist writes the RMSD distribution.

• -ev writes the eigenvectors of the RMSD matrix diagonalization.

• -sz writes the cluster sizes.

• -tr writes a matrix of the number transitions between cluster pairs.

• -ntr writes the total number of transitions to or from each cluster.

• -clid writes the cluster number as a function of time.

• -clndx writes the frame numbers corresponding to the clusters to the specified index file to be read into
trjconv.

• -cl writes average (with option -av) or central structure of each cluster or writes numbered files with
cluster members for a selected set of clusters (with option -wcl, depends on -nst and -rmsmin). The
center of a cluster is the structure with the smallest average RMSD from all other structures of the cluster.

3.11. Command-line reference 140

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-dm [<.xpm>] (rmsd.xpm) (Optional)
X PixMap compatible matrix file

Options to specify output files:

-om [<.xpm>] (rmsd-raw.xpm)
X PixMap compatible matrix file

-o [<.xpm>] (rmsd-clust.xpm)
X PixMap compatible matrix file

-g [<.log>] (cluster.log)
Log file

-dist [<.xvg>] (rmsd-dist.xvg) (Optional)
xvgr/xmgr file

-ev [<.xvg>] (rmsd-eig.xvg) (Optional)
xvgr/xmgr file

-conv [<.xvg>] (mc-conv.xvg) (Optional)
xvgr/xmgr file

-sz [<.xvg>] (clust-size.xvg) (Optional)
xvgr/xmgr file

-tr [<.xpm>] (clust-trans.xpm) (Optional)
X PixMap compatible matrix file

-ntr [<.xvg>] (clust-trans.xvg) (Optional)
xvgr/xmgr file

-clid [<.xvg>] (clust-id.xvg) (Optional)
xvgr/xmgr file

-cl [<.xtc/.trr/. . . >] (clusters.pdb) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-clndx [<.ndx>] (clusters.ndx) (Optional)
Index file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

3.11. Command-line reference 141

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]dista (no)
Use RMSD of distances instead of RMS deviation

-nlevels <int> (40)
Discretize RMSD matrix in this number of levels

-cutoff <real> (0.1)
RMSD cut-off (nm) for two structures to be neighbor

-[no]fit (yes)
Use least squares fitting before RMSD calculation

-max <real> (-1)
Maximum level in RMSD matrix

-skip <int> (1)
Only analyze every nr-th frame

-[no]av (no)
Write average instead of middle structure for each cluster

-wcl <int> (0)
Write the structures for this number of clusters to numbered files

-nst <int> (1)
Only write all structures if more than this number of structures per cluster

-rmsmin <real> (0)
minimum rms difference with rest of cluster for writing structures

-method <enum> (linkage)
Method for cluster determination: linkage, jarvis-patrick, monte-carlo, diagonalization, gromos

-minstruct <int> (1)
Minimum number of structures in cluster for coloring in the .xpm (page 495) file

-[no]binary (no)
Treat the RMSD matrix as consisting of 0 and 1, where the cut-off is given by -cutoff

-M <int> (10)
Number of nearest neighbors considered for Jarvis-Patrick algorithm, 0 is use cutoff

-P <int> (3)
Number of identical nearest neighbors required to form a cluster

-seed <int> (0)
Random number seed for Monte Carlo clustering algorithm (0 means generate)

-niter <int> (10000)
Number of iterations for MC

-nrandom <int> (0)
The first iterations for MC may be done complete random, to shuffle the frames

-kT <real> (0.001)
Boltzmann weighting factor for Monte Carlo optimization (zero turns off uphill steps)

-[no]pbc (yes)
PBC check

3.11. Command-line reference 142

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.11 gmx clustsize

Synopsis

gmx clustsize [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-n [<.ndx>]]
[-o [<.xpm>]] [-ow [<.xpm>]] [-nc [<.xvg>]]
[-mc [<.xvg>]] [-ac [<.xvg>]] [-hc [<.xvg>]]
[-temp [<.xvg>]] [-mcn [<.ndx>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-[no]w] [-xvg <enum>]
[-cut <real>] [-[no]mol] [-[no]pbc] [-nskip <int>]
[-nlevels <int>] [-ndf <int>] [-rgblo <vector>]
[-rgbhi <vector>]

Description

gmx clustsize computes the size distributions of molecular/atomic clusters in the gas phase. The output is
given in the form of an .xpm (page 495) file. The total number of clusters is written to an .xvg (page 497) file.

When the -mol option is given clusters will be made out of molecules rather than atoms, which allows clustering
of large molecules. In this case an index file would still contain atom numbers or your calculation will die with a
SEGV.

When velocities are present in your trajectory, the temperature of the largest cluster will be printed in a separate
.xvg (page 497) file assuming that the particles are free to move. If you are using constraints, please correct the
temperature. For instance water simulated with SHAKE or SETTLE will yield a temperature that is 1.5 times too
low. You can compensate for this with the -ndf option. Remember to take the removal of center of mass motion
into account.

The -mc option will produce an index file containing the atom numbers of the largest cluster.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xpm>] (csize.xpm)
X PixMap compatible matrix file

-ow [<.xpm>] (csizew.xpm)
X PixMap compatible matrix file

-nc [<.xvg>] (nclust.xvg)
xvgr/xmgr file

-mc [<.xvg>] (maxclust.xvg)
xvgr/xmgr file

-ac [<.xvg>] (avclust.xvg)
xvgr/xmgr file

-hc [<.xvg>] (histo-clust.xvg)
xvgr/xmgr file

3.11. Command-line reference 143

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-temp [<.xvg>] (temp.xvg) (Optional)
xvgr/xmgr file

-mcn [<.ndx>] (maxclust.ndx) (Optional)
Index file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-cut <real> (0.35)
Largest distance (nm) to be considered in a cluster

-[no]mol (no)
Cluster molecules rather than atoms (needs .tpr (page 494) file)

-[no]pbc (yes)
Use periodic boundary conditions

-nskip <int> (0)
Number of frames to skip between writing

-nlevels <int> (20)
Number of levels of grey in .xpm (page 495) output

-ndf <int> (-1)
Number of degrees of freedom of the entire system for temperature calculation. If not set, the number of
atoms times three is used.

-rgblo <vector> (1 1 0)
RGB values for the color of the lowest occupied cluster size

-rgbhi <vector> (0 0 1)
RGB values for the color of the highest occupied cluster size

3.11.12 gmx confrms

Synopsis

gmx confrms [-f1 [<.tpr/.gro/...>]] [-f2 [<.gro/.g96/...>]]
[-n1 [<.ndx>]] [-n2 [<.ndx>]] [-o [<.gro/.g96/...>]]
[-no [<.ndx>]] [-[no]w] [-[no]one] [-[no]mw] [-[no]pbc]
[-[no]fit] [-[no]name] [-[no]label] [-[no]bfac]

3.11. Command-line reference 144

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx confrms computes the root mean square deviation (RMSD) of two structures after least-squares fitting the
second structure on the first one. The two structures do NOT need to have the same number of atoms, only the
two index groups used for the fit need to be identical. With -name only matching atom names from the selected
groups will be used for the fit and RMSD calculation. This can be useful when comparing mutants of a protein.

The superimposed structures are written to file. In a .pdb (page 490) file the two structures will be written as
separate models (use rasmol -nmrpdb). Also in a .pdb (page 490) file, B-factors calculated from the atomic
MSD values can be written with -bfac.

Options

Options to specify input files:

-f1 [<.tpr/.gro/. . . >] (conf1.gro)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-f2 [<.gro/.g96/. . . >] (conf2.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-n1 [<.ndx>] (fit1.ndx) (Optional)
Index file

-n2 [<.ndx>] (fit2.ndx) (Optional)
Index file

Options to specify output files:

-o [<.gro/.g96/. . . >] (fit.pdb)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-no [<.ndx>] (match.ndx) (Optional)
Index file

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-[no]one (no)
Only write the fitted structure to file

-[no]mw (yes)
Mass-weighted fitting and RMSD

-[no]pbc (no)
Try to make molecules whole again

-[no]fit (yes)
Do least squares superposition of the target structure to the reference

-[no]name (no)
Only compare matching atom names

-[no]label (no)
Added chain labels A for first and B for second structure

-[no]bfac (no)
Output B-factors from atomic MSD values

3.11. Command-line reference 145

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.13 gmx convert-tpr

Synopsis

gmx convert-tpr [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.tpr/.gro/...>]] [-extend <time>] [-until <time>]
[-nsteps <int>] [-[no]generate_velocities]
[-velocity_temp <real>] [-velocity_seed <int>]

Description

gmx convert-tpr can edit run input files in three ways.

1. by modifying the number of steps in a run input file with options -extend, -until or -nsteps (nsteps=-1
means unlimited number of steps)

2. by creating a .tpx file for a subset of your original tpx file, which is useful when you want to remove the
solvent from your .tpx file, or when you want to make e.g. a pure Calpha .tpx file. Note that you may need to use
-nsteps -1 (or similar) to get this to work. WARNING: this .tpx file is not fully functional.

3. by setting the charges of a specified group to zero. This is useful when doing free energy estimates using the
LIE (Linear Interaction Energy) method.

Options

Options to specify input files:

-s [<.tpr/.gro/. . . >] (topol.tpr)
Run input file to modify: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
File containing additional index groups

Options to specify output files:

-o [<.tpr/.gro/. . . >] (tprout.tpr) (Optional)
Generated modified run input file: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

Other options:

-extend <time> (0)
Extend runtime by this amount (ps)

-until <time> (0)
Extend runtime until this ending time (ps)

-nsteps <int> (0)
Change the number of steps remaining to be made

-[no]generate_velocities (no)
Reassign velocities, using a generated seed unless one is explicitly set

-velocity_temp <real> (300)
Temperature to use when generating velocities

-velocity_seed <int> (-1)
Random seed for velocities. If value is -1, a new one is generated

3.11. Command-line reference 146

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.14 gmx convert-trj

Synopsis

gmx convert-trj [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xtc/.trr/...>]] [-b <time>]
[-e <time>] [-dt <time>] [-tu <enum>]
[-fgroup <selection>] [-xvg <enum>] [-[no]rmpbc]
[-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-select <selection>] [-vel <enum>] [-force <enum>]
[-atoms <enum>] [-precision <int>] [-starttime <time>]
[-timestep <time>] [-box <vector>]

Description

gmx convert-trj converts trajectory files between different formats. The module supports writing all GRO-
MACS supported file formats from the supported input formats.

Included is also a selection of possible options to modify individual trajectory frames, including options to produce
slimmer output files. It is also possible to replace the particle information stored in the input trajectory with those
from a structure file

The module can also generate subsets of trajectories based on user supplied selections.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xtc/.trr/. . . >] (trajout.xtc)
Output trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490)
tng (page 492)

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 147

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-select <selection>
Selection of particles to write to the file

-vel <enum> (preserved-if-present)
Save velocities from frame if possible: preserved-if-present, always, never

-force <enum> (preserved-if-present)
Save forces from frame if possible: preserved-if-present, always, never

-atoms <enum> (preserved-if-present)
Decide on providing new atom information from topology or using current frame atom information:
preserved-if-present, always-from-structure, never, always

-precision <int> (3)
Set output precision to custom value

-starttime <time> (0)
Change start time for first frame

-timestep <time> (0)
Change time between different frames

-box <vector>
New diagonal box vector for output frame

3.11.15 gmx covar

Synopsis

gmx covar [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-v [<.trr/.cpt/...>]]
[-av [<.gro/.g96/...>]] [-l [<.log>]] [-ascii [<.dat>]]
[-xpm [<.xpm>]] [-xpma [<.xpm>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-xvg <enum>] [-[no]fit]
[-[no]ref] [-[no]mwa] [-last <int>] [-[no]pbc]

Description

gmx covar calculates and diagonalizes the (mass-weighted) covariance matrix. All structures are fitted to the
structure in the structure file. When this is not a run input file periodicity will not be taken into account. When the
fit and analysis groups are identical and the analysis is non mass-weighted, the fit will also be non mass-weighted.

The eigenvectors are written to a trajectory file (-v). When the same atoms are used for the fit and the covariance
analysis, the reference structure for the fit is written first with t=-1. The average (or reference when -ref is used)
structure is written with t=0, the eigenvectors are written as frames with the eigenvector number and eigenvalue
as step number and timestamp, respectively.

The eigenvectors can be analyzed with gmx anaeig (page 122).

3.11. Command-line reference 148

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Option -ascii writes the whole covariance matrix to an ASCII file. The order of the elements is: x1x1, x1y1,
x1z1, x1x2, . . .

Option -xpm writes the whole covariance matrix to an .xpm (page 495) file.

Option -xpma writes the atomic covariance matrix to an .xpm (page 495) file, i.e. for each atom pair the sum of
the xx, yy and zz covariances is written.

Note that the diagonalization of a matrix requires memory and time that will increase at least as fast as than the
square of the number of atoms involved. It is easy to run out of memory, in which case this tool will probably exit
with a ‘Segmentation fault’. You should consider carefully whether a reduced set of atoms will meet your needs
for lower costs.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (eigenval.xvg)
xvgr/xmgr file

-v [<.trr/.cpt/. . . >] (eigenvec.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-av [<.gro/.g96/. . . >] (average.pdb)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-l [<.log>] (covar.log)
Log file

-ascii [<.dat>] (covar.dat) (Optional)
Generic data file

-xpm [<.xpm>] (covar.xpm) (Optional)
X PixMap compatible matrix file

-xpma [<.xpm>] (covara.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 149

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]fit (yes)
Fit to a reference structure

-[no]ref (no)
Use the deviation from the conformation in the structure file instead of from the average

-[no]mwa (no)
Mass-weighted covariance analysis

-last <int> (-1)
Last eigenvector to write away (-1 is till the last)

-[no]pbc (yes)
Apply corrections for periodic boundary conditions

3.11.16 gmx current

Synopsis

gmx current [-s [<.tpr/.gro/...>]] [-n [<.ndx>]] [-f [<.xtc/.trr/...>]]
[-o [<.xvg>]] [-caf [<.xvg>]] [-dsp [<.xvg>]]
[-md [<.xvg>]] [-mj [<.xvg>]] [-mc [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>]
[-sh <int>] [-[no]nojump] [-eps <real>] [-bfit <real>]
[-efit <real>] [-bvit <real>] [-evit <real>]
[-temp <real>]

Description

gmx current is a tool for calculating the current autocorrelation function, the correlation of the rotational and
translational dipole moment of the system, and the resulting static dielectric constant. To obtain a reasonable
result, the index group has to be neutral. Furthermore, the routine is capable of extracting the static conductivity
from the current autocorrelation function, if velocities are given. Additionally, an Einstein-Helfand fit can be used
to obtain the static conductivity.

The flag -caf is for the output of the current autocorrelation function and -mc writes the correlation of the rota-
tional and translational part of the dipole moment in the corresponding file. However, this option is only available
for trajectories containing velocities. Options -sh and -tr are responsible for the averaging and integration of
the autocorrelation functions. Since averaging proceeds by shifting the starting point through the trajectory, the
shift can be modified with -sh to enable the choice of uncorrelated starting points. Towards the end, statistical
inaccuracy grows and integrating the correlation function only yields reliable values until a certain point, depend-
ing on the number of frames. The option -tr controls the region of the integral taken into account for calculating
the static dielectric constant.

Option -temp sets the temperature required for the computation of the static dielectric constant.

Option -eps controls the dielectric constant of the surrounding medium for simulations using a Reaction Field
or dipole corrections of the Ewald summation (-eps=0 corresponds to tin-foil boundary conditions).

-[no]nojump unfolds the coordinates to allow free diffusion. This is required to get a continuous translational
dipole moment, required for the Einstein-Helfand fit. The results from the fit allow the determination of the
dielectric constant for system of charged molecules. However, it is also possible to extract the dielectric constant
from the fluctuations of the total dipole moment in folded coordinates. But this option has to be used with
care, since only very short time spans fulfill the approximation that the density of the molecules is approximately
constant and the averages are already converged. To be on the safe side, the dielectric constant should be calculated
with the help of the Einstein-Helfand method for the translational part of the dielectric constant.

3.11. Command-line reference 150

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

Options to specify output files:

-o [<.xvg>] (current.xvg)
xvgr/xmgr file

-caf [<.xvg>] (caf.xvg) (Optional)
xvgr/xmgr file

-dsp [<.xvg>] (dsp.xvg)
xvgr/xmgr file

-md [<.xvg>] (md.xvg)
xvgr/xmgr file

-mj [<.xvg>] (mj.xvg)
xvgr/xmgr file

-mc [<.xvg>] (mc.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-sh <int> (1000)
Shift of the frames for averaging the correlation functions and the mean-square displacement.

-[no]nojump (yes)
Removes jumps of atoms across the box.

-eps <real> (0)
Dielectric constant of the surrounding medium. The value zero corresponds to infinity (tin-foil boundary
conditions).

-bfit <real> (100)
Begin of the fit of the straight line to the MSD of the translational fraction of the dipole moment.

-efit <real> (400)
End of the fit of the straight line to the MSD of the translational fraction of the dipole moment.

-bvit <real> (0.5)
Begin of the fit of the current autocorrelation function to a*t^b.

3.11. Command-line reference 151

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-evit <real> (5)
End of the fit of the current autocorrelation function to a*t^b.

-temp <real> (300)
Temperature for calculating epsilon.

3.11.17 gmx density

Synopsis

gmx density [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-s [<.tpr>]]
[-ei [<.dat>]] [-o [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-d <string>]
[-sl <int>] [-dens <enum>] [-ng <int>] [-[no]center]
[-[no]symm]

Description

gmx density computes partial densities across the box, using an index file.

For the total density of NPT simulations, use gmx energy (page 177) instead.

Option -center performs the histogram binning relative to the center of an arbitrary group, in absolute box
coordinates. If you are calculating profiles along the Z axis box dimension bZ, output would be from -bZ/2 to
bZ/2 if you center based on the entire system. Note that this behaviour has changed in GROMACS 5.0; earlier
versions merely performed a static binning in (0,bZ) and shifted the output. Now we compute the center for each
frame and bin in (-bZ/2,bZ/2).

Option -symm symmetrizes the output around the center. This will automatically turn on -center too. The
binning is now always performed in relative coordinates to account for changing box dimensions with pressure
coupling, with the output scaled to the average box dimension along the output axis.

Densities are in kg/m^3, and number densities or electron densities can also be calculated. For electron densities,
a file describing the number of electrons for each type of atom should be provided using -ei. It should look like:

2
atomname = nrelectrons
atomname = nrelectrons

The first line contains the number of lines to read from the file. There should be one line for each unique atom
name in your system. The number of electrons for each atom is modified by its atomic partial charge.

IMPORTANT CONSIDERATIONS FOR BILAYERS

One of the most common usage scenarios is to calculate the density of various groups across a lipid bilayer,
typically with the z axis being the normal direction. For short simulations, small systems, and fixed box sizes
this will work fine, but for the more general case lipid bilayers can be complicated. The first problem that while
both proteins and lipids have low volume compressibility, lipids have quite high area compressiblity. This means
the shape of the box (thickness and area/lipid) will fluctuate substantially even for a fully relaxed system. Since
GROMACS places the box between the origin and positive coordinates, this in turn means that a bilayer centered
in the box will move a bit up/down due to these fluctuations, and smear out your profile. The easiest way to fix this
(if you want pressure coupling) is to use the -center option that calculates the density profile with respect to
the center of the box. Note that you can still center on the bilayer part even if you have a complex non-symmetric
system with a bilayer and, say, membrane proteins - then our output will simply have more values on one side of
the (center) origin reference.

Finally, large bilayers that are not subject to a surface tension will exhibit undulatory fluctuations, where there are
‘waves’ forming in the system. This is a fundamental property of the biological system, and if you are comparing
against experiments you likely want to include the undulation smearing effect.

3.11. Command-line reference 152

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-ei [<.dat>] (electrons.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (density.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-d <string> (Z)
Take the normal on the membrane in direction X, Y or Z.

-sl <int> (50)
Divide the box in this number of slices.

-dens <enum> (mass)
Density: mass, number, charge, electron

-ng <int> (1)
Number of groups of which to compute densities.

-[no]center (no)
Perform the binning relative to the center of the (changing) box. Useful for bilayers.

-[no]symm (no)
Symmetrize the density along the axis, with respect to the center. Useful for bilayers.

3.11. Command-line reference 153

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Known Issues

• When calculating electron densities, atomnames are used instead of types. This is bad.

3.11.18 gmx densmap

Synopsis

gmx densmap [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-od [<.dat>]] [-o [<.xpm>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-bin <real>] [-aver <enum>]
[-xmin <real>] [-xmax <real>] [-n1 <int>] [-n2 <int>]
[-amax <real>] [-rmax <real>] [-[no]mirror] [-[no]sums]
[-unit <enum>] [-dmin <real>] [-dmax <real>]

Description

gmx densmap computes 2D number-density maps. It can make planar and axial-radial density maps. The output
.xpm (page 495) file can be visualized with for instance xv and can be converted to postscript with xpm2ps.
Optionally, output can be in text form to a .dat (page 485) file with -od, instead of the usual .xpm (page 495) file
with -o.

The default analysis is a 2-D number-density map for a selected group of atoms in the x-y plane. The averaging
direction can be changed with the option -aver. When -xmin and/or -xmax are set only atoms that are within
the limit(s) in the averaging direction are taken into account. The grid spacing is set with the option -bin. When
-n1 or -n2 is non-zero, the grid size is set by this option. Box size fluctuations are properly taken into account.

When options -amax and -rmax are set, an axial-radial number-density map is made. Three groups should be
supplied, the centers of mass of the first two groups define the axis, the third defines the analysis group. The axial
direction goes from -amax to +amax, where the center is defined as the midpoint between the centers of mass and
the positive direction goes from the first to the second center of mass. The radial direction goes from 0 to rmax or
from -rmax to +rmax when the -mirror option has been set.

The normalization of the output is set with the -unit option. The default produces a true number density. Unit
nm-2 leaves out the normalization for the averaging or the angular direction. Option count produces the count
for each grid cell. When you do not want the scale in the output to go from zero to the maximum density, you can
set the maximum with the option -dmax.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-od [<.dat>] (densmap.dat) (Optional)
Generic data file

-o [<.xpm>] (densmap.xpm)
X PixMap compatible matrix file

Other options:

3.11. Command-line reference 154

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-bin <real> (0.02)
Grid size (nm)

-aver <enum> (z)
The direction to average over: z, y, x

-xmin <real> (-1)
Minimum coordinate for averaging

-xmax <real> (-1)
Maximum coordinate for averaging

-n1 <int> (0)
Number of grid cells in the first direction

-n2 <int> (0)
Number of grid cells in the second direction

-amax <real> (0)
Maximum axial distance from the center

-rmax <real> (0)
Maximum radial distance

-[no]mirror (no)
Add the mirror image below the axial axis

-[no]sums (no)
Print density sums (1D map) to stdout

-unit <enum> (nm-3)
Unit for the output: nm-3, nm-2, count

-dmin <real> (0)
Minimum density in output

-dmax <real> (0)
Maximum density in output (0 means calculate it)

3.11.19 gmx densorder

Synopsis

gmx densorder [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-o [<.dat>]] [-or [<.out> [...]]] [-og [<.xpm> [...]]]
[-Spect [<.out> [...]]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-[no]1d] [-bw <real>]
[-bwn <real>] [-order <int>] [-axis <string>]
[-method <enum>] [-d1 <real>] [-d2 <real>]
[-tblock <int>] [-nlevel <int>]

3.11. Command-line reference 155

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx densorder reduces a two-phase density distribution along an axis, computed over a MD trajectory, to
2D surfaces fluctuating in time, by a fit to a functional profile for interfacial densities. A time-averaged spatial
representation of the interfaces can be output with the option -tavg.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx)
Index file

Options to specify output files:

-o [<.dat>] (Density4D.dat) (Optional)
Generic data file

-or [<.out> [. . .]] (hello.out) (Optional)
Generic output file

-og [<.xpm> [. . .]] (interface.xpm) (Optional)
X PixMap compatible matrix file

-Spect [<.out> [. . .]] (intfspect.out) (Optional)
Generic output file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-[no]1d (no)
Pseudo-1d interface geometry

-bw <real> (0.2)
Binwidth of density distribution tangential to interface

-bwn <real> (0.05)
Binwidth of density distribution normal to interface

-order <int> (0)
Order of Gaussian filter, order 0 equates to NO filtering

-axis <string> (Z)
Axis Direction - X, Y or Z

-method <enum> (bisect)
Interface location method: bisect, functional

3.11. Command-line reference 156

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-d1 <real> (0)
Bulk density phase 1 (at small z)

-d2 <real> (1000)
Bulk density phase 2 (at large z)

-tblock <int> (100)
Number of frames in one time-block average

-nlevel <int> (100)
Number of Height levels in 2D - XPixMaps

3.11.20 gmx dielectric

Synopsis

gmx dielectric [-f [<.xvg>]] [-d [<.xvg>]] [-o [<.xvg>]] [-c [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-[no]w]
[-xvg <enum>] [-[no]x1] [-eint <real>] [-bfit <real>]
[-efit <real>] [-tail <real>] [-A <real>] [-tau1 <real>]
[-tau2 <real>] [-eps0 <real>] [-epsRF <real>]
[-fix <int>] [-ffn <enum>] [-nsmooth <int>]

Description

gmx dielectric calculates frequency dependent dielectric constants from the autocorrelation function of the
total dipole moment in your simulation. This ACF can be generated by gmx dipoles (page 158). The functional
forms of the available functions are:

• One parameter: y = exp(-a_1 x),

• Two parameters: y = a_2 exp(-a_1 x),

• Three parameters: y = a_2 exp(-a_1 x) + (1 - a_2) exp(-a_3 x).

Start values for the fit procedure can be given on the command line. It is also possible to fix parameters at their
start value, use -fix with the number of the parameter you want to fix.

Three output files are generated, the first contains the ACF, an exponential fit to it with 1, 2 or 3 parameters, and
the numerical derivative of the combination data/fit. The second file contains the real and imaginary parts of the
frequency-dependent dielectric constant, the last gives a plot known as the Cole-Cole plot, in which the imaginary
component is plotted as a function of the real component. For a pure exponential relaxation (Debye relaxation)
the latter plot should be one half of a circle.

Options

Options to specify input files:

-f [<.xvg>] (dipcorr.xvg)
xvgr/xmgr file

Options to specify output files:

-d [<.xvg>] (deriv.xvg)
xvgr/xmgr file

-o [<.xvg>] (epsw.xvg)
xvgr/xmgr file

-c [<.xvg>] (cole.xvg)
xvgr/xmgr file

Other options:

3.11. Command-line reference 157

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]x1 (yes)
use first column as x-axis rather than first data set

-eint <real> (5)
Time to end the integration of the data and start to use the fit

-bfit <real> (5)
Begin time of fit

-efit <real> (500)
End time of fit

-tail <real> (500)
Length of function including data and tail from fit

-A <real> (0.5)
Start value for fit parameter A

-tau1 <real> (10)
Start value for fit parameter tau1

-tau2 <real> (1)
Start value for fit parameter tau2

-eps0 <real> (80)
epsilon0 of your liquid

-epsRF <real> (78.5)
epsilon of the reaction field used in your simulation. A value of 0 means infinity.

-fix <int> (0)
Fix parameters at their start values, A (2), tau1 (1), or tau2 (4)

-ffn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-nsmooth <int> (3)
Number of points for smoothing

3.11.21 gmx dipoles

Synopsis

gmx dipoles [-en [<.edr>]] [-f [<.xtc/.trr/...>]] [-s [<.tpr>]]
[-n [<.ndx>]] [-o [<.xvg>]] [-eps [<.xvg>]] [-a [<.xvg>]]
[-d [<.xvg>]] [-c [<.xvg>]] [-g [<.xvg>]]
[-adip [<.xvg>]] [-dip3d [<.xvg>]] [-cos [<.xvg>]]
[-cmap [<.xpm>]] [-slab [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-mu <real>]
[-mumax <real>] [-epsilonRF <real>] [-skip <int>]
[-temp <real>] [-corr <enum>] [-[no]pairs] [-[no]quad]

3.11. Command-line reference 158

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

[-ncos <int>] [-axis <string>] [-sl <int>]
[-gkratom <int>] [-gkratom2 <int>] [-rcmax <real>]
[-[no]phi] [-nlevels <int>] [-ndegrees <int>]
[-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

Description

gmx dipoles computes the total dipole plus fluctuations of a simulation system. From this you can compute
e.g. the dielectric constant for low-dielectric media. For molecules with a net charge, the net charge is subtracted
at center of mass of the molecule.

The file Mtot.xvg contains the total dipole moment of a frame, the components as well as the norm of the vector.
The file aver.xvg contains <|mu|^2> and |<mu>|^2 during the simulation. The file dipdist.xvg contains
the distribution of dipole moments during the simulation The value of -mumax is used as the highest value in the
distribution graph.

Furthermore, the dipole autocorrelation function will be computed when option -corr is used. The output file
name is given with the -c option. The correlation functions can be averaged over all molecules (mol), plotted
per molecule separately (molsep) or it can be computed over the total dipole moment of the simulation box
(total).

Option -g produces a plot of the distance dependent Kirkwood G-factor, as well as the average cosine of the angle
between the dipoles as a function of the distance. The plot also includes gOO and hOO according to Nymand &
Linse, J. Chem. Phys. 112 (2000) pp 6386-6395. In the same plot, we also include the energy per scale computed
by taking the inner product of the dipoles divided by the distance to the third power.

EXAMPLES

gmx dipoles -corr mol -P 1 -o dip_sqr -mu 2.273 -mumax 5.0

This will calculate the autocorrelation function of the molecular dipoles using a first order Legendre polynomial
of the angle of the dipole vector and itself a time t later. For this calculation 1001 frames will be used. Further, the
dielectric constant will be calculated using an -epsilonRF of infinity (default), temperature of 300 K (default)
and an average dipole moment of the molecule of 2.273 (SPC). For the distribution function a maximum of 5.0
will be used.

Options

Options to specify input files:

-en [<.edr>] (ener.edr) (Optional)
Energy file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (Mtot.xvg)
xvgr/xmgr file

-eps [<.xvg>] (epsilon.xvg)
xvgr/xmgr file

-a [<.xvg>] (aver.xvg)
xvgr/xmgr file

3.11. Command-line reference 159

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-d [<.xvg>] (dipdist.xvg)
xvgr/xmgr file

-c [<.xvg>] (dipcorr.xvg) (Optional)
xvgr/xmgr file

-g [<.xvg>] (gkr.xvg) (Optional)
xvgr/xmgr file

-adip [<.xvg>] (adip.xvg) (Optional)
xvgr/xmgr file

-dip3d [<.xvg>] (dip3d.xvg) (Optional)
xvgr/xmgr file

-cos [<.xvg>] (cosaver.xvg) (Optional)
xvgr/xmgr file

-cmap [<.xpm>] (cmap.xpm) (Optional)
X PixMap compatible matrix file

-slab [<.xvg>] (slab.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-mu <real> (-1)
dipole of a single molecule (in Debye)

-mumax <real> (5)
max dipole in Debye (for histogram)

-epsilonRF <real> (0)
epsilon of the reaction field used during the simulation, needed for dielectric constant calculation. WARN-
ING: 0.0 means infinity (default)

-skip <int> (0)
Skip steps in the output (but not in the computations)

-temp <real> (300)
Average temperature of the simulation (needed for dielectric constant calculation)

-corr <enum> (none)
Correlation function to calculate: none, mol, molsep, total

-[no]pairs (yes)
Calculate |cos(theta)| between all pairs of molecules. May be slow

-[no]quad (no)
Take quadrupole into account

-ncos <int> (1)
Must be 1 or 2. Determines whether the <cos(theta)> is computed between all molecules in one group, or
between molecules in two different groups. This turns on the -g flag.

3.11. Command-line reference 160

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-axis <string> (Z)
Take the normal on the computational box in direction X, Y or Z.

-sl <int> (10)
Divide the box into this number of slices.

-gkratom <int> (0)
Use the n-th atom of a molecule (starting from 1) to calculate the distance between molecules rather than
the center of charge (when 0) in the calculation of distance dependent Kirkwood factors

-gkratom2 <int> (0)
Same as previous option in case ncos = 2, i.e. dipole interaction between two groups of molecules

-rcmax <real> (0)
Maximum distance to use in the dipole orientation distribution (with ncos == 2). If zero, a criterion based
on the box length will be used.

-[no]phi (no)
Plot the ‘torsion angle’ defined as the rotation of the two dipole vectors around the distance vector between
the two molecules in the .xpm (page 495) file from the -cmap option. By default the cosine of the angle
between the dipoles is plotted.

-nlevels <int> (20)
Number of colors in the cmap output

-ndegrees <int> (90)
Number of divisions on the y-axis in the cmap output (for 180 degrees)

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.22 gmx disre

Synopsis

gmx disre [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-c [<.ndx>]] [-ds [<.xvg>]] [-da [<.xvg>]] [-dn [<.xvg>]]
[-dm [<.xvg>]] [-dr [<.xvg>]] [-l [<.log>]] [-q [<.pdb>]]
[-x [<.xpm>]] [-b <time>] [-e <time>] [-dt <time>] [-[no]w]
[-xvg <enum>] [-ntop <int>] [-maxdr <real>]
[-nlevels <int>] [-[no]third]

3.11. Command-line reference 161

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx disre computes violations of distance restraints. The program always computes the instantaneous viola-
tions rather than time-averaged, because this analysis is done from a trajectory file afterwards it does not make
sense to use time averaging. However, the time averaged values per restraint are given in the log file.

An index file may be used to select specific restraints by index group label for printing.

When the optional -q flag is given a .pdb (page 490) file coloured by the amount of average violations.

When the -c option is given, an index file will be read containing the frames in your trajectory corresponding to
the clusters (defined in another manner) that you want to analyze. For these clusters the program will compute
average violations using the third power averaging algorithm and print them in the log file.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (viol.ndx) (Optional)
Index file

-c [<.ndx>] (clust.ndx) (Optional)
Index file

Options to specify output files:

-ds [<.xvg>] (drsum.xvg)
xvgr/xmgr file

-da [<.xvg>] (draver.xvg)
xvgr/xmgr file

-dn [<.xvg>] (drnum.xvg)
xvgr/xmgr file

-dm [<.xvg>] (drmax.xvg)
xvgr/xmgr file

-dr [<.xvg>] (restr.xvg)
xvgr/xmgr file

-l [<.log>] (disres.log)
Log file

-q [<.pdb>] (viol.pdb) (Optional)
Protein data bank file

-x [<.xpm>] (matrix.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

3.11. Command-line reference 162

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-ntop <int> (0)
Number of large violations that are stored in the log file every step

-maxdr <real> (0)
Maximum distance violation in matrix output. If less than or equal to 0 the maximum will be determined
by the data.

-nlevels <int> (20)
Number of levels in the matrix output

-[no]third (yes)
Use inverse third power averaging or linear for matrix output

3.11.23 gmx distance

Synopsis

gmx distance [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-oav [<.xvg>]] [-oall [<.xvg>]] [-oxyz [<.xvg>]]
[-oh [<.xvg>]] [-oallstat [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-tu <enum>]
[-fgroup <selection>] [-xvg <enum>] [-[no]rmpbc]
[-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-select <selection>] [-len <real>]
[-tol <real>] [-binw <real>]

Description

gmx distance calculates distances between pairs of positions as a function of time. Each selection specifies
an independent set of distances to calculate. Each selection should consist of pairs of positions, and the distances
are computed between positions 1-2, 3-4, etc.

-oav writes the average distance as a function of time for each selection. -oall writes all the individual
distances. -oxyz does the same, but the x, y, and z components of the distance are written instead of the norm.
-oh writes a histogram of the distances for each selection. The location of the histogram is set with -len
and -tol. Bin width is set with -binw. -oallstat writes out the average and standard deviation for each
individual distance, calculated over the frames.

Note that gmx distance calculates distances between fixed pairs (1-2, 3-4, etc.) within a single selection.
To calculate distances between two selections, including minimum, maximum, and pairwise distances, use gmx
pairdist (page 233).

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

3.11. Command-line reference 163

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options to specify output files:

-oav [<.xvg>] (distave.xvg) (Optional)
Average distances as function of time

-oall [<.xvg>] (dist.xvg) (Optional)
All distances as function of time

-oxyz [<.xvg>] (distxyz.xvg) (Optional)
Distance components as function of time

-oh [<.xvg>] (disthist.xvg) (Optional)
Histogram of the distances

-oallstat [<.xvg>] (diststat.xvg) (Optional)
Statistics for individual distances

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-select <selection>
Position pairs to calculate distances for

-len <real> (0.1)
Mean distance for histogramming

-tol <real> (1)
Width of full distribution as fraction of -len

-binw <real> (0.001)
Bin width for histogramming

3.11. Command-line reference 164

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.24 gmx dos

Synopsis

gmx dos [-f [<.trr/.cpt/...>]] [-s [<.tpr>]] [-n [<.ndx>]]
[-vacf [<.xvg>]] [-mvacf [<.xvg>]] [-dos [<.xvg>]]
[-g [<.log>]] [-b <time>] [-e <time>] [-dt <time>] [-[no]w]
[-xvg <enum>] [-[no]v] [-[no]recip] [-[no]abs] [-[no]normdos]
[-T <real>] [-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

Description

gmx dos computes the Density of States from a simulations. In order for this to be meaningful the velocities
must be saved in the trajecotry with sufficiently high frequency such as to cover all vibrations. For flexible systems
that would be around a few fs between saving. Properties based on the DoS are printed on the standard output.
Note that the density of states is calculated from the mass-weighted autocorrelation, and by default only from the
square of the real component rather than absolute value. This means the shape can differ substantially from the
plain vibrational power spectrum you can calculate with gmx velacc.

Options

Options to specify input files:

-f [<.trr/.cpt/. . . >] (traj.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-vacf [<.xvg>] (vacf.xvg)
xvgr/xmgr file

-mvacf [<.xvg>] (mvacf.xvg)
xvgr/xmgr file

-dos [<.xvg>] (dos.xvg)
xvgr/xmgr file

-g [<.log>] (dos.log)
Log file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 165

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]v (yes)
Be loud and noisy.

-[no]recip (no)
Use cm^-1 on X-axis instead of 1/ps for DoS plots.

-[no]abs (no)
Use the absolute value of the Fourier transform of the VACF as the Density of States. Default is to use the
real component only

-[no]normdos (no)
Normalize the DoS such that it adds up to 3N. This should usually not be necessary.

-T <real> (298.15)
Temperature in the simulation

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

Known Issues

• This program needs a lot of memory: total usage equals the number of atoms times 3 times number of
frames times 4 (or 8 when run in double precision).

3.11.25 gmx dssp

Synopsis

gmx dssp [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.dat>]] [-num [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-[no]pbc] [-sf <file>]
[-selrpos <enum>] [-seltype <enum>] [-sel <selection>]
[-hmode <enum>] [-hbond <enum>] [-[no]nb] [-cutoff <real>]
[-[no]clear] [-[no]pihelix] [-ppstretch <enum>]
[-[no]polypro]

3.11. Command-line reference 166

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx dssp allows using the DSSP algorithm (namely, by detecting specific patterns of hydrogen bonds between
amino acid residues) to determine the secondary structure of a protein.

One-symbol secondary structure designations that are used in the output file:

H — alpha-helix;

B — residue in isolated beta-bridge;

E — extended strand that participates in beta-ladder;

G — 3_10-helix;

I — pi-helix;

P — kappa-helix (poly-proline II helix);

S — bend;

T — hydrogen-bonded turn;

= — break;

~ — loop (no special secondary structure designation).

-num allows you to get a plot of the number of secondary structures of each type as a function of time at the
output.

-hmode selects between using hydrogen atoms directly from the structure (“gromacs” option) and using hydrogen
pseudo-atoms based on C and O atom coordinates of previous residue (“dssp” option). You should always use the
“dssp” option for structures with absent hydrogen atoms!

-hbond selects between different definitions of hydrogen bond. “energy” means the calculation of a hydrogen
bond using the electrostatic interaction energy and “geometry” means the calculation of the hydrogen bond using
geometric criterion for the existence of a hydrogen bond.

-nb allows using GROMACS neighbor-search method to find residue pairs that may have a hydrogen bond instead
of simply iterating over the residues among themselves.

-cutoff is a real value that defines maximum distance from residue to its neighbor residue used in -nb. Mini-
mum (and also recommended) value is 0.9.

-clear allows you to ignore the analysis of the secondary structure residues that are missing one or more critical
atoms (CA, C, N, O or H). Always use this option together with -hmode dssp for structures that lack hydrogen
atoms!

-pihelix changes pattern-search algorithm towards preference of pi-helices.

-ppstretch defines stretch value of polyproline-helices. “shortened” means stretch with size 2 and “default”
means stretch with size 3.

-polypro enables the search for polyproline helices (default behavior, equivalent to DSSP v4). Disabling this
option will result in disabling the search for polyproline helices, reproducing the behavior of DSSP v2.

Note that gmx dssp currently is not capable of reproducing the secondary structure of proteins whose structure
is determined by methods other than X-ray crystallography (structures in .pdb format with incorrect values in the
CRYST1 line) due to the incorrect cell size in such structures.

Please note that the computation is always done in single precision, regardless of the precision for which GRO-
MACS was configured.

3.11. Command-line reference 167

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.dat>] (dssp.dat)
Filename for DSSP output

-num [<.xvg>] (num.xvg) (Optional)
Output file name for secondary structures statistics for the trajectory

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-sel <selection>
Group for DSSP

-hmode <enum> (gromacs)
Hydrogens pseudoatoms creating mode: gromacs, dssp

-hbond <enum> (energy)
Selects between different definitions of hydrogen bond: energy, geometry

3.11. Command-line reference 168

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]nb (yes)
Use GROMACS neighbor-search method

-cutoff <real> (0.9)
Distance from residue to its neighbor residue in neighbor search. Must be >= 0.9

-[no]clear (no)
Clear defective residues from the structure

-[no]pihelix (no)
Prefer Pi Helices

-ppstretch <enum> (default)
Stretch value for PP-helices: shortened, default

-[no]polypro (yes)
Perform a search for polyproline helices

3.11.26 gmx dump

Synopsis

gmx dump [-s <.tpr>] [-f <.xtc/.trr/...>] [-e <.edr>] [-cp <.cpt>]
[-p <.top>] [-mtx <.mtx>] [-om <.mdp>] [-[no]nr]
[-[no]param] [-[no]sys] [-[no]orgir]

Description

gmx dump reads a run input file (.tpr (page 494)), a trajectory (.trr (page 494)/.xtc (page 496)/tng), an energy file
(.edr (page 485)), a checkpoint file (.cpt (page 485)) or topology file (.top (page 492)) and prints that to standard
output in a readable format. This program is essential for checking your run input file in case of problems.

Options

Options to specify input files:

-s <.tpr> (Optional)
Run input file to dump

-f <.xtc/.trr/. . . > (Optional)
Trajectory file to dump: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb
(page 490) tng (page 492)

-e <.edr> (Optional)
Energy file to dump

-cp <.cpt> (Optional)
Checkpoint file to dump

-p <.top> (Optional)
Topology file to dump

-mtx <.mtx> (Optional)
Hessian matrix to dump

Options to specify output files:

-om <.mdp> (Optional)
grompp input file from run input file

Other options:

3.11. Command-line reference 169

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]nr (yes)
Show index numbers in output (leaving them out makes comparison easier, but creates a useless topology)

-[no]param (no)
Show parameters for each bonded interaction (for comparing dumps, it is useful to combine this with -nonr)

-[no]sys (no)
List the atoms and bonded interactions for the whole system instead of for each molecule type

-[no]orgir (no)
Show input parameters from tpr as they were written by the version that produced the file, instead of how
the current version reads them

Known Issues

• The .mdp (page 488) file produced by -om can not be read by grompp.

3.11.27 gmx dyecoupl

Synopsis

gmx dyecoupl [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-ot [<.xvg>]]
[-oe [<.xvg>]] [-o [<.dat>]] [-rhist [<.xvg>]]
[-khist [<.xvg>]] [-b <time>] [-e <time>] [-tu <enum>]
[-[no]w] [-xvg <enum>] [-[no]pbcdist] [-[no]norm]
[-bins <int>] [-R0 <real>]

Description

gmx dyecoupl extracts dye dynamics from trajectory files. Currently, R and kappa^2 between dyes is extracted
for (F)RET simulations with assumed dipolar coupling as in the Foerster equation. It further allows the calculation
of R(t) and kappa^2(t), R and kappa^2 histograms and averages, as well as the instantaneous FRET efficiency E(t)
for a specified Foerster radius R_0 (switch -R0). The input dyes have to be whole (see res and mol pbc options in
trjconv). The dye transition dipole moment has to be defined by at least a single atom pair, however multiple
atom pairs can be provided in the index file. The distance R is calculated on the basis of the COMs of the given
atom pairs. The -pbcdist option calculates distances to the nearest periodic image instead to the distance in the
box. This works however only, for periodic boundaries in all 3 dimensions. The -norm option (area-) normalizes
the histograms.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx)
Index file

Options to specify output files:

-ot [<.xvg>] (rkappa.xvg) (Optional)
xvgr/xmgr file

-oe [<.xvg>] (insteff.xvg) (Optional)
xvgr/xmgr file

-o [<.dat>] (rkappa.dat) (Optional)
Generic data file

3.11. Command-line reference 170

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-rhist [<.xvg>] (rhist.xvg) (Optional)
xvgr/xmgr file

-khist [<.xvg>] (khist.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]pbcdist (no)
Distance R based on PBC

-[no]norm (no)
Normalize histograms

-bins <int> (50)
of histogram bins

-R0 <real> (-1)
Foerster radius including kappa^2=2/3 in nm

3.11.28 gmx editconf

Synopsis

gmx editconf [-f [<.gro/.g96/...>]] [-n [<.ndx>]] [-bf [<.dat>]]
[-o [<.gro/.g96/...>]] [-mead [<.pqr>]] [-[no]w]
[-[no]ndef] [-bt <enum>] [-box <vector>]
[-angles <vector>] [-d <real>] [-[no]c]
[-center <vector>] [-aligncenter <vector>]
[-align <vector>] [-translate <vector>]
[-rotate <vector>] [-[no]princ] [-scale <vector>]
[-density <real>] [-[no]pbc] [-resnr <int>] [-[no]grasp]
[-rvdw <real>] [-[no]sig56] [-[no]vdwread] [-[no]atom]
[-[no]legend] [-label <string>] [-[no]conect]

Description

gmx editconf converts generic structure format to .gro (page 486), .g96 or .pdb (page 490).

The box can be modified with options -box, -d and -angles. Both -box and -d will center the system in the
box, unless -noc is used. The -center option can be used to shift the geometric center of the system from the
default of (x/2, y/2, z/2) implied by -c to some other value.

Option -bt determines the box type: triclinic is a triclinic box, cubic is a rectangular box with all sides
equal dodecahedron represents a rhombic dodecahedron and octahedron is a truncated octahedron. The
last two are special cases of a triclinic box. The length of the three box vectors of the truncated octahedron is the
shortest distance between two opposite hexagons. Relative to a cubic box with some periodic image distance, the

3.11. Command-line reference 171

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

volume of a dodecahedron with this same periodic distance is 0.71 times that of the cube, and that of a truncated
octahedron is 0.77 times.

Option -box requires only one value for a cubic, rhombic dodecahedral, or truncated octahedral box.

With -d and a triclinic box the size of the system in the x-, y-, and z-directions is used. With -d and cubic,
dodecahedron or octahedron boxes, the dimensions are set to the diameter of the system (largest distance
between atoms) plus twice the specified distance.

Option -angles is only meaningful with option -box and a triclinic box and cannot be used with option -d.

When -n or -ndef is set, a group can be selected for calculating the size and the geometric center, otherwise the
whole system is used.

-rotate rotates the coordinates and velocities.

-princ aligns the principal axes of the system along the coordinate axes, with the longest axis aligned with the
x-axis. This may allow you to decrease the box volume, but beware that molecules can rotate significantly in a
nanosecond.

Scaling is applied before any of the other operations are performed. Boxes and coordinates can be scaled to give
a certain density (option -density). Note that this may be inaccurate in case a .gro (page 486) file is given as
input. A special feature of the scaling option is that when the factor -1 is given in one dimension, one obtains
a mirror image, mirrored in one of the planes. When one uses -1 in three dimensions, a point-mirror image is
obtained.

Groups are selected after all operations have been applied.

Periodicity can be removed in a crude manner. It is important that the box vectors at the bottom of your input file
are correct when the periodicity is to be removed.

When writing .pdb (page 490) files, B-factors can be added with the -bf option. B-factors are read from a file
with with following format: first line states number of entries in the file, next lines state an index followed by
a B-factor. The B-factors will be attached per residue unless the number of B-factors is larger than the number
of the residues or unless the -atom option is set. Obviously, any type of numeric data can be added instead of
B-factors. -legend will produce a row of CA atoms with B-factors ranging from the minimum to the maximum
value found, effectively making a legend for viewing.

With the option -mead a special .pdb (page 490) (.pqr) file for the MEAD electrostatics program (Poisson-
Boltzmann solver) can be made. A further prerequisite is that the input file is a run input file. The B-factor field is
then filled with the Van der Waals radius of the atoms while the occupancy field will hold the charge.

The option -grasp is similar, but it puts the charges in the B-factor and the radius in the occupancy.

Option -align allows alignment of the principal axis of a specified group against the given vector, with an
optional center of rotation specified by -aligncenter.

Finally, with option -label, editconf can add a chain identifier to a .pdb (page 490) file, which can be useful
for analysis with e.g. Rasmol.

To convert a truncated octrahedron file produced by a package which uses a cubic box with the corners cut off
(such as GROMOS), use:

gmx editconf -f in -rotate 0 45 35.264 -bt o -box veclen -o out

where veclen is the size of the cubic box times sqrt(3)/2.

3.11. Command-line reference 172

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-n [<.ndx>] (index.ndx) (Optional)
Index file

-bf [<.dat>] (bfact.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.gro/.g96/. . . >] (out.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-mead [<.pqr>] (mead.pqr) (Optional)
Coordinate file for MEAD

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-[no]ndef (no)
Choose output from default index groups

-bt <enum> (triclinic)
Box type for -box and -d: triclinic, cubic, dodecahedron, octahedron

-box <vector> (0 0 0)
Box vector lengths (a,b,c)

-angles <vector> (90 90 90)
Angles between the box vectors (bc,ac,ab)

-d <real> (0)
Distance between the solute and the box

-[no]c (no)
Center molecule in box (implied by -box and -d)

-center <vector> (0 0 0)
Shift the geometrical center to (x,y,z)

-aligncenter <vector> (0 0 0)
Center of rotation for alignment

-align <vector> (0 0 0)
Align to target vector

-translate <vector> (0 0 0)
Translation

-rotate <vector> (0 0 0)
Rotation around the X, Y and Z axes in degrees

-[no]princ (no)
Orient molecule(s) along their principal axes

-scale <vector> (1 1 1)
Scaling factor

-density <real> (1000)
Density (g/L) of the output box achieved by scaling

-[no]pbc (no)
Remove the periodicity (make molecule whole again)

3.11. Command-line reference 173

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-resnr <int> (-1)
Renumber residues starting from resnr

-[no]grasp (no)
Store the charge of the atom in the B-factor field and the radius of the atom in the occupancy field

-rvdw <real> (0.12)
Default Van der Waals radius (in nm) if one can not be found in the database or if no parameters are present
in the topology file

-[no]sig56 (no)
Use rmin/2 (minimum in the Van der Waals potential) rather than sigma/2

-[no]vdwread (no)
Read the Van der Waals radii from the file vdwradii.dat rather than computing the radii based on the
force field

-[no]atom (no)
Force B-factor attachment per atom

-[no]legend (no)
Make B-factor legend

-label <string> (A)
Add chain label for all residues

-[no]conect (no)
Add CONECT records to a .pdb (page 490) file when written. Can only be done when a topology (tpr file)
is present

Known Issues

• For complex molecules, the periodicity removal routine may break down,

• in that case you can use gmx trjconv (page 281).

3.11.29 gmx eneconv

Synopsis

gmx eneconv [-f [<.edr> [...]]] [-o [<.edr>]] [-b <real>] [-e <real>]
[-dt <real>] [-offset <real>] [-[no]settime] [-[no]sort]
[-[no]rmdh] [-scalefac <real>] [-[no]error]

Description

With multiple files specified for the -f option:

Concatenates several energy files in sorted order. In the case of double time frames, the one in the later file is
used. By specifying -settime you will be asked for the start time of each file. The input files are taken from
the command line, such that the command gmx eneconv -f *.edr -o fixed.edr should do the trick.

With one file specified for -f:

Reads one energy file and writes another, applying the -dt, -offset, -t0 and -settime options and con-
verting to a different format if necessary (indicated by file extensions).

-settime is applied first, then -dt/-offset followed by -b and -e to select which frames to write.

3.11. Command-line reference 174

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.edr> [. . .]] (ener.edr)
Energy file

Options to specify output files:

-o [<.edr>] (fixed.edr)
Energy file

Other options:

-b <real> (-1)
First time to use

-e <real> (-1)
Last time to use

-dt <real> (0)
Only write out frame when t MOD dt = offset

-offset <real> (0)
Time offset for -dt option

-[no]settime (no)
Change starting time interactively

-[no]sort (yes)
Sort energy files (not frames)

-[no]rmdh (no)
Remove free energy block data

-scalefac <real> (1)
Multiply energy component by this factor

-[no]error (yes)
Stop on errors in the file

Known Issues

• When combining trajectories the sigma and E^2 (necessary for statistics) are not updated correctly. Only
the actual energy is correct. One thus has to compute statistics in another way.

3.11.30 gmx enemat

Synopsis

gmx enemat [-f [<.edr>]] [-groups [<.dat>]] [-eref [<.dat>]]
[-emat [<.xpm>]] [-etot [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-[no]sum]
[-skip <int>] [-[no]mean] [-nlevels <int>] [-max <real>]
[-min <real>] [-[no]coulsr] [-[no]coul14] [-[no]ljsr]
[-[no]lj14] [-[no]bhamsr] [-[no]free] [-temp <real>]

3.11. Command-line reference 175

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx enemat extracts an energy matrix from the energy file (-f). With -groups a file must be supplied with
on each line a group of atoms to be used. For these groups matrix of interaction energies will be extracted from
the energy file by looking for energy groups with names corresponding to pairs of groups of atoms, e.g. if your
-groups file contains:

2
Protein
SOL

then energy groups with names like ‘Coul-SR:Protein-SOL’ and ‘LJ:Protein-SOL’ are expected in the energy
file (although gmx enemat is most useful if many groups are analyzed simultaneously). Matrices for differ-
ent energy types are written out separately, as controlled by the -[no]coul, -[no]coulr, -[no]coul14,
-[no]lj, -[no]lj14, -[no]bham and -[no]free options. Finally, the total interaction energy energy per
group can be calculated (-etot).

An approximation of the free energy can be calculated using: E_free = E_0 + kT log(<exp((E-E_0)/kT)>), where
‘<>’ stands for time-average. A file with reference free energies can be supplied to calculate the free energy
difference with some reference state. Group names (e.g. residue names) in the reference file should correspond
to the group names as used in the -groups file, but a appended number (e.g. residue number) in the -groups
will be ignored in the comparison.

Options

Options to specify input files:

-f [<.edr>] (ener.edr) (Optional)
Energy file

-groups [<.dat>] (groups.dat)
Generic data file

-eref [<.dat>] (eref.dat) (Optional)
Generic data file

Options to specify output files:

-emat [<.xpm>] (emat.xpm)
X PixMap compatible matrix file

-etot [<.xvg>] (energy.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]sum (no)
Sum the energy terms selected rather than display them all

3.11. Command-line reference 176

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-skip <int> (0)
Skip number of frames between data points

-[no]mean (yes)
with -groups extracts matrix of mean energies instead of matrix for each timestep

-nlevels <int> (20)
number of levels for matrix colors

-max <real> (1e+20)
max value for energies

-min <real> (-1e+20)
min value for energies

-[no]coulsr (yes)
extract Coulomb SR energies

-[no]coul14 (no)
extract Coulomb 1-4 energies

-[no]ljsr (yes)
extract Lennard-Jones SR energies

-[no]lj14 (no)
extract Lennard-Jones 1-4 energies

-[no]bhamsr (no)
extract Buckingham SR energies

-[no]free (yes)
calculate free energy

-temp <real> (300)
reference temperature for free energy calculation

3.11.31 gmx energy

Synopsis

gmx energy [-f [<.edr>]] [-f2 [<.edr>]] [-s [<.tpr>]] [-o [<.xvg>]]
[-viol [<.xvg>]] [-pairs [<.xvg>]] [-corr [<.xvg>]]
[-vis [<.xvg>]] [-evisco [<.xvg>]] [-eviscoi [<.xvg>]]
[-ravg [<.xvg>]] [-odh [<.xvg>]] [-b <time>] [-e <time>]
[-[no]w] [-xvg <enum>] [-[no]fee] [-fetemp <real>]
[-zero <real>] [-[no]sum] [-[no]dp] [-nbmin <int>]
[-nbmax <int>] [-[no]mutot] [-[no]aver] [-nmol <int>]
[-[no]fluct_props] [-[no]driftcorr] [-[no]fluc]
[-[no]orinst] [-[no]ovec] [-einstein_restarts <int>]
[-einstein_blocks <int>] [-acflen <int>] [-[no]normalize]
[-P <enum>] [-fitfn <enum>] [-beginfit <real>]
[-endfit <real>]

3.11. Command-line reference 177

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx energy extracts energy components from an energy file. The user is prompted to interactively select the
desired energy terms.

Average, RMSD, and drift are calculated with full precision from the simulation (see printed manual). Drift is
calculated by performing a least-squares fit of the data to a straight line. The reported total drift is the difference
of the fit at the first and last point. An error estimate of the average is given based on a block averages over 5
blocks using the full-precision averages. The error estimate can be performed over multiple block lengths with the
options -nbmin and -nbmax. Note that in most cases the energy files contains averages over all MD steps, or
over many more points than the number of frames in energy file. This makes the gmx energy statistics output
more accurate than the .xvg (page 497) output. When exact averages are not present in the energy file, the statistics
mentioned above are simply over the single, per-frame energy values.

The term fluctuation gives the RMSD around the least-squares fit.

Some fluctuation-dependent properties can be calculated provided the correct energy terms are selected, and that
the command line option -fluct_props is given. The following properties will be computed:

Property Energy terms needed

Heat capacity C_p (NPT sims): Enthalpy, Temp
Heat capacity C_v (NVT sims): Etot, Temp
Thermal expansion coeff. (NPT): Enthalpy, Vol, Temp
Isothermal compressibility: Vol, Temp
Adiabatic bulk modulus: Vol, Temp

You always need to set the number of molecules -nmol. The C_p/C_v computations do not include any correc-
tions for quantum effects. Use the gmx dos (page 165) program if you need that (and you do).

Option -odh extracts and plots the free energy data (Hamiltoian differences and/or the Hamiltonian derivative
dhdl) from the ener.edr file.

With -fee an estimate is calculated for the free-energy difference with an ideal gas state:

Delta A = A(N,V,T) - A_idealgas(N,V,T) = kT
ln(<exp(U_pot/kT)>)
Delta G = G(N,p,T) - G_idealgas(N,p,T) = kT
ln(<exp(U_pot/kT)>)

where k is Boltzmann’s constant, T is set by -fetemp and the average is over the ensemble (or time in a trajec-
tory). Note that this is in principle only correct when averaging over the whole (Boltzmann) ensemble and using
the potential energy. This also allows for an entropy estimate using:

Delta S(N,V,T) = S(N,V,T) - S_idealgas(N,V,T) =
(<U_pot> - Delta A)/T
Delta S(N,p,T) = S(N,p,T) - S_idealgas(N,p,T) =
(<U_pot> + pV - Delta G)/T

When a second energy file is specified (-f2), a free energy difference is calculated:

dF = -kT
ln(<exp(-(E_B-E_A) /
kT)>_A),

where E_A and E_B are the energies from the first and second energy files, and the average is over the ensemble
A. The running average of the free energy difference is printed to a file specified by -ravg. Note that the energies
must both be calculated from the same trajectory.

For liquids, viscosities can be calculated by integrating the auto-correlation function of, or by using the Einstein
formula for, the off-diagonal pressure elements. The option -vis turns calculation of the shear and bulk vis-
cosity through integration of the auto-correlation function. For accurate results, this requires extremely frequent

3.11. Command-line reference 178

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

computation and output of the pressure tensor. The Einstein formula does not require frequent output and is
therefore more convenient. Note that frequent pressure calculation (nstcalcenergy mdp parameter) is still needed.
Option -evicso gives this shear viscosity estimate and option -eviscoi the integral. Using one of these
two options also triggers the other. The viscosity is computed from integrals averaged over uniformly distributed
-einstein_restarts starting points, which are sampled over one block out of -einstein_blocks of
the trajectory.

Options

Options to specify input files:

-f [<.edr>] (ener.edr)
Energy file

-f2 [<.edr>] (ener.edr) (Optional)
Energy file

-s [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (energy.xvg)
xvgr/xmgr file

-viol [<.xvg>] (violaver.xvg) (Optional)
xvgr/xmgr file

-pairs [<.xvg>] (pairs.xvg) (Optional)
xvgr/xmgr file

-corr [<.xvg>] (enecorr.xvg) (Optional)
xvgr/xmgr file

-vis [<.xvg>] (visco.xvg) (Optional)
xvgr/xmgr file

-evisco [<.xvg>] (evisco.xvg) (Optional)
xvgr/xmgr file

-eviscoi [<.xvg>] (eviscoi.xvg) (Optional)
xvgr/xmgr file

-ravg [<.xvg>] (runavgdf.xvg) (Optional)
xvgr/xmgr file

-odh [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]fee (no)
Do a free energy estimate

3.11. Command-line reference 179

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-fetemp <real> (300)
Reference temperature for free energy calculation

-zero <real> (0)
Subtract a zero-point energy

-[no]sum (no)
Sum the energy terms selected rather than display them all

-[no]dp (no)
Print energies in high precision

-nbmin <int> (5)
Minimum number of blocks for error estimate

-nbmax <int> (5)
Maximum number of blocks for error estimate

-[no]mutot (no)
Compute the total dipole moment from the components

-[no]aver (no)
Also print the exact average and rmsd stored in the energy frames (only when 1 term is requested)

-nmol <int> (1)
Number of molecules in your sample: the energies are divided by this number

-[no]fluct_props (no)
Compute properties based on energy fluctuations, like heat capacity

-[no]driftcorr (no)
Useful only for calculations of fluctuation properties. The drift in the observables will be subtracted before
computing the fluctuation properties.

-[no]fluc (no)
Calculate autocorrelation of energy fluctuations rather than energy itself

-[no]orinst (no)
Analyse instantaneous orientation data

-[no]ovec (no)
Also plot the eigenvectors with -oten

-einstein_restarts <int> (100)
Number of restarts for computing the viscosity using the Einstein relation

-einstein_blocks <int> (4)
Number of averaging windows for computing the viscosity using the Einstein relation

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11. Command-line reference 180

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.32 gmx extract-cluster

Synopsis

gmx extract-cluster [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-clusters [<.ndx>]]
[-o [<.xtc/.trr/...>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-[no]pbc] [-sf <file>]
[-selrpos <enum>] [-select <selection>] [-vel <enum>]
[-force <enum>] [-atoms <enum>] [-precision <int>]
[-starttime <time>] [-timestep <time>] [-box <vector>]

Description

gmx extract-cluster can be used to extract trajectory frames that correspond to clusters obtained from
running gmx cluster with the -clndx option. The module supports writing all GROMACS supported trajectory file
formats.

Included is also a selection of possible options to change additional information.

It is possible to write only a selection of atoms to the output trajectory files for each cluster.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

-clusters [<.ndx>] (cluster.ndx)
Name of index file containing frame indices for each cluster, obtained from gmx cluster -clndx.

Options to specify output files:

-o [<.xtc/.trr/. . . >] (trajout.xtc)
Prefix for the name of the trajectory file written for each cluster.: xtc (page 496) trr (page 494) cpt (page 485)
gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

3.11. Command-line reference 181

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-select <selection>
Selection of atoms to write to the file

-vel <enum> (preserved-if-present)
Save velocities from frame if possible: preserved-if-present, always, never

-force <enum> (preserved-if-present)
Save forces from frame if possible: preserved-if-present, always, never

-atoms <enum> (preserved-if-present)
Decide on providing new atom information from topology or using current frame atom information:
preserved-if-present, always-from-structure, never, always

-precision <int> (3)
Set output precision to custom value

-starttime <time> (0)
Change start time for first frame

-timestep <time> (0)
Change time between different frames

-box <vector>
New diagonal box vector for output frame

3.11.33 gmx filter

Synopsis

gmx filter [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-ol [<.xtc/.trr/...>]] [-oh [<.xtc/.trr/...>]]
[-b <time>] [-e <time>] [-dt <time>] [-[no]w] [-nf <int>]
[-[no]all] [-[no]nojump] [-[no]fit]

Description

gmx filter performs frequency filtering on a trajectory. The filter shape is cos(pi t/A) + 1 from -A to +A,
where A is given by the option -nf times the time step in the input trajectory. This filter reduces fluctuations with
period A by 85%, with period 2*A by 50% and with period 3*A by 17% for low-pass filtering. Both a low-pass
and high-pass filtered trajectory can be written.

Option -ol writes a low-pass filtered trajectory. A frame is written every -nf input frames. This ratio of filter
length and output interval ensures a good suppression of aliasing of high-frequency motion, which is useful for
making smooth movies. Also averages of properties which are linear in the coordinates are preserved, since all
input frames are weighted equally in the output. When all frames are needed, use the -all option.

3.11. Command-line reference 182

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Option -oh writes a high-pass filtered trajectory. The high-pass filtered coordinates are added to the coordinates
from the structure file. When using high-pass filtering use -fit or make sure you use a trajectory that has been
fitted on the coordinates in the structure file.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-ol [<.xtc/.trr/. . . >] (lowpass.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

-oh [<.xtc/.trr/. . . >] (highpass.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-nf <int> (10)
Sets the filter length as well as the output interval for low-pass filtering

-[no]all (no)
Write all low-pass filtered frames

-[no]nojump (yes)
Remove jumps of atoms across the box

-[no]fit (no)
Fit all frames to a reference structure

3.11.34 gmx freevolume

Synopsis

gmx freevolume [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-sf <file>]
[-selrpos <enum>] [-select <selection>] [-radius <real>]
[-seed <int>] [-ninsert <int>]

3.11. Command-line reference 183

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx freevolume calculates the free volume in a box as a function of time. The free volume is plotted as a
fraction of the total volume. The program tries to insert a probe with a given radius, into the simulations box and
if the distance between the probe and any atom is less than the sums of the van der Waals radii of both atoms,
the position is considered to be occupied, i.e. non-free. By using a probe radius of 0, the true free volume is
computed. By using a larger radius, e.g. 0.14 nm, roughly corresponding to a water molecule, the free volume for
a hypothetical particle with that size will be produced. Note however, that since atoms are treated as hard-spheres
these number are very approximate, and typically only relative changes are meaningful, for instance by doing a
series of simulations at different temperature.

The group specified by the selection is considered to delineate non-free volume. The number of insertions per unit
of volume is important to get a converged result. About 1000/nm^3 yields an overall standard deviation that is
determined by the fluctuations in the trajectory rather than by the fluctuations due to the random numbers.

The results are critically dependent on the van der Waals radii; we recommend to use the values due to Bondi
(1964).

The Fractional Free Volume (FFV) that some authors like to use is given by 1 - 1.3*(1-Free Volume). This value
is printed on the terminal.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (freevolume.xvg) (Optional)
Computed free volume

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-sf <file>
Provide selections from files

3.11. Command-line reference 184

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-select <selection>
Atoms that are considered as part of the excluded volume

-radius <real> (0)
Radius of the probe to be inserted (nm, 0 yields the true free volume)

-seed <int> (0)
Seed for random number generator (0 means generate).

-ninsert <int> (1000)
Number of probe insertions per cubic nm to try for each frame in the trajectory.

3.11.35 gmx gangle

Synopsis

gmx gangle [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-oav [<.xvg>]] [-oall [<.xvg>]] [-oh [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-tu <enum>]
[-fgroup <selection>] [-xvg <enum>] [-[no]rmpbc]
[-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-g1 <enum>] [-g2 <enum>] [-binw <real>]
[-group1 <selection>] [-group2 <selection>]

Description

gmx gangle computes different types of angles between vectors. It supports both vectors defined by two posi-
tions and normals of planes defined by three positions. The z axis or the local normal of a sphere can also be used
as one of the vectors. There are also convenience options ‘angle’ and ‘dihedral’ for calculating bond angles and
dihedrals defined by three/four positions.

The type of the angle is specified with -g1 and -g2. If -g1 is angle or dihedral, -g2 should not be
specified. In this case, -group1 should specify one or more selections, and each should contain triplets or
quartets of positions that define the angles to be calculated.

If -g1 is vector or plane, -group1 should specify selections that contain either pairs (vector) or triplets
(plane) of positions. For vectors, the positions set the endpoints of the vector, and for planes, the three positions
are used to calculate the normal of the plane. In both cases, -g2 specifies the other vector to use (see below).

With -g2 vector or -g2 plane, -group2 should specify another set of vectors. -group1 and -group2
should specify the same number of selections. It is also allowed to only have a single selection for one of the
options, in which case the same selection is used with each selection in the other group. Similarly, for each
selection in -group1, the corresponding selection in -group2 should specify the same number of vectors or a
single vector. In the latter case, the angle is calculated between that single vector and each vector from the other
selection.

With -g2 sphnorm, each selection in -group2 should specify a single position that is the center of the
sphere. The second vector is calculated as the vector from the center to the midpoint of the positions specified by
-group1.

With -g2 z, -group2 is not necessary, and angles between the first vectors and the positive Z axis are calcu-
lated.

With -g2 t0, -group2 is not necessary, and angles are calculated from the vectors as they are in the first frame.

3.11. Command-line reference 185

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

There are three options for output: -oav writes an xvg file with the time and the average angle for each frame.
-oall writes all the individual angles. -oh writes a histogram of the angles. The bin width can be set with
-binw. For -oav and -oh, separate average/histogram is computed for each selection in -group1.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-oav [<.xvg>] (angaver.xvg) (Optional)
Average angles as a function of time

-oall [<.xvg>] (angles.xvg) (Optional)
All angles as a function of time

-oh [<.xvg>] (anghist.xvg) (Optional)
Histogram of the angles

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

3.11. Command-line reference 186

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-g1 <enum> (angle)
Type of analysis/first vector group: angle, dihedral, vector, plane

-g2 <enum> (none)
Type of second vector group: none, vector, plane, t0, z, sphnorm

-binw <real> (1)
Binwidth for -oh in degrees

-group1 <selection>
First analysis/vector selection

-group2 <selection>
Second analysis/vector selection

3.11.36 gmx genconf

Synopsis

gmx genconf [-f [<.gro/.g96/...>]] [-trj [<.xtc/.trr/...>]]
[-o [<.gro/.g96/...>]] [-nbox <vector>] [-dist <vector>]
[-seed <int>] [-[no]rot] [-maxrot <vector>]
[-[no]renumber]

Description

gmx genconf multiplies a given coordinate file by simply stacking them on top of each other, like a small child
playing with wooden blocks. The program makes a grid of user-defined proportions (-nbox), and interspaces the
grid point with an extra space -dist.

When option -rot is used the program does not check for overlap between molecules on grid points. It is
recommended to make the box in the input file at least as big as the coordinates + van der Waals radius.

If the optional trajectory file is given, conformations are not generated, but read from this file and translated
appropriately to build the grid.

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-trj [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

Options to specify output files:

-o [<.gro/.g96/. . . >] (out.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

Other options:

-nbox <vector> (1 1 1)
Number of boxes

-dist <vector> (0 0 0)
Distance between boxes

-seed <int> (0)
Random generator seed (0 means generate)

3.11. Command-line reference 187

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]rot (no)
Randomly rotate conformations

-maxrot <vector> (180 180 180)
Maximum random rotation

-[no]renumber (yes)
Renumber residues

Known Issues

• The program should allow for random displacement of lattice points.

3.11.37 gmx genion

Synopsis

gmx genion [-s [<.tpr>]] [-n [<.ndx>]] [-p [<.top>]]
[-o [<.gro/.g96/...>]] [-np <int>] [-pname <string>]
[-pq <int>] [-nn <int>] [-nname <string>] [-nq <int>]
[-rmin <real>] [-seed <int>] [-conc <real>] [-[no]neutral]

Description

gmx genion randomly replaces solvent molecules with monoatomic ions. The group of solvent molecules
should be continuous and all molecules should have the same number of atoms. The user should add the ion
molecules to the topology file or use the -p option to automatically modify the topology.

The ion molecule type, residue and atom names in all force fields are the capitalized element names without sign.
This molecule name should be given with -pname or -nname, and the [molecules] section of your topology
updated accordingly, either by hand or with -p. Do not use an atom name instead!

Ions which can have multiple charge states get the multiplicity added, without sign, for the uncommon states only.

For larger ions, e.g. sulfate we recommended using gmx insert-molecules (page 207).

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify input/output files:

-p [<.top>] (topol.top) (Optional)
Topology file

Options to specify output files:

-o [<.gro/.g96/. . . >] (out.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

Other options:

-np <int> (0)
Number of positive ions

3.11. Command-line reference 188

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-pname <string> (NA)
Name of the positive ion

-pq <int> (1)
Charge of the positive ion

-nn <int> (0)
Number of negative ions

-nname <string> (CL)
Name of the negative ion

-nq <int> (-1)
Charge of the negative ion

-rmin <real> (0.6)
Minimum distance between ions and non-solvent

-seed <int> (0)
Seed for random number generator (0 means generate)

-conc <real> (0)
Specify salt concentration (mol/liter). This will add sufficient ions to reach up to the specified concentration
as computed from the volume of the cell in the input .tpr (page 494) file. Overrides the -np and -nn
options.

-[no]neutral (no)
This option will add enough ions to neutralize the system. These ions are added on top of those specified
with -np/-nn or -conc.

Known Issues

• If you specify a salt concentration existing ions are not taken into account. In effect you therefore specify
the amount of salt to be added.

3.11.38 gmx genrestr

Synopsis

gmx genrestr [-f [<.gro/.g96/...>]] [-n [<.ndx>]] [-o [<.itp>]]
[-of [<.ndx>]] [-fc <vector>] [-freeze <real>]
[-[no]disre] [-disre_dist <real>] [-disre_frac <real>]
[-disre_up2 <real>] [-cutoff <real>] [-[no]constr]

Description

gmx genrestr produces an #include file for a topology containing a list of atom numbers and three force
constants for the x-, y-, and z-direction based on the contents of the -f file. A single isotropic force constant may
be given on the command line instead of three components.

WARNING: Position restraints are interactions within molecules, therefore they must be included within the cor-
rect [moleculetype] block in the topology. The atom indices within the [position_restraints
] block must be within the range of the atom indices for that molecule type. Since the atom numbers in every
moleculetype in the topology start at 1 and the numbers in the input file for gmx genrestr number consecu-
tively from 1, gmx genrestr will only produce a useful file for the first molecule. You may wish to edit the
resulting index file to remove the lines for later atoms, or construct a suitable index group to provide as input to
gmx genrestr.

The -of option produces an index file that can be used for freezing atoms. In this case, the input file must be a
.pdb (page 490) file.

3.11. Command-line reference 189

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

With the -disre option, half a matrix of distance restraints is generated instead of position restraints. With this
matrix, that one typically would apply to Calpha atoms in a protein, one can maintain the overall conformation of
a protein without tieing it to a specific position (as with position restraints).

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.itp>] (posre.itp)
Include file for topology

-of [<.ndx>] (freeze.ndx) (Optional)
Index file

Other options:

-fc <vector> (1000 1000 1000)
Force constants (kJ/mol nm^2)

-freeze <real> (0)
If the -of option or this one is given an index file will be written containing atom numbers of all atoms that
have a B-factor less than the level given here

-[no]disre (no)
Generate a distance restraint matrix for all the atoms in index

-disre_dist <real> (0.1)
Distance range around the actual distance for generating distance restraints

-disre_frac <real> (0)
Fraction of distance to be used as interval rather than a fixed distance. If the fraction of the distance that you
specify here is less than the distance given in the previous option, that one is used instead.

-disre_up2 <real> (1)
Distance between upper bound for distance restraints, and the distance at which the force becomes constant
(see manual)

-cutoff <real> (-1)
Only generate distance restraints for atoms pairs within cutoff (nm)

-[no]constr (no)
Generate a constraint matrix rather than distance restraints. Constraints of type 2 will be generated that do
generate exclusions.

3.11.39 gmx grompp

Synopsis

gmx grompp [-f [<.mdp>]] [-c [<.gro/.g96/...>]] [-r [<.gro/.g96/...>]]
[-rb [<.gro/.g96/...>]] [-n [<.ndx>]] [-p [<.top>]]
[-t [<.trr/.cpt/...>]] [-e [<.edr>]] [-qmi [<.inp>]]
[-ref [<.trr/.cpt/...>]] [-po [<.mdp>]] [-pp [<.top>]]
[-o [<.tpr>]] [-imd [<.gro>]] [-[no]v] [-time <real>]
[-[no]rmvsbds] [-maxwarn <int>] [-[no]zero] [-[no]renum]

3.11. Command-line reference 190

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx grompp (the gromacs preprocessor) reads a molecular topology file, checks the validity of the file, expands
the topology from a molecular description to an atomic description. The topology file contains information about
molecule types and the number of molecules, the preprocessor copies each molecule as needed. There is no
limitation on the number of molecule types. Bonds and bond-angles can be converted into constraints, separately
for hydrogens and heavy atoms. Then a coordinate file is read and velocities can be generated from a Maxwellian
distribution if requested. gmx grompp also reads parameters for gmx mdrun (page 215) (eg. number of MD
steps, time step, cut-off). Eventually a binary file is produced that can serve as the sole input file for the MD
program.

gmx grompp uses the atom names from the topology file. The atom names in the coordinate file (option -c) are
only read to generate warnings when they do not match the atom names in the topology. Note that the atom names
are irrelevant for the simulation as only the atom types are used for generating interaction parameters.

gmx grompp uses a built-in preprocessor to resolve includes, macros, etc. The preprocessor supports the fol-
lowing keywords:

#ifdef VARIABLE
#ifndef VARIABLE
#else
#endif
#define VARIABLE
#undef VARIABLE
#include "filename"
#include <filename>

The functioning of these statements in your topology may be modulated by using the following two flags in your
.mdp (page 488) file:

define = -DVARIABLE1 -DVARIABLE2
include = -I/home/john/doe

For further information a C-programming textbook may help you out. Specifying the -pp flag will get the pre-
processed topology file written out so that you can verify its contents.

When using position restraints, a file with restraint coordinates must be supplied with -r (can be the same file as
supplied for -c). For free energy calculations, separate reference coordinates for the B topology can be supplied
with -rb, otherwise they will be equal to those of the A topology.

Starting coordinates can be read from trajectory with -t. The last frame with coordinates and velocities will be
read, unless the -time option is used. Only if this information is absent will the coordinates in the -c file be
used. Note that these velocities will not be used when gen_vel = yes in your .mdp (page 488) file. An energy
file can be supplied with -e to read Nose-Hoover and/or Parrinello-Rahman coupling variables.

gmx grompp can be used to restart simulations (preserving continuity) by supplying just a checkpoint file with
-t. However, for simply changing the number of run steps to extend a run, using gmx convert-tpr (page 146) is
more convenient than gmx grompp. You then supply the old checkpoint file directly to gmx mdrun (page 215)
with -cpi. If you wish to change the ensemble or things like output frequency, then supplying the checkpoint
file to gmx grompp with -t along with a new .mdp (page 488) file with -f is the recommended procedure.
Actually preserving the ensemble (if possible) still requires passing the checkpoint file to gmx mdrun (page 215)
-cpi.

By default, all bonded interactions which have constant energy due to virtual site constructions will be removed.
If this constant energy is not zero, this will result in a shift in the total energy. All bonded interactions can be kept
by turning off -rmvsbds. Additionally, all constraints for distances which will be constant anyway because of
virtual site constructions will be removed. If any constraints remain which involve virtual sites, a fatal error will
result.

To verify your run input file, please take note of all warnings on the screen, and correct where necessary. Do also
look at the contents of the mdout.mdp file; this contains comment lines, as well as the input that gmx grompp
has read. If in doubt, you can start gmx grompp with the -debug option which will give you more information

3.11. Command-line reference 191

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

in a file called grompp.log (along with real debug info). You can see the contents of the run input file with the
gmx dump (page 169) program. gmx check (page 134) can be used to compare the contents of two run input files.

The -maxwarn option can be used to override warnings printed by gmx grompp that otherwise halt output. In
some cases, warnings are harmless, but usually they are not. The user is advised to carefully interpret the output
messages before attempting to bypass them with this option.

Options

Options to specify input files:

-f [<.mdp>] (grompp.mdp)
grompp input file with MD parameters

-c [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-r [<.gro/.g96/. . . >] (restraint.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-rb [<.gro/.g96/. . . >] (restraint.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-n [<.ndx>] (index.ndx) (Optional)
Index file

-p [<.top>] (topol.top)
Topology file

-t [<.trr/.cpt/. . . >] (traj.trr) (Optional)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-e [<.edr>] (ener.edr) (Optional)
Energy file

-qmi [<.inp>] (topol-qmmm.inp) (Optional)
Input file for QM program

Options to specify input/output files:

-ref [<.trr/.cpt/. . . >] (rotref.trr) (Optional)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

Options to specify output files:

-po [<.mdp>] (mdout.mdp)
grompp input file with MD parameters

-pp [<.top>] (processed.top) (Optional)
Topology file

-o [<.tpr>] (topol.tpr)
Portable xdr run input file

-imd [<.gro>] (imdgroup.gro) (Optional)
Coordinate file in Gromos-87 format

Other options:

-[no]v (no)
Be loud and noisy

-time <real> (-1)
Take frame at or first after this time.

-[no]rmvsbds (yes)
Remove constant bonded interactions with virtual sites

3.11. Command-line reference 192

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-maxwarn <int> (0)
Number of allowed warnings during input processing. Not for normal use and may generate unstable sys-
tems

-[no]zero (no)
Set parameters for bonded interactions without defaults to zero instead of generating an error

-[no]renum (yes)
Renumber atomtypes and minimize number of atomtypes

3.11.40 gmx gyrate

Synopsis

gmx gyrate [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-tu <enum>] [-fgroup <selection>] [-xvg <enum>]
[-[no]rmpbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-sel <selection>] [-mode <enum>]

Description

gmx gyrate computes the radius of gyration of a molecule and the radii of gyration about the x-, y- and z-axes,
as a function of time. The atoms are explicitly mass weighted.

The axis components corresponds to the mass-weighted root-mean-square of the radii components orthogonal to
each axis, for example:

Rg(x) = sqrt((sum_i w_i (R_i(y)^2 + R_i(z)^2))/(sum_i w_i)).

where w_i is the weight value in the given situation (mass, charge, unit)

Note that this is a new implementation of the gyrate utility added in GROMACS 2024. If you need the old one,
use gmx gyrate-legacy.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (gyrate-taf.xvg)
Filename for gyrate plot output

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

3.11. Command-line reference 193

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-sel <selection>
Select group to compute gyrate radius

-mode <enum> (mass)
Atom weighting mode: mass, charge, geometry

3.11.41 gmx gyrate-legacy

Synopsis

gmx gyrate-legacy [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xvg>]] [-acf [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>]
[-nmol <int>] [-[no]q] [-[no]p] [-[no]moi] [-nz <int>]
[-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

Description

gmx gyrate-legacy computes the radius of gyration of a molecule and the radii of gyration about the x-, y-
and z-axes, as a function of time. The atoms are explicitly mass weighted.

The axis components corresponds to the mass-weighted root-mean-square of the radii components orthogonal to
each axis, for example:

Rg(x) = sqrt((sum_i m_i (R_i(y)^2 + R_i(z)^2))/(sum_i m_i)).

With the -nmol option the radius of gyration will be calculated for multiple molecules by splitting the analysis
group in equally sized parts.

With the option -nz 2D radii of gyration in the x-y plane of slices along the z-axis are calculated.

3.11. Command-line reference 194

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (gyrate.xvg)
xvgr/xmgr file

-acf [<.xvg>] (moi-acf.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-nmol <int> (1)
The number of molecules to analyze

-[no]q (no)
Use absolute value of the charge of an atom as weighting factor instead of mass

-[no]p (no)
Calculate the radii of gyration about the principal axes.

-[no]moi (no)
Calculate the moments of inertia (defined by the principal axes).

-nz <int> (0)
Calculate the 2D radii of gyration of this number of slices along the z-axis

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

3.11. Command-line reference 195

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.42 gmx h2order

Synopsis

gmx h2order [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-nm [<.ndx>]]
[-s [<.tpr>]] [-o [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-d <enum>]
[-sl <int>]

Description

gmx h2order computes the orientation of water molecules with respect to the normal of the box. The program
determines the average cosine of the angle between the dipole moment of water and an axis of the box. The box
is divided in slices and the average orientation per slice is printed. Each water molecule is assigned to a slice, per
time frame, based on the position of the oxygen. When -nm is used, the angle between the water dipole and the
axis from the center of mass to the oxygen is calculated instead of the angle between the dipole and a box axis.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx)
Index file

-nm [<.ndx>] (index.ndx) (Optional)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (order.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-d <enum> (Z)
Take the normal on the membrane in direction X, Y or Z.: Z, Y, X

3.11. Command-line reference 196

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-sl <int> (0)
Calculate order parameter as function of boxlength, dividing the box in this number of slices.

Known Issues

• The program assigns whole water molecules to a slice, based on the first atom of three in the index file
group. It assumes an order O,H,H. Name is not important, but the order is. If this demand is not met,
assigning molecules to slices is different.

3.11.43 gmx hbond

Synopsis

gmx hbond [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.ndx>]] [-num [<.xvg>]] [-dist [<.xvg>]]
[-ang [<.xvg>]] [-dan [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-[no]pbc] [-sf <file>]
[-selrpos <enum>] [-seltype <enum>] [-r <selection>]
[-t <selection>] [-[no]m] [-[no]pf] [-cutoff <real>]
[-hbr <real>] [-hba <real>] [-de <string>] [-ae <string>]

Description

gmx hbond allows using geometric definition of hydrogen bonds to define them throughout the structure.

-r specifies reference selection, relative to which the search for hydrogen bonds in target selection will develop.
Note that all atoms in reference and target selections should be either absolutely identical or non-overlapping at
all. Accepts dynamic selection.

-t specifies target selection, relative to which the search for hydrogen bonds in reference selection will develop.
Note that all atoms in reference and target selections should be either absolutely identical or non-overlapping at
all. Accepts dynamic selection.

-m forces to merge together information in output index file about hydrogen bonds if they differ only in hydrogen
indices. This also means that information about hydrogen atoms in the hydrogen bonds would not be written in
output index file at all.

-pf forces to write hydrogen bonds for each frame separately instead of writing hydrogen bonds for the whole
system. Each information about hydrogen bonds in new frame will be stored in its own section of the output index
file.

-cutoff is a real value that defines distance from donor to acceptor (and vice versa) that used in neighbor search.
Minimum (and also recommended) value is 0.35.

-hbr Sets the cutoff that is used when calculating hydrogen bond distances. Recommended value: 0.35.

-hba Sets the cutoff that is used when calculating hydrogen bond angles. Recommended value: 30.

-de Specifies the atomic elements that will be selected from the topology to check if a given element is a potential
hydrogen bond donor.

-ae Specifies the atomic elements that will be selected from the topology to check if a given element is a potential
hydrogen bond acceptor.

-num allows you to get a plot of the number of hydrogen bonds as a function of time at the output.

-dist allows you to get a plot of the distance distribution of all hydrogen bonds at the output.

-ang allows you to get a plot of the angular distribution of all hydrogen bonds at the output.

-dan allows you to get a plot of the number of analyzed donors and acceptors for each frame at the output.

3.11. Command-line reference 197

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Note that this is a new implementation of the hbond utility added in GROMACS 2024. If you need the old one,
use gmx hbond-legacy.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.ndx>] (hbond.ndx)
Index file that contains selected groups’, acceptors’, donors’ and hydrogens’ indices and hydrogen bond
pairs between or within selected groups.

-num [<.xvg>] (hbnum.xvg) (Optional)
Number of hydrogen bonds as a function of time.

-dist [<.xvg>] (hbdist.xvg) (Optional)
Distance distribution of all hydrogen bonds.

-ang [<.xvg>] (hbang.xvg) (Optional)
Angle distribution of all hydrogen bonds.

-dan [<.xvg>] (hbdan.xvg) (Optional)
Number of donors and acceptors analyzed for each frame.

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

3.11. Command-line reference 198

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-r <selection>
Reference selection, relative to which the search for hydrogen bonds in target selection will develop.

-t <selection>
Target selection, relative to which the search for hydrogen bonds in reference selection will develop.

-[no]m (no)
Merge together information about hydrogen bonds if they differ only in hydrogen indices.

-[no]pf (no)
Write hydrogen bonds for each frame separately instead of writing hydrogen bonds for the whole system.

-cutoff <real> (0.35)
Distance from donor to acceptor (and vice versa) that used in neighbor search (nm). Must be > 0.

-hbr <real> (0.35)
Hydrogen bond cutoff distance, between donor and acceptor (nm). The value must not exceed the neighbor
search cutoff and must be > 0.

-hba <real> (30)
A-D-H hydrogen bond cutoff angle (degrees). Must be > 0.

-de <string> (N O)
Donor elements. Default elements: N, O.

-ae <string> (N O)
Acceptor elements. Default elements: N, O.

3.11.44 gmx hbond-legacy

Synopsis

gmx hbond-legacy [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-n [<.ndx>]]
[-num [<.xvg>]] [-g [<.log>]] [-ac [<.xvg>]]
[-dist [<.xvg>]] [-ang [<.xvg>]] [-hx [<.xvg>]]
[-hbn [<.ndx>]] [-hbm [<.xpm>]] [-don [<.xvg>]]
[-dan [<.xvg>]] [-life [<.xvg>]] [-nhbdist [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-tu <enum>]
[-xvg <enum>] [-a <real>] [-r <real>] [-[no]da]
[-r2 <real>] [-abin <real>] [-rbin <real>] [-[no]nitacc]
[-[no]contact] [-shell <real>] [-fitstart <real>]
[-fitend <real>] [-temp <real>] [-dump <int>]
[-max_hb <real>] [-[no]merge] [-nthreads <int>]
[-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

3.11. Command-line reference 199

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx hbond-legacy computes and analyzes hydrogen bonds. Hydrogen bonds are determined based on cutoffs
for the angle Hydrogen - Donor - Acceptor (zero is extended) and the distance Donor - Acceptor (or Hydrogen -
Acceptor using -noda). OH and NH groups are regarded as donors, O is an acceptor always, N is an acceptor by
default, but this can be switched using -nitacc. Dummy hydrogen atoms are assumed to be connected to the
first preceding non-hydrogen atom.

You need to specify two groups for analysis, which must be either identical or non-overlapping. All hydrogen
bonds between the two groups are analyzed.

If you set -shell, you will be asked for an additional index group which should contain exactly one atom. In
this case, only hydrogen bonds between atoms within the shell distance from the one atom are considered.

With option -ac, rate constants for hydrogen bonding can be derived with the model of Luzar and Chandler (Nature
379:55, 1996; J. Chem. Phys. 113:23, 2000). If contact kinetics are analyzed by using the -contact option, then
n(t) can be defined as either all pairs that are not within contact distance r at time t (corresponding to leaving the
-r2 option at the default value 0) or all pairs that are within distance r2 (corresponding to setting a second cut-off
value with option -r2). See mentioned literature for more details and definitions.

Output:

• -num: number of hydrogen bonds as a function of time.

• -ac: average over all autocorrelations of the existence functions (either 0 or 1) of all hydrogen bonds.

• -dist: distance distribution of all hydrogen bonds.

• -ang: angle distribution of all hydrogen bonds.

• -hx: the number of n-n+i hydrogen bonds as a function of time where n and n+i stand for residue numbers
and i ranges from 0 to 6. This includes the n-n+3, n-n+4 and n-n+5 hydrogen bonds associated with helices
in proteins.

• -hbn: all selected groups, donors, hydrogens and acceptors for selected groups, all hydrogen bonded atoms
from all groups and all solvent atoms involved in insertion. Output is limited unless -nomerge is set.

• -hbm: existence matrix for all hydrogen bonds over all frames, this also contains information on solvent
insertion into hydrogen bonds. Ordering is identical to that in -hbn index file.

• -dan: write out the number of donors and acceptors analyzed for each timeframe. This is especially useful
when using -shell.

• -nhbdist: compute the number of HBonds per hydrogen in order to compare results to Raman Spec-
troscopy.

Note: options -ac, -life, -hbn and -hbm require an amount of memory proportional to the total numbers of
donors times the total number of acceptors in the selected group(s).

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-num [<.xvg>] (hbnum.xvg)
xvgr/xmgr file

3.11. Command-line reference 200

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-g [<.log>] (hbond.log) (Optional)
Log file

-ac [<.xvg>] (hbac.xvg) (Optional)
xvgr/xmgr file

-dist [<.xvg>] (hbdist.xvg) (Optional)
xvgr/xmgr file

-ang [<.xvg>] (hbang.xvg) (Optional)
xvgr/xmgr file

-hx [<.xvg>] (hbhelix.xvg) (Optional)
xvgr/xmgr file

-hbn [<.ndx>] (hbond.ndx) (Optional)
Index file

-hbm [<.xpm>] (hbmap.xpm) (Optional)
X PixMap compatible matrix file

-don [<.xvg>] (donor.xvg) (Optional)
xvgr/xmgr file

-dan [<.xvg>] (danum.xvg) (Optional)
xvgr/xmgr file

-life [<.xvg>] (hblife.xvg) (Optional)
xvgr/xmgr file

-nhbdist [<.xvg>] (nhbdist.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-a <real> (30)
Cutoff angle (degrees, Hydrogen - Donor - Acceptor)

-r <real> (0.35)
Cutoff radius (nm, X - Acceptor, see next option)

-[no]da (yes)
Use distance Donor-Acceptor (if TRUE) or Hydrogen-Acceptor (FALSE)

-r2 <real> (0)
Second cutoff radius. Mainly useful with -contact and -ac

-abin <real> (1)
Binwidth angle distribution (degrees)

-rbin <real> (0.005)
Binwidth distance distribution (nm)

-[no]nitacc (yes)
Regard nitrogen atoms as acceptors

3.11. Command-line reference 201

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]contact (no)
Do not look for hydrogen bonds, but merely for contacts within the cut-off distance

-shell <real> (-1)
when > 0, only calculate hydrogen bonds within # nm shell around one particle

-fitstart <real> (1)
Time (ps) from which to start fitting the correlation functions in order to obtain the forward and backward
rate constants for HB breaking and formation. With -gemfit we suggest -fitstart 0

-fitend <real> (60)
Time (ps) to which to stop fitting the correlation functions in order to obtain the forward and backward rate
constants for HB breaking and formation (only with -gemfit)

-temp <real> (298.15)
Temperature (K) for computing the Gibbs energy corresponding to HB breaking and reforming

-dump <int> (0)
Dump the first N hydrogen bond ACFs in a single .xvg (page 497) file for debugging

-max_hb <real> (0)
Theoretical maximum number of hydrogen bonds used for normalizing HB autocorrelation function. Can
be useful in case the program estimates it wrongly

-[no]merge (yes)
H-bonds between the same donor and acceptor, but with different hydrogen are treated as a single H-bond.
Mainly important for the ACF. Not compatible with options that depend on knowing a specific hydrogen:
-noad, -ang.

-nthreads <int> (0)
Number of threads used for the parallel loop over autocorrelations. nThreads <= 0 means maximum number
of threads. Requires linking with OpenMP. The number of threads is limited by the number of cores (before
OpenMP v.3) or environment variable OMP_THREAD_LIMIT (OpenMP v.3)

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.45 gmx helix

Synopsis

gmx helix [-s [<.tpr>]] [-n [<.ndx>]] [-f [<.xtc/.trr/...>]]
[-cz [<.gro/.g96/...>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-r0 <int>] [-[no]q] [-[no]F]
[-[no]db] [-[no]ev] [-ahxstart <int>] [-ahxend <int>]

3.11. Command-line reference 202

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx helix computes all kinds of helix properties. First, the peptide is checked to find the longest helical part,
as determined by hydrogen bonds and phi/psi angles. That bit is fitted to an ideal helix around the z-axis and
centered around the origin. Then the following properties are computed:

• Helix radius (file radius.xvg). This is merely the RMS deviation in two dimensions for all Calpha
atoms. it is calculated as sqrt((sum_i (x^2(i)+y^2(i)))/N) where N is the number of backbone atoms. For an
ideal helix the radius is 0.23 nm.

• Twist (file twist.xvg). The average helical angle per residue is calculated. For an alpha-helix it is 100
degrees, for 3-10 helices it will be smaller, and for 5-helices it will be larger.

• Rise per residue (file rise.xvg). The helical rise per residue is plotted as the difference in z-coordinate
between Calpha atoms. For an ideal helix, this is 0.15 nm.

• Total helix length (file len-ahx.xvg). The total length of the helix in nm. This is simply the average rise
(see above) times the number of helical residues (see below).

• Helix dipole, backbone only (file dip-ahx.xvg).

• RMS deviation from ideal helix, calculated for the Calpha atoms only (file rms-ahx.xvg).

• Average Calpha - Calpha dihedral angle (file phi-ahx.xvg).

• Average phi and psi angles (file phipsi.xvg).

• Ellipticity at 222 nm according to Hirst and Brooks.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx)
Index file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

Options to specify output files:

-cz [<.gro/.g96/. . . >] (zconf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-r0 <int> (1)
The first residue number in the sequence

-[no]q (no)
Check at every step which part of the sequence is helical

3.11. Command-line reference 203

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]F (yes)
Toggle fit to a perfect helix

-[no]db (no)
Print debug info

-[no]ev (no)
Write a new ‘trajectory’ file for ED

-ahxstart <int> (0)
First residue in helix

-ahxend <int> (0)
Last residue in helix

3.11.46 gmx helixorient

Synopsis

gmx helixorient [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-oaxis [<.dat>]] [-ocenter [<.dat>]] [-orise [<.xvg>]]
[-oradius [<.xvg>]] [-otwist [<.xvg>]]
[-obending [<.xvg>]] [-otilt [<.xvg>]] [-orot [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-xvg <enum>]
[-[no]sidechain] [-[no]incremental]

Description

gmx helixorient calculates the coordinates and direction of the average axis inside an alpha helix, and the
direction/vectors of both the Calpha and (optionally) a sidechain atom relative to the axis.

As input, you need to specify an index group with Calpha atoms corresponding to an alpha-helix of continuous
residues. Sidechain directions require a second index group of the same size, containing the heavy atom in each
residue that should represent the sidechain.

Note that this program does not do any fitting of structures.

We need four Calpha coordinates to define the local direction of the helix axis.

The tilt/rotation is calculated from Euler rotations, where we define the helix axis as the local x-axis, the
residues/Calpha vector as y, and the z-axis from their cross product. We use the Euler Y-Z-X rotation, meaning we
first tilt the helix axis (1) around and (2) orthogonal to the residues vector, and finally apply the (3) rotation around
it. For debugging or other purposes, we also write out the actual Euler rotation angles as theta[1-3].xvg

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-oaxis [<.dat>] (helixaxis.dat)
Generic data file

3.11. Command-line reference 204

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-ocenter [<.dat>] (center.dat)
Generic data file

-orise [<.xvg>] (rise.xvg)
xvgr/xmgr file

-oradius [<.xvg>] (radius.xvg)
xvgr/xmgr file

-otwist [<.xvg>] (twist.xvg)
xvgr/xmgr file

-obending [<.xvg>] (bending.xvg)
xvgr/xmgr file

-otilt [<.xvg>] (tilt.xvg)
xvgr/xmgr file

-orot [<.xvg>] (rotation.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]sidechain (no)
Calculate sidechain directions relative to helix axis too.

-[no]incremental (no)
Calculate incremental rather than total rotation/tilt.

3.11.47 gmx help

3.11.48 gmx hydorder

Synopsis

gmx hydorder [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-s [<.tpr>]]
[-o [<.xpm> [...]]] [-or [<.out> [...]]]
[-Spect [<.out> [...]]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-d <enum>] [-bw <real>]
[-sgang1 <real>] [-sgang2 <real>] [-tblock <int>]
[-nlevel <int>]

3.11. Command-line reference 205

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx hydorder computes the tetrahedrality order parameters around a given atom. Both angle an distance order
parameters are calculated. See P.-L. Chau and A.J. Hardwick, Mol. Phys., 93, (1998), 511-518. for more details.

gmx hydorder calculates the order parameter in a 3d-mesh in the box, and with 2 phases in the box gives
the user the option to define a 2D interface in time separating the faces by specifying parameters -sgang1 and
-sgang2 (it is important to select these judiciously).

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xpm> [. . .]] (intf.xpm)
X PixMap compatible matrix file

-or [<.out> [. . .]] (raw.out) (Optional)
Generic output file

-Spect [<.out> [. . .]] (intfspect.out) (Optional)
Generic output file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-d <enum> (z)
Direction of the normal on the membrane: z, x, y

-bw <real> (1)
Binwidth of box mesh

-sgang1 <real> (1)
tetrahedral angle parameter in Phase 1 (bulk)

-sgang2 <real> (1)
tetrahedral angle parameter in Phase 2 (bulk)

-tblock <int> (1)
Number of frames in one time-block average

-nlevel <int> (100)
Number of Height levels in 2D - XPixMaps

3.11. Command-line reference 206

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.49 gmx insert-molecules

Synopsis

gmx insert-molecules [-f [<.gro/.g96/...>]] [-ci [<.gro/.g96/...>]]
[-ip [<.dat>]] [-n [<.ndx>]] [-o [<.gro/.g96/...>]]
[-replace <selection>] [-sf <file>] [-selrpos <enum>]
[-box <vector>] [-nmol <int>] [-conc <real>]
[-try <int>] [-seed <int>] [-radius <real>]
[-scale <real>] [-dr <vector>] [-rot <enum>]

Description

gmx insert-molecules inserts -nmol copies of the system specified in the -ci input file. The number
of copies can also be determined by the concentration -conc in mol/liter and box volume. The insertions take
place either into vacant space in the solute conformation given with -f, or into an empty box given by -box.
Specifying both -f and -box behaves like -f, but places a new box around the solute before insertions. Any
velocities present are discarded.

It is possible to also insert into a solvated configuration and replace solvent atoms with the inserted atoms. To do
this, use -replace to specify a selection that identifies the atoms that can be replaced. The tool assumes that
all molecules in this selection consist of single residues: each residue from this selection that overlaps with the
inserted molecules will be removed instead of preventing insertion.

By default, the insertion positions are random (with initial seed specified by -seed). The program iterates until
-nmol molecules have been inserted in the box. Molecules are not inserted where the distance between any
existing atom and any atom of the inserted molecule is less than the sum based on the van der Waals radii of both
atoms. A database (vdwradii.dat) of van der Waals radii is read by the program, and the resulting radii scaled
by -scale. If radii are not found in the database, those atoms are assigned the (pre-scaled) distance -radius.
Note that the usefulness of those radii depends on the atom names, and thus varies widely with force field.

A total of -nmol * -try insertion attempts are made before giving up. Increase -try if you have several
small holes to fill. Option -rot specifies whether the insertion molecules are randomly oriented before insertion
attempts.

Alternatively, the molecules can be inserted only at positions defined in positions.dat (-ip). That file should
have 3 columns (x,y,z), that give the displacements compared to the input molecule position (-ci). Hence,
if that file should contain the absolute positions, the molecule must be centered on (0,0,0) before using gmx
insert-molecules (e.g. from gmx editconf (page 171) -center). Comments in that file starting with # are
ignored. Option -dr defines the maximally allowed displacements during insertial trials. -try and -rot work
as in the default mode (see above).

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (protein.gro) (Optional)
Existing configuration to insert into: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr
(page 494)

-ci [<.gro/.g96/. . . >] (insert.gro)
Configuration to insert: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-ip [<.dat>] (positions.dat) (Optional)
Predefined insertion trial positions

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

3.11. Command-line reference 207

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-o [<.gro/.g96/. . . >] (out.gro)
Output configuration after insertion: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

Other options:

-replace <selection>
Atoms that can be removed if overlapping

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-box <vector> (0 0 0)
Box size (in nm)

-nmol <int> (0)
Number of extra molecules to insert

-conc <real> (0)
Concentration (in mol/liter) of extra molecules to insert. This overrides -nmol

-try <int> (10)
Try inserting -nmol times -try times

-seed <int> (0)
Random generator seed (0 means generate)

-radius <real> (0.105)
Default van der Waals distance

-scale <real> (0.57)
Scale factor to multiply Van der Waals radii from the database in share/gromacs/top/vdwradii.dat. The
default value of 0.57 yields density close to 1000 g/l for proteins in water.

-dr <vector> (0 0 0)
Allowed displacement in x/y/z from positions in -ip file

-rot <enum> (xyz)
Rotate inserted molecules randomly: xyz, z, none

3.11.50 gmx lie

Synopsis

gmx lie [-f [<.edr>]] [-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-[no]w] [-xvg <enum>] [-Elj <real>] [-Eqq <real>]
[-Clj <real>] [-Cqq <real>] [-ligand <string>]

Description

gmx lie computes a free energy estimate based on an energy analysis from nonbonded energies. One needs an
energy file with the following components: Coul-(A-B) LJ-SR (A-B) etc.

To utilize g_lie correctly, two simulations are required: one with the molecule of interest bound to its receptor
and one with the molecule in water. Both need to utilize energygrps such that Coul-SR(A-B), LJ-SR(A-B),
etc. terms are written to the .edr (page 485) file. Values from the molecule-in-water simulation are necessary for
supplying suitable values for -Elj and -Eqq.

3.11. Command-line reference 208

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.edr>] (ener.edr)
Energy file

Options to specify output files:

-o [<.xvg>] (lie.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-Elj <real> (0)
Lennard-Jones interaction between ligand and solvent

-Eqq <real> (0)
Coulomb interaction between ligand and solvent

-Clj <real> (0.181)
Factor in the LIE equation for Lennard-Jones component of energy

-Cqq <real> (0.5)
Factor in the LIE equation for Coulomb component of energy

-ligand <string> (none)
Name of the ligand in the energy file

3.11.51 gmx make_edi

Synopsis

gmx make_edi [-f [<.trr/.cpt/...>]] [-eig [<.xvg>]]
[-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-tar [<.gro/.g96/...>]] [-ori [<.gro/.g96/...>]]
[-o [<.edi>]] [-xvg <enum>] [-mon <string>]
[-linfix <string>] [-linacc <string>] [-radfix <string>]
[-radacc <string>] [-radcon <string>] [-flood <string>]
[-outfrq <int>] [-slope <real>] [-linstep <string>]
[-accdir <string>] [-radstep <real>] [-maxedsteps <int>]
[-eqsteps <int>] [-deltaF0 <real>] [-deltaF <real>]
[-tau <real>] [-Eflnull <real>] [-T <real>]
[-alpha <real>] [-[no]restrain] [-[no]hessian]
[-[no]harmonic] [-constF <string>]

3.11. Command-line reference 209

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx make_edi generates an essential dynamics (ED) sampling input file to be used with mdrun based on
eigenvectors of a covariance matrix (gmx covar (page 148)) or from a normal modes analysis (gmx nmeig
(page 224)). ED sampling can be used to manipulate the position along collective coordinates (eigenvectors)
of (biological) macromolecules during a simulation. Particularly, it may be used to enhance the sampling effi-
ciency of MD simulations by stimulating the system to explore new regions along these collective coordinates. A
number of different algorithms are implemented to drive the system along the eigenvectors (-linfix, -linacc,
-radfix, -radacc, -radcon), to keep the position along a certain (set of) coordinate(s) fixed (-linfix),
or to only monitor the projections of the positions onto these coordinates (-mon).

References:

A. Amadei, A.B.M. Linssen, B.L. de Groot, D.M.F. van Aalten and H.J.C. Berendsen; An efficient method for
sampling the essential subspace of proteins., J. Biomol. Struct. Dyn. 13:615-626 (1996)

B.L. de Groot, A. Amadei, D.M.F. van Aalten and H.J.C. Berendsen; Towards an exhaustive sampling of the
configurational spaces of the two forms of the peptide hormone guanylin, J. Biomol. Struct. Dyn. 13 : 741-751
(1996)

B.L. de Groot, A.Amadei, R.M. Scheek, N.A.J. van Nuland and H.J.C. Berendsen; An extended sampling of the
configurational space of HPr from E. coli Proteins: Struct. Funct. Gen. 26: 314-322 (1996)

You will be prompted for one or more index groups that correspond to the eigenvectors, reference structure, target
positions, etc.

-mon: monitor projections of the coordinates onto selected eigenvectors.

-linfix: perform fixed-step linear expansion along selected eigenvectors.

-linacc: perform acceptance linear expansion along selected eigenvectors. (steps in the desired directions will
be accepted, others will be rejected).

-radfix: perform fixed-step radius expansion along selected eigenvectors.

-radacc: perform acceptance radius expansion along selected eigenvectors. (steps in the desired direction will
be accepted, others will be rejected). Note: by default the starting MD structure will be taken as origin of the first
expansion cycle for radius expansion. If -ori is specified, you will be able to read in a structure file that defines
an external origin.

-radcon: perform acceptance radius contraction along selected eigenvectors towards a target structure specified
with -tar.

NOTE: each eigenvector can be selected only once.

-outfrq: frequency (in steps) of writing out projections etc. to .xvg (page 497) file

-slope: minimal slope in acceptance radius expansion. A new expansion cycle will be started if the spontaneous
increase of the radius (in nm/step) is less than the value specified.

-maxedsteps: maximum number of steps per cycle in radius expansion before a new cycle is started.

Note on the parallel implementation: since ED sampling is a ‘global’ thing (collective coordinates etc.), at least
on the ‘protein’ side, ED sampling is not very parallel-friendly from an implementation point of view. Because
parallel ED requires some extra communication, expect the performance to be lower as in a free MD simulation,
especially on a large number of ranks and/or when the ED group contains a lot of atoms.

Please also note that if your ED group contains more than a single protein, then the .tpr (page 494) file must
contain the correct PBC representation of the ED group. Take a look on the initial RMSD from the reference
structure, which is printed out at the start of the simulation; if this is much higher than expected, one of the ED
molecules might be shifted by a box vector.

All ED-related output of mdrun (specify with -eo) is written to a .xvg (page 497) file as a function of time in
intervals of OUTFRQ steps.

Note that you can impose multiple ED constraints and flooding potentials in a single simulation (on different
molecules) if several .edi (page 485) files were concatenated first. The constraints are applied in the order they

3.11. Command-line reference 210

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

appear in the .edi (page 485) file. Depending on what was specified in the .edi (page 485) input file, the output file
contains for each ED dataset

• the RMSD of the fitted molecule to the reference structure (for atoms involved in fitting prior to calculating
the ED constraints)

• projections of the positions onto selected eigenvectors

FLOODING:

with -flood, you can specify which eigenvectors are used to compute a flooding potential, which will lead to
extra forces expelling the structure out of the region described by the covariance matrix. If you switch -restrain
the potential is inverted and the structure is kept in that region.

The origin is normally the average structure stored in the eigvec.trr file. It can be changed with -ori to
an arbitrary position in configuration space. With -tau, -deltaF0, and -Eflnull you control the flooding
behaviour. Efl is the flooding strength, it is updated according to the rule of adaptive flooding. Tau is the time
constant of adaptive flooding, high tau means slow adaption (i.e. growth). DeltaF0 is the flooding strength you
want to reach after tau ps of simulation. To use constant Efl set -tau to zero.

-alpha is a fudge parameter to control the width of the flooding potential. A value of 2 has been found to give
good results for most standard cases in flooding of proteins. alpha basically accounts for incomplete sampling,
if you sampled further the width of the ensemble would increase, this is mimicked by alpha > 1. For restraining,
alpha < 1 can give you smaller width in the restraining potential.

RESTART and FLOODING: If you want to restart a crashed flooding simulation please find the values deltaF and
Efl in the output file and manually put them into the .edi (page 485) file under DELTA_F0 and EFL_NULL.

Options

Options to specify input files:

-f [<.trr/.cpt/. . . >] (eigenvec.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-eig [<.xvg>] (eigenval.xvg) (Optional)
xvgr/xmgr file

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-tar [<.gro/.g96/. . . >] (target.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-ori [<.gro/.g96/. . . >] (origin.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

Options to specify output files:

-o [<.edi>] (sam.edi)
ED sampling input

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-mon <string>
Indices of eigenvectors for projections of x (e.g. 1,2-5,9) or 1-100:10 means 1 11 21 31 . . . 91

-linfix <string>
Indices of eigenvectors for fixed increment linear sampling

3.11. Command-line reference 211

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-linacc <string>
Indices of eigenvectors for acceptance linear sampling

-radfix <string>
Indices of eigenvectors for fixed increment radius expansion

-radacc <string>
Indices of eigenvectors for acceptance radius expansion

-radcon <string>
Indices of eigenvectors for acceptance radius contraction

-flood <string>
Indices of eigenvectors for flooding

-outfrq <int> (100)
Frequency (in steps) of writing output in .xvg (page 497) file

-slope <real> (0)
Minimal slope in acceptance radius expansion

-linstep <string>
Stepsizes (nm/step) for fixed increment linear sampling (put in quotes! “1.0 2.3 5.1 -3.1”)

-accdir <string>
Directions for acceptance linear sampling - only sign counts! (put in quotes! “-1 +1 -1.1”)

-radstep <real> (0)
Stepsize (nm/step) for fixed increment radius expansion

-maxedsteps <int> (0)
Maximum number of steps per cycle

-eqsteps <int> (0)
Number of steps to run without any perturbations

-deltaF0 <real> (150)
Target destabilization energy for flooding

-deltaF <real> (0)
Start deltaF with this parameter - default 0, nonzero values only needed for restart

-tau <real> (0.1)
Coupling constant for adaption of flooding strength according to deltaF0, 0 = infinity i.e. constant flooding
strength

-Eflnull <real> (0)
The starting value of the flooding strength. The flooding strength is updated according to the adaptive
flooding scheme. For a constant flooding strength use -tau 0.

-T <real> (300)
T is temperature, the value is needed if you want to do flooding

-alpha <real> (1)
Scale width of gaussian flooding potential with alpha^2

-[no]restrain (no)
Use the flooding potential with inverted sign -> effects as quasiharmonic restraining potential

-[no]hessian (no)
The eigenvectors and eigenvalues are from a Hessian matrix

-[no]harmonic (no)
The eigenvalues are interpreted as spring constant

-constF <string>
Constant force flooding: manually set the forces for the eigenvectors selected with -flood (put in quotes!
“1.0 2.3 5.1 -3.1”). No other flooding parameters are needed when specifying the forces directly.

3.11. Command-line reference 212

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.52 gmx make_ndx

Synopsis

gmx make_ndx [-f [<.gro/.g96/...>]] [-n [<.ndx> [...]]] [-o [<.ndx>]]
[-natoms <int>] [-[no]twin]

Description

Index groups are necessary for almost every GROMACS program. All these programs can generate default index
groups. You ONLY have to use gmx make_ndx when you need SPECIAL index groups. There is a default
index group for the whole system, 9 default index groups for proteins, and a default index group is generated for
every other residue name.

When no index file is supplied, also gmx make_ndx will generate the default groups. With the index editor you
can select on atom, residue and chain names and numbers. When a run input file is supplied you can also select
on atom type. You can use boolean operations, you can split groups into chains, residues or atoms. You can delete
and rename groups. Type ‘h’ in the editor for more details.

The atom numbering in the editor and the index file starts at 1.

The -twin switch duplicates all index groups with an offset of -natoms, which is useful for Computational
Electrophysiology double-layer membrane setups.

See also gmx select (page 262) -on, which provides an alternative way for constructing index groups. It covers
nearly all of gmx make_ndx functionality, and in many cases much more.

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (conf.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-n [<.ndx> [. . .]] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.ndx>] (index.ndx)
Index file

Other options:

-natoms <int> (0)
set number of atoms (default: read from coordinate or index file)

-[no]twin (no)
Duplicate all index groups with an offset of -natoms

3.11.53 gmx mdmat

Synopsis

gmx mdmat [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-mean [<.xpm>]] [-frames [<.xpm>]] [-no [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-xvg <enum>]
[-t <real>] [-nlevels <int>]

3.11. Command-line reference 213

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx mdmat makes distance matrices consisting of the smallest distance between residue pairs. With -frames,
these distance matrices can be stored in order to see differences in tertiary structure as a function of time. If you
choose your options unwisely, this may generate a large output file. By default, only an averaged matrix over
the whole trajectory is output. Also a count of the number of different atomic contacts between residues over the
whole trajectory can be made. The output can be processed with gmx xpm2ps (page 300) to make a PostScript
(tm) plot.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-mean [<.xpm>] (dm.xpm)
X PixMap compatible matrix file

-frames [<.xpm>] (dmf.xpm) (Optional)
X PixMap compatible matrix file

-no [<.xvg>] (num.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-t <real> (1.5)
trunc distance

-nlevels <int> (40)
Discretize distance in this number of levels

3.11. Command-line reference 214

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.54 gmx mdrun

Synopsis

gmx mdrun [-s [<.tpr>]] [-cpi [<.cpt>]] [-table [<.xvg>]]
[-tablep [<.xvg>]] [-tableb [<.xvg> [...]]]
[-rerun [<.xtc/.trr/...>]] [-ei [<.edi>]]
[-multidir [<dir> [...]]] [-awh [<.xvg>]]
[-plumed [<.dat>]] [-membed [<.dat>]] [-mp [<.top>]]
[-mn [<.ndx>]] [-o [<.trr/.cpt/...>]] [-x [<.xtc/.tng>]]
[-cpo [<.cpt>]] [-c [<.gro/.g96/...>]] [-e [<.edr>]]
[-g [<.log>]] [-dhdl [<.xvg>]] [-field [<.xvg>]]
[-tpi [<.xvg>]] [-tpid [<.xvg>]] [-eo [<.xvg>]]
[-px [<.xvg>]] [-pf [<.xvg>]] [-ro [<.xvg>]] [-ra [<.log>]]
[-rs [<.log>]] [-rt [<.log>]] [-mtx [<.mtx>]]
[-if [<.xvg>]] [-swap [<.xvg>]] [-deffnm <string>]
[-xvg <enum>] [-dd <vector>] [-ddorder <enum>]
[-npme <int>] [-nt <int>] [-ntmpi <int>] [-ntomp <int>]
[-ntomp_pme <int>] [-pin <enum>] [-pinoffset <int>]
[-pinstride <int>] [-gpu_id <string>] [-gputasks <string>]
[-[no]ddcheck] [-rdd <real>] [-rcon <real>] [-dlb <enum>]
[-dds <real>] [-nb <enum>] [-nstlist <int>] [-[no]tunepme]
[-pme <enum>] [-pmefft <enum>] [-bonded <enum>]
[-update <enum>] [-[no]v] [-pforce <real>] [-[no]reprod]
[-cpt <real>] [-[no]cpnum] [-[no]append] [-nsteps <int>]
[-maxh <real>] [-replex <int>] [-nex <int>] [-reseed <int>]

Description

gmx mdrun is the main computational chemistry engine within GROMACS. Obviously, it performs Molecular
Dynamics simulations, but it can also perform Stochastic Dynamics, Energy Minimization, test particle insertion
or (re)calculation of energies. Normal mode analysis is another option. In this case mdrun builds a Hessian
matrix from single conformation. For usual Normal Modes-like calculations, make sure that the structure provided
is properly energy-minimized. The generated matrix can be diagonalized by gmx nmeig (page 224).

The mdrun program reads the run input file (-s) and distributes the topology over ranks if needed. mdrun
produces at least four output files. A single log file (-g) is written. The trajectory file (-o), contains coordinates,
velocities and optionally forces. The structure file (-c) contains the coordinates and velocities of the last step.
The energy file (-e) contains energies, the temperature, pressure, etc, a lot of these things are also printed in the
log file. Optionally coordinates can be written to a compressed trajectory file (-x).

The option -dhdl is only used when free energy calculation is turned on.

Running mdrun efficiently in parallel is a complex topic, many aspects of which are covered in the online User
Guide. You should look there for practical advice on using many of the options available in mdrun.

ED (essential dynamics) sampling and/or additional flooding potentials are switched on by using the -ei flag
followed by an .edi (page 485) file. The .edi (page 485) file can be produced with the make_edi tool or by using
options in the essdyn menu of the WHAT IF program. mdrun produces a .xvg (page 497) output file that contains
projections of positions, velocities and forces onto selected eigenvectors.

When user-defined potential functions have been selected in the .mdp (page 488) file the -table option is used
to pass mdrun a formatted table with potential functions. The file is read from either the current directory or from
the GMXLIB directory. A number of pre-formatted tables are presented in the GMXLIB dir, for 6-8, 6-9, 6-10,
6-11, 6-12 Lennard-Jones potentials with normal Coulomb. When pair interactions are present, a separate table
for pair interaction functions is read using the -tablep option.

When tabulated bonded functions are present in the topology, interaction functions are read using the -tableb
option. For each different tabulated interaction type used, a table file name must be given. For the topology to
work, a file name given here must match a character sequence before the file extension. That sequence is: an

3.11. Command-line reference 215

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

underscore, then a ‘b’ for bonds, an ‘a’ for angles or a ‘d’ for dihedrals, and finally the matching table number
index used in the topology. Note that, these options are deprecated, and in future will be available via grompp.

The options -px and -pf are used for writing pull COM coordinates and forces when pulling is selected in the
.mdp (page 488) file.

The option -membed does what used to be g_membed, i.e. embed a protein into a membrane. This module
requires a number of settings that are provided in a data file that is the argument of this option. For more details
in membrane embedding, see the documentation in the user guide. The options -mn and -mp are used to provide
the index and topology files used for the embedding.

The option -pforce is useful when you suspect a simulation crashes due to too large forces. With this option
coordinates and forces of atoms with a force larger than a certain value will be printed to stderr. It will also
terminate the run when non-finite forces are present.

Checkpoints containing the complete state of the system are written at regular intervals (option -cpt) to the file
-cpo, unless option -cpt is set to -1. The previous checkpoint is backed up to state_prev.cpt to make
sure that a recent state of the system is always available, even when the simulation is terminated while writing
a checkpoint. With -cpnum all checkpoint files are kept and appended with the step number. A simulation can
be continued by reading the full state from file with option -cpi. This option is intelligent in the way that if no
checkpoint file is found, GROMACS just assumes a normal run and starts from the first step of the .tpr (page 494)
file. By default the output will be appending to the existing output files. The checkpoint file contains checksums
of all output files, such that you will never loose data when some output files are modified, corrupt or removed.
There are three scenarios with -cpi:

* no files with matching names are present: new output files are written

* all files are present with names and checksums matching those stored in the checkpoint file: files are appended

* otherwise no files are modified and a fatal error is generated

With -noappend new output files are opened and the simulation part number is added to all output file names.
Note that in all cases the checkpoint file itself is not renamed and will be overwritten, unless its name does not
match the -cpo option.

With checkpointing the output is appended to previously written output files, unless -noappend is used or none
of the previous output files are present (except for the checkpoint file). The integrity of the files to be appended is
verified using checksums which are stored in the checkpoint file. This ensures that output can not be mixed up or
corrupted due to file appending. When only some of the previous output files are present, a fatal error is generated
and no old output files are modified and no new output files are opened. The result with appending will be the
same as from a single run. The contents will be binary identical, unless you use a different number of ranks or
dynamic load balancing or the FFT library uses optimizations through timing.

With option -maxh a simulation is terminated and a checkpoint file is written at the first neighbor search step
where the run time exceeds -maxh*0.99 hours. This option is particularly useful in combination with setting
nsteps to -1 either in the mdp or using the similarly named command line option (although the latter is depre-
cated). This results in an infinite run, terminated only when the time limit set by -maxh is reached (if any) or
upon receiving a signal.

Interactive molecular dynamics (IMD) can be activated by using at least one of the three IMD switches: The
-imdterm switch allows one to terminate the simulation from the molecular viewer (e.g. VMD). With
-imdwait, mdrun pauses whenever no IMD client is connected. Pulling from the IMD remote can be turned
on by -imdpull. The port mdrun listens to can be altered by -imdport.The file pointed to by -if contains
atom indices and forces if IMD pulling is used.

3.11. Command-line reference 216

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-cpi [<.cpt>] (state.cpt) (Optional)
Checkpoint file

-table [<.xvg>] (table.xvg) (Optional)
xvgr/xmgr file

-tablep [<.xvg>] (tablep.xvg) (Optional)
xvgr/xmgr file

-tableb [<.xvg> [. . .]] (table.xvg) (Optional)
xvgr/xmgr file

-rerun [<.xtc/.trr/. . . >] (rerun.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-ei [<.edi>] (sam.edi) (Optional)
ED sampling input

-multidir [<dir> [. . .]] (rundir) (Optional)
Run directory

-awh [<.xvg>] (awhinit.xvg) (Optional)
xvgr/xmgr file

-plumed [<.dat>] (plumed.dat) (Optional)
Generic data file

-membed [<.dat>] (membed.dat) (Optional)
Generic data file

-mp [<.top>] (membed.top) (Optional)
Topology file

-mn [<.ndx>] (membed.ndx) (Optional)
Index file

Options to specify output files:

-o [<.trr/.cpt/. . . >] (traj.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-x [<.xtc/.tng>] (traj_comp.xtc) (Optional)
Compressed trajectory (tng format or portable xdr format)

-cpo [<.cpt>] (state.cpt) (Optional)
Checkpoint file

-c [<.gro/.g96/. . . >] (confout.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-e [<.edr>] (ener.edr)
Energy file

-g [<.log>] (md.log)
Log file

-dhdl [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file

-field [<.xvg>] (field.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 217

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-tpi [<.xvg>] (tpi.xvg) (Optional)
xvgr/xmgr file

-tpid [<.xvg>] (tpidist.xvg) (Optional)
xvgr/xmgr file

-eo [<.xvg>] (edsam.xvg) (Optional)
xvgr/xmgr file

-px [<.xvg>] (pullx.xvg) (Optional)
xvgr/xmgr file

-pf [<.xvg>] (pullf.xvg) (Optional)
xvgr/xmgr file

-ro [<.xvg>] (rotation.xvg) (Optional)
xvgr/xmgr file

-ra [<.log>] (rotangles.log) (Optional)
Log file

-rs [<.log>] (rotslabs.log) (Optional)
Log file

-rt [<.log>] (rottorque.log) (Optional)
Log file

-mtx [<.mtx>] (nm.mtx) (Optional)
Hessian matrix

-if [<.xvg>] (imdforces.xvg) (Optional)
xvgr/xmgr file

-swap [<.xvg>] (swapions.xvg) (Optional)
xvgr/xmgr file

Other options:

-deffnm <string>
Set the default filename for all file options

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-dd <vector> (0 0 0)
Domain decomposition grid, 0 is optimize

-ddorder <enum> (interleave)
DD rank order: interleave, pp_pme, cartesian

-npme <int> (-1)
Number of separate ranks to be used for PME, -1 is guess

-nt <int> (0)
Total number of threads to start (0 is guess)

-ntmpi <int> (0)
Number of thread-MPI ranks to start (0 is guess)

-ntomp <int> (0)
Number of OpenMP threads per MPI rank to start (0 is guess)

-ntomp_pme <int> (0)
Number of OpenMP threads per MPI rank to start (0 is -ntomp)

-pin <enum> (auto)
Whether mdrun should try to set thread affinities: auto, on, off

-pinoffset <int> (0)
The lowest logical core number to which mdrun should pin the first thread

3.11. Command-line reference 218

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-pinstride <int> (0)
Pinning distance in logical cores for threads, use 0 to minimize the number of threads per physical core

-gpu_id <string>
List of unique GPU device IDs available to use

-gputasks <string>
List of GPU device IDs, mapping each task on a node to a device. Tasks include PP and PME (if present).

-[no]ddcheck (yes)
Check for all bonded interactions with DD

-rdd <real> (0)
The maximum distance for bonded interactions with DD (nm), 0 is determine from initial coordinates

-rcon <real> (0)
Maximum distance for P-LINCS (nm), 0 is estimate

-dlb <enum> (auto)
Dynamic load balancing (with DD): auto, no, yes

-dds <real> (0.8)
Fraction in (0,1) by whose reciprocal the initial DD cell size will be increased in order to provide a margin
in which dynamic load balancing can act while preserving the minimum cell size.

-nb <enum> (auto)
Calculate non-bonded interactions on: auto, cpu, gpu

-nstlist <int> (0)
Set nstlist when using a Verlet buffer tolerance (0 is guess)

-[no]tunepme (yes)
Optimize PME load between PP/PME ranks or GPU/CPU

-pme <enum> (auto)
Perform PME calculations on: auto, cpu, gpu

-pmefft <enum> (auto)
Perform PME FFT calculations on: auto, cpu, gpu

-bonded <enum> (auto)
Perform bonded calculations on: auto, cpu, gpu

-update <enum> (auto)
Perform update and constraints on: auto, cpu, gpu

-[no]v (no)
Be loud and noisy

-pforce <real> (-1)
Print all forces larger than this (kJ/mol nm)

-[no]reprod (no)
Avoid optimizations that affect binary reproducibility; this can significantly reduce performance

-cpt <real> (15)
Checkpoint interval (minutes)

-[no]cpnum (no)
Keep and number checkpoint files

-[no]append (yes)
Append to previous output files when continuing from checkpoint instead of adding the simulation part
number to all file names

-nsteps <int> (-2)
Run this number of steps (-1 means infinite, -2 means use mdp option, smaller is invalid)

3.11. Command-line reference 219

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-maxh <real> (-1)
Terminate after 0.99 times this time (hours)

-replex <int> (0)
Attempt replica exchange periodically with this period (steps)

-nex <int> (0)
Number of random exchanges to carry out each exchange interval (N^3 is one suggestion). -nex zero or not
specified gives neighbor replica exchange.

-reseed <int> (-1)
Seed for replica exchange, -1 is generate a seed

3.11.55 gmx mindist

Synopsis

gmx mindist [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-od [<.xvg>]] [-on [<.xvg>]] [-o [<.out>]]
[-ox [<.xtc/.trr/...>]] [-or [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-tu <enum>] [-[no]w]
[-xvg <enum>] [-[no]matrix] [-[no]max] [-d <real>]
[-[no]group] [-[no]pi] [-[no]split] [-ng <int>]
[-[no]pbc] [-[no]respertime] [-[no]printresname]

Description

gmx mindist computes the distance between one group and a number of other groups. Both the minimum
distance (between any pair of atoms from the respective groups) and the number of contacts within a given distance
are written to two separate output files. With the -group option a contact of an atom in another group with
multiple atoms in the first group is counted as one contact instead of as multiple contacts. With -or, minimum
distances to each residue in the first group are determined and plotted as a function of residue number.

With option -pi the minimum distance of a group to its periodic image is plotted. This is useful for checking if
a protein has seen its periodic image during a simulation. Only one shift in each direction is considered, giving a
total of 26 shifts. Note that periodicity information is required from the file supplied with with -s, either as a .tpr
file or a .pdb file with CRYST1 fields. It also plots the maximum distance within the group and the lengths of the
three box vectors.

Also gmx distance (page 163) and gmx pairdist (page 233) calculate distances.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-od [<.xvg>] (mindist.xvg)
xvgr/xmgr file

3.11. Command-line reference 220

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-on [<.xvg>] (numcont.xvg) (Optional)
xvgr/xmgr file

-o [<.out>] (atm-pair.out) (Optional)
Generic output file

-ox [<.xtc/.trr/. . . >] (mindist.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

-or [<.xvg>] (mindistres.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]matrix (no)
Calculate half a matrix of group-group distances

-[no]max (no)
Calculate maximum distance instead of minimum

-d <real> (0.6)
Distance for contacts

-[no]group (no)
Count contacts with multiple atoms in the first group as one

-[no]pi (no)
Calculate minimum distance with periodic images

-[no]split (no)
Split graph where time is zero

-ng <int> (1)
Number of secondary groups to compute distance to a central group

-[no]pbc (yes)
Take periodic boundary conditions into account

-[no]respertime (no)
When writing per-residue distances, write distance for each time point

-[no]printresname (no)
Write residue names

3.11. Command-line reference 221

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.56 gmx mk_angndx

Synopsis

gmx mk_angndx [-s [<.tpr>]] [-n [<.ndx>]] [-type <enum>] [-[no]hyd]
[-hq <real>]

Description

gmx mk_angndx makes an index file for calculation of angle distributions etc. It uses a run input file (.tpx) for
the definitions of the angles, dihedrals etc.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-n [<.ndx>] (angle.ndx)
Index file

Other options:

-type <enum> (angle)
Type of angle: angle, dihedral, improper, ryckaert-bellemans

-[no]hyd (yes)
Include angles with atoms with mass < 1.5

-hq <real> (-1)
Ignore angles with atoms with mass < 1.5 and magnitude of their charge less than this value

3.11.57 gmx msd

Synopsis

gmx msd [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-mol [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>] [-xvg <enum>]
[-[no]rmpbc] [-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-sel <selection>] [-type <enum>]
[-lateral <enum>] [-trestart <real>] [-maxtau <real>]
[-beginfit <real>] [-endfit <real>]

Description

gmx msd computes the mean square displacement (MSD) of atoms from a set of initial positions. This provides
an easy way to compute the diffusion constant using the Einstein relation. The time between the reference points
for the MSD calculation is set with -trestart. The diffusion constant is calculated by least squares fitting a
straight line (D*t + c) through the MSD(t) from -beginfit to -endfit (note that t is time from the reference
positions, not simulation time). An error estimate given, which is the difference of the diffusion coefficients
obtained from fits over the two halves of the fit interval.

There are three, mutually exclusive, options to determine different types of mean square displacement: -type,
-lateral and -ten. Option -ten writes the full MSD tensor for each group, the order in the output is: trace
xx yy zz yx zx zy.

3.11. Command-line reference 222

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

If -mol is set, gmx msd plots the MSD for individual molecules (including making molecules whole across
periodic boundaries): for each individual molecule a diffusion constant is computed for its center of mass. The
chosen index group will be split into molecules. With -mol, only one index group can be selected.

The diffusion coefficient is determined by linear regression of the MSD. When -beginfit is -1, fitting starts
at 10% and when -endfit is -1, fitting goes to 90%. Using this option one also gets an accurate error estimate
based on the statistics between individual molecules. Note that this diffusion coefficient and error estimate are
only accurate when the MSD is completely linear between -beginfit and -endfit.

By default, gmx msd compares all trajectory frames against every frame stored at -trestart intervals, so
the number of frames stored scales linearly with the number of frames processed. This can lead to long analysis
times and out-of-memory errors for long/large trajectories, and often the data at higher time deltas lacks sufficient
sampling, often manifesting as a wobbly line on the MSD plot after a straighter region at lower time deltas.
The -maxtau option can be used to cap the maximum time delta for frame comparison, which may improve
performance and can be used to avoid out-of-memory issues.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (msdout.xvg) (Optional)
MSD output

-mol [<.xvg>] (diff_mol.xvg) (Optional)
Report diffusion coefficients for each molecule in selection

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

3.11. Command-line reference 223

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-sel <selection>
Selections to compute MSDs for from the reference

-type <enum> (unused)
: x, y, z, unused

-lateral <enum> (unused)
: x, y, z, unused

-trestart <real> (10)
Time between restarting points in trajectory (ps)

-maxtau <real> (1.79769e+308)
Maximum time delta between frames to calculate MSDs for (ps)

-beginfit <real> (-1)
Time point at which to start fitting.

-endfit <real> (-1)
End time for fitting.

3.11.58 gmx nmeig

Synopsis

gmx nmeig [-f [<.mtx>]] [-s [<.tpr>]] [-of [<.xvg>]] [-ol [<.xvg>]]
[-os [<.xvg>]] [-qc [<.xvg>]] [-v [<.trr/.cpt/...>]]
[-xvg <enum>] [-[no]m] [-first <int>] [-last <int>]
[-maxspec <int>] [-T <real>] [-P <real>] [-sigma <int>]
[-scale <real>] [-linear_toler <real>] [-[no]constr]
[-width <real>]

Description

gmx nmeig calculates the eigenvectors/values of a (Hessian) matrix, which can be calculated with gmx mdrun
(page 215). The eigenvectors are written to a trajectory file (-v). The structure is written first with t=0. The
eigenvectors are written as frames with the eigenvector number and eigenvalue written as step number and times-
tamp, respectively. The eigenvectors can be analyzed with gmx anaeig (page 122). An ensemble of structures
can be generated from the eigenvectors with gmx nmens (page 226). When mass weighting is used, the generated
eigenvectors will be scaled back to plain Cartesian coordinates before generating the output. In this case, they will
no longer be exactly orthogonal in the standard Cartesian norm, but in the mass-weighted norm they would be.

This program can be optionally used to compute quantum corrections to heat capacity and enthalpy by providing an
extra file argument -qcorr. See the GROMACS manual, Chapter 1, for details. The result includes subtracting
a harmonic degree of freedom at the given temperature. The total correction is printed on the terminal screen. The
recommended way of getting the corrections out is:

gmx nmeig -s topol.tpr -f nm.mtx -first 7 -last 10000 -T 300 -qc [-constr]

The -constr option should be used when bond constraints were used during the simulation for all the covalent
bonds. If this is not the case, you need to analyze the quant_corr.xvg file yourself.

3.11. Command-line reference 224

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

To make things more flexible, the program can also take virtual sites into account when computing quantum
corrections. When selecting -constr and -qc, the -begin and -end options will be set automatically as
well.

Based on a harmonic analysis of the normal mode frequencies, thermochemical properties S0 (Standard Entropy),
Cv (Heat capacity at constant volume), Zero-point energy and the internal energy are computed, much in the same
manner as popular quantum chemistry programs.

Options

Options to specify input files:

-f [<.mtx>] (hessian.mtx)
Hessian matrix

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-of [<.xvg>] (eigenfreq.xvg)
xvgr/xmgr file

-ol [<.xvg>] (eigenval.xvg)
xvgr/xmgr file

-os [<.xvg>] (spectrum.xvg) (Optional)
xvgr/xmgr file

-qc [<.xvg>] (quant_corr.xvg) (Optional)
xvgr/xmgr file

-v [<.trr/.cpt/. . . >] (eigenvec.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]m (yes)
Divide elements of Hessian by product of sqrt(mass) of involved atoms prior to diagonalization. This should
be used for ‘Normal Modes’ analysis

-first <int> (1)
First eigenvector to write away

-last <int> (50)
Last eigenvector to write away. -1 is use all dimensions.

-maxspec <int> (4000)
Highest frequency (1/cm) to consider in the spectrum

-T <real> (298.15)
Temperature for computing entropy, quantum heat capacity and enthalpy when using normal mode calcula-
tions to correct classical simulations

-P <real> (1)
Pressure (bar) when computing entropy

-sigma <int> (1)
Number of symmetric copies used when computing entropy. E.g. for water the number is 2, for NH3 it is 3
and for methane it is 12.

-scale <real> (1)
Factor to scale frequencies before computing thermochemistry values

3.11. Command-line reference 225

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-linear_toler <real> (1e-05)
Tolerance for determining whether a compound is linear as determined from the ration of the moments
inertion Ix/Iy and Ix/Iz.

-[no]constr (no)
If constraints were used in the simulation but not in the normal mode analysis you will need to set this for
computing the quantum corrections.

-width <real> (1)
Width (sigma) of the gaussian peaks (1/cm) when generating a spectrum

3.11.59 gmx nmens

Synopsis

gmx nmens [-v [<.trr/.cpt/...>]] [-e [<.xvg>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xtc/.trr/...>]] [-xvg <enum>]
[-temp <real>] [-seed <int>] [-num <int>] [-first <int>]
[-last <int>]

Description

gmx nmens generates an ensemble around an average structure in a subspace that is defined by a set of normal
modes (eigenvectors). The eigenvectors are assumed to be mass-weighted. The position along each eigenvector is
randomly taken from a Gaussian distribution with variance kT/eigenvalue.

By default the starting eigenvector is set to 7, since the first six normal modes are the translational and rotational
degrees of freedom.

Options

Options to specify input files:

-v [<.trr/.cpt/. . . >] (eigenvec.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-e [<.xvg>] (eigenval.xvg)
xvgr/xmgr file

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xtc/.trr/. . . >] (ensemble.xtc)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-temp <real> (300)
Temperature in Kelvin

-seed <int> (0)
Random seed (0 means generate)

-num <int> (100)
Number of structures to generate

3.11. Command-line reference 226

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-first <int> (7)
First eigenvector to use (-1 is select)

-last <int> (-1)
Last eigenvector to use (-1 is till the last)

3.11.60 gmx nmr

Synopsis

gmx nmr [-f [<.edr>]] [-f2 [<.edr>]] [-s [<.tpr>]] [-viol [<.xvg>]]
[-pairs [<.xvg>]] [-ora [<.xvg>]] [-ort [<.xvg>]]
[-oda [<.xvg>]] [-odr [<.xvg>]] [-odt [<.xvg>]]
[-oten [<.xvg>]] [-b <time>] [-e <time>] [-[no]w]
[-xvg <enum>] [-[no]dp] [-skip <int>] [-[no]aver]
[-[no]orinst] [-[no]ovec]

Description

gmx nmr extracts distance or orientation restraint data from an energy file. The user is prompted to interactively
select the desired terms.

When the -viol option is set, the time averaged violations are plotted and the running time-averaged and in-
stantaneous sum of violations are recalculated. Additionally running time-averaged and instantaneous distances
between selected pairs can be plotted with the -pairs option.

Options -ora, -ort, -oda, -odr and -odt are used for analyzing orientation restraint data. The first two
options plot the orientation, the last three the deviations of the orientations from the experimental values. The
options that end on an ‘a’ plot the average over time as a function of restraint. The options that end on a ‘t’ prompt
the user for restraint label numbers and plot the data as a function of time. Option -odr plots the RMS deviation
as a function of restraint. When the run used time or ensemble averaged orientation restraints, option -orinst
can be used to analyse the instantaneous, not ensemble-averaged orientations and deviations instead of the time
and ensemble averages.

Option -oten plots the eigenvalues of the molecular order tensor for each orientation restraint experiment. With
option -ovec also the eigenvectors are plotted.

Options

Options to specify input files:

-f [<.edr>] (ener.edr)
Energy file

-f2 [<.edr>] (ener.edr) (Optional)
Energy file

-s [<.tpr>] (topol.tpr) (Optional)
Portable xdr run input file

Options to specify output files:

-viol [<.xvg>] (violaver.xvg) (Optional)
xvgr/xmgr file

-pairs [<.xvg>] (pairs.xvg) (Optional)
xvgr/xmgr file

-ora [<.xvg>] (orienta.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 227

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-ort [<.xvg>] (orientt.xvg) (Optional)
xvgr/xmgr file

-oda [<.xvg>] (orideva.xvg) (Optional)
xvgr/xmgr file

-odr [<.xvg>] (oridevr.xvg) (Optional)
xvgr/xmgr file

-odt [<.xvg>] (oridevt.xvg) (Optional)
xvgr/xmgr file

-oten [<.xvg>] (oriten.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]dp (no)
Print energies in high precision

-skip <int> (0)
Skip number of frames between data points

-[no]aver (no)
Also print the exact average and rmsd stored in the energy frames (only when 1 term is requested)

-[no]orinst (no)
Analyse instantaneous orientation data

-[no]ovec (no)
Also plot the eigenvectors with -oten

3.11.61 gmx nmtraj

Synopsis

gmx nmtraj [-s [<.tpr/.gro/...>]] [-v [<.trr/.cpt/...>]]
[-o [<.xtc/.trr/...>]] [-eignr <string>]
[-phases <string>] [-temp <real>] [-amplitude <real>]
[-nframes <int>]

3.11. Command-line reference 228

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx nmtraj generates an virtual trajectory from an eigenvector, corresponding to a harmonic Cartesian os-
cillation around the average structure. The eigenvectors should normally be mass-weighted, but you can use
non-weighted eigenvectors to generate orthogonal motions. The output frames are written as a trajectory file cov-
ering an entire period, and the first frame is the average structure. If you write the trajectory in (or convert to) PDB
format you can view it directly in PyMol and also render a photorealistic movie. Motion amplitudes are calculated
from the eigenvalues and a preset temperature, assuming equipartition of the energy over all modes. To make
the motion clearly visible in PyMol you might want to amplify it by setting an unrealistically high temperature.
However, be aware that both the linear Cartesian displacements and mass weighting will lead to serious structure
deformation for high amplitudes - this is is simply a limitation of the Cartesian normal mode model. By default
the selected eigenvector is set to 7, since the first six normal modes are the translational and rotational degrees of
freedom.

Options

Options to specify input files:

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-v [<.trr/.cpt/. . . >] (eigenvec.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

Options to specify output files:

-o [<.xtc/.trr/. . . >] (nmtraj.xtc)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

Other options:

-eignr <string> (7)
String of eigenvectors to use (first is 1)

-phases <string> (0.0)
String of phases (default is 0.0)

-temp <real> (300)
Temperature (K)

-amplitude <real> (0.25)
Amplitude for modes with eigenvalue<=0

-nframes <int> (30)
Number of frames to generate

3.11.62 gmx nonbonded-benchmark

Synopsis

gmx nonbonded-benchmark [-o [<.csv>]] [-size <int>] [-nt <int>]
[-simd <enum>] [-coulomb <enum>] [-[no]table]
[-combrule <enum>] [-[no]halflj] [-[no]energy]
[-[no]all] [-cutoff <real>] [-iter <int>]
[-warmup <int>] [-[no]cycles] [-[no]time]

3.11. Command-line reference 229

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx nonbonded-benchmark runs benchmarks for one or more so-called Nbnxm non-bonded pair kernels.
The non-bonded pair kernels are the most compute intensive part of MD simulations and usually comprise 60 to
90 percent of the runtime. For this reason they are highly optimized and several different setups are available to
compute the same physical interactions. In addition, there are different physical treatments of Coulomb interac-
tions and optimizations for atoms without Lennard-Jones interactions. There are also different physical treatments
of Lennard-Jones interactions, but only a plain cut-off is supported in this tool, as that is by far the most common
treatment. And finally, while force output is always necessary, energy output is only required at certain steps. In
total there are 12 relevant combinations of options. The combinations double to 24 when two different SIMD se-
tups are supported. These combinations can be run with a single invocation using the -all option. The behavior
of each kernel is affected by caching behavior, which is determined by the hardware used together with the system
size and the cut-off radius. The larger the number of atoms per thread, the more L1 cache is needed to avoid
L1 cache misses. The cut-off radius mainly affects the data reuse: a larger cut-off results in more data reuse and
makes the kernel less sensitive to cache misses.

OpenMP parallelization is used to utilize multiple hardware threads within a compute node. In these benchmarks
there is no interaction between threads, apart from starting and closing a single OpenMP parallel region per
iteration. Additionally, threads interact through sharing and evicting data from shared caches. The number of
threads to use is set with the -nt option. Thread affinity is important, especially with SMT and shared caches.
Affinities can be set through the OpenMP library using the GOMP_CPU_AFFINITY environment variable.

The benchmark tool times one or more kernels by running them repeatedly for a number of iterations set by the
-iter option. An initial kernel call is done to avoid additional initial cache misses. Times are recording in cycles
read from efficient, high accuracy counters in the CPU. Note that these often do not correspond to actual clock
cycles. For each kernel, the tool reports the total number of cycles, cycles per iteration, and (total and useful) pair
interactions per cycle. Because a cluster pair list is used instead of an atom pair list, interactions are also computed
for some atom pairs that are beyond the cut-off distance. These pairs are not useful (except for additional buffering,
but that is not of interest here), only a side effect of the cluster-pair setup. The SIMD 2xMM kernel has a higher
useful pair ratio then the 4xM kernel due to a smaller cluster size, but a lower total pair throughput. It is best to
run this, or for that matter any, benchmark with locked CPU clocks, as thermal throttling can significantly affect
performance. If that is not an option, the -warmup option can be used to run initial, untimed iterations to warm
up the processor.

The most relevant regime is between 0.1 to 1 millisecond per iteration. Thus it is useful to run with system sizes
that cover both ends of this regime.

The -simd and -table options select different implementations to compute the same physics. The choice of
these options should ideally be optimized for the target hardware. Historically, we only found tabulated Ewald
correction to be useful on 2-wide SIMD or 4-wide SIMD without FMA support. As all modern architectures are
wider and support FMA, we do not use tables by default. The only exceptions are kernels without SIMD, which
only support tables. Options -coulomb, -combrule and -halflj depend on the force field and composition
of the simulated system. The optimization of computing Lennard-Jones interactions for only half of the atoms in
a cluster is useful for water, which does not use Lennard-Jones on hydrogen atoms in most water models. In the
MD engine, any clusters where at most half of the atoms have LJ interactions will automatically use this kernel.
And finally, the -energy option selects the computation of energies, which are usually only needed infrequently.

Options

Options to specify output files:

-o [<.csv>] (nonbonded-benchmark.csv) (Optional)
Also output results in csv format

Other options:

-size <int> (1)
The system size is 3000 atoms times this value

-nt <int> (1)
The number of OpenMP threads to use

3.11. Command-line reference 230

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-simd <enum> (auto)
SIMD type, auto runs all supported SIMD setups or no SIMD when SIMD is not supported: auto, no, 4xm,
2xmm

-coulomb <enum> (ewald)
The functional form for the Coulomb interactions: ewald, reaction-field

-[no]table (no)
Use lookup table for Ewald correction instead of analytical

-combrule <enum> (geometric)
The LJ combination rule: geometric, lb, none

-[no]halflj (no)
Use optimization for LJ on half of the atoms

-[no]energy (no)
Compute energies in addition to forces

-[no]all (no)
Run all 12 combinations of options for coulomb, halflj, combrule

-cutoff <real> (1)
Pair-list and interaction cut-off distance

-iter <int> (100)
The number of iterations for each kernel

-warmup <int> (0)
The number of iterations for initial warmup

-[no]cycles (no)
Report cycles/pair instead of pairs/cycle

-[no]time (no)
Report micro-seconds instead of cycles

3.11.63 gmx order

Synopsis

gmx order [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-nr [<.ndx>]]
[-s [<.tpr>]] [-o [<.xvg>]] [-od [<.xvg>]] [-ob [<.pdb>]]
[-os [<.xvg>]] [-Sg [<.xvg>]] [-Sk [<.xvg>]]
[-Sgsl [<.xvg>]] [-Sksl [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-d <enum>] [-sl <int>]
[-[no]szonly] [-[no]permolecule] [-[no]radial]
[-[no]calcdist]

Description

gmx order computes the order parameter per atom for carbon tails. For atom i the vector i-1, i+1 is used
together with an axis. The index file should contain only the groups to be used for calculations, with each group
of equivalent carbons along the relevant acyl chain in its own group. There should not be any generic groups
(like System, Protein) in the index file to avoid confusing the program (this is not relevant to tetrahedral order
parameters however, which only work for water anyway).

gmx order can also give all diagonal elements of the order tensor and even calculate the deuterium order
parameter Scd (default). If the option -szonly is given, only one order tensor component (specified by the -d
option) is given and the order parameter per slice is calculated as well. If -szonly is not selected, all diagonal
elements and the deuterium order parameter is given.

3.11. Command-line reference 231

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The tetrahedrality order parameters can be determined around an atom. Both angle an distance order parameters
are calculated. See P.-L. Chau and A.J. Hardwick, Mol. Phys., 93, (1998), 511-518. for more details.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx)
Index file

-nr [<.ndx>] (index.ndx) (Optional)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (order.xvg)
xvgr/xmgr file

-od [<.xvg>] (deuter.xvg)
xvgr/xmgr file

-ob [<.pdb>] (eiwit.pdb) (Optional)
Protein data bank file

-os [<.xvg>] (sliced.xvg)
xvgr/xmgr file

-Sg [<.xvg>] (sg-ang.xvg) (Optional)
xvgr/xmgr file

-Sk [<.xvg>] (sk-dist.xvg) (Optional)
xvgr/xmgr file

-Sgsl [<.xvg>] (sg-ang-slice.xvg) (Optional)
xvgr/xmgr file

-Sksl [<.xvg>] (sk-dist-slice.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-d <enum> (z)
Direction of the normal on the membrane: z, x, y

-sl <int> (1)
Calculate order parameter as function of box length, dividing the box into this number of slices.

3.11. Command-line reference 232

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]szonly (no)
Only give Sz element of order tensor. (axis can be specified with -d)

-[no]permolecule (no)
Compute per-molecule Scd order parameters

-[no]radial (no)
Compute a radial membrane normal

-[no]calcdist (no)
Compute distance from a reference

Known Issues

• This tool only works for saturated carbons and united atom force fields.

• For anything else, it is highly recommended to use a different analysis method!

• The option -unsat claimed to do analysis for unsaturated carbons

• this but hasn’t worked ever since it was added and has thus been removed.

3.11.64 gmx pairdist

Synopsis

gmx pairdist [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-tu <enum>] [-fgroup <selection>] [-xvg <enum>]
[-[no]rmpbc] [-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-cutoff <real>] [-type <enum>]
[-refgrouping <enum>] [-selgrouping <enum>]
[-ref <selection>] [-sel <selection>]

Description

gmx pairdist calculates pairwise distances between one reference selection (given with -ref) and one or
more other selections (given with -sel). It can calculate either the minimum distance (the default), or the maxi-
mum distance (with -type max). Distances to each selection provided with -sel are computed independently.

By default, the global minimum/maximum distance is computed. To compute more distances (e.g., minimum
distances to each residue in -ref), use -refgrouping and/or -selgrouping to specify how the positions
within each selection should be grouped.

Computed distances are written to the file specified with -o. If there are N groups in -ref and M groups in
the first selection in -sel, then the output contains N*M columns for the first selection. The columns contain
distances like this: r1-s1, r2-s1, . . . , r1-s2, r2-s2, . . . , where rn is the n’th group in -ref and sn is the n’th group
in the other selection. The distances for the second selection comes as separate columns after the first selection,
and so on. If some selections are dynamic, only the selected positions are used in the computation but the same
number of columns is always written out. If there are no positions contributing to some group pair, then the cutoff
value is written (see below).

-cutoff sets a cutoff for the computed distances. If the result would contain a distance over the cutoff, the
cutoff value is written to the output file instead. By default, no cutoff is used, but if you are not interested in values
beyond a cutoff, or if you know that the minimum distance is smaller than a cutoff, you should set this option to
allow the tool to use grid-based searching and be significantly faster.

If you want to compute distances between fixed pairs, gmx distance (page 163) may be a more suitable tool.

3.11. Command-line reference 233

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (dist.xvg)
Distances as function of time

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-cutoff <real> (0)
Maximum distance to consider

-type <enum> (min)
Type of distances to calculate: min, max

-refgrouping <enum> (all)
Grouping of -ref positions to compute the min/max over: all, res, mol, none

-selgrouping <enum> (all)
Grouping of -sel positions to compute the min/max over: all, res, mol, none

3.11. Command-line reference 234

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-ref <selection>
Reference positions to calculate distances from

-sel <selection>
Positions to calculate distances for

3.11.65 gmx pdb2gmx

Synopsis

gmx pdb2gmx [-f [<.gro/.g96/...>]] [-o [<.gro/.g96/...>]] [-p [<.top>]]
[-i [<.itp>]] [-n [<.ndx>]] [-q [<.gro/.g96/...>]]
[-chainsep <enum>] [-merge <enum>] [-ff <string>]
[-water <enum>] [-[no]inter] [-[no]ss] [-[no]ter]
[-[no]lys] [-[no]arg] [-[no]asp] [-[no]glu] [-[no]gln]
[-[no]his] [-angle <real>] [-dist <real>] [-[no]una]
[-[no]ignh] [-[no]missing] [-[no]v] [-posrefc <real>]
[-vsite <enum>] [-[no]heavyh] [-[no]deuterate]
[-[no]chargegrp] [-[no]cmap] [-[no]renum] [-[no]rtpres]

Description

gmx pdb2gmx reads a .pdb (page 490) (or .gro (page 486)) file, reads some database files, adds hydrogens to
the molecules and generates coordinates in GROMACS (GROMOS), or optionally .pdb (page 490), format and a
topology in GROMACS format. These files can subsequently be processed to generate a run input file.

gmx pdb2gmx will search for force fields by looking for a forcefield.itp file in subdirectories
<forcefield>.ff of the current working directory and of the GROMACS library directory as inferred from
the path of the binary or the GMXLIB environment variable. By default the forcefield selection is interactive, but
you can use the -ff option to specify one of the short names in the list on the command line instead. In that case
gmx pdb2gmx just looks for the corresponding <forcefield>.ff directory.

After choosing a force field, all files will be read only from the corresponding force field directory. If you want
to modify or add a residue types, you can copy the force field directory from the GROMACS library direc-
tory to your current working directory. If you want to add new protein residue types, you will need to modify
residuetypes.dat in the library directory or copy the whole library directory to a local directory and set the
environment variable GMXLIB to the name of that directory. Check Chapter 5 of the manual for more information
about file formats.

Note that a .pdb (page 490) file is nothing more than a file format, and it need not necessarily contain a protein
structure. Every kind of molecule for which there is support in the database can be converted. If there is no support
in the database, you can add it yourself.

The program has limited intelligence, it reads a number of database files, that allow it to make special bonds
(Cys-Cys, Heme-His, etc.), if necessary this can be done manually. The program can prompt the user to select
which kind of LYS, ASP, GLU, CYS or HIS residue is desired. For Lys the choice is between neutral (two protons
on NZ) or protonated (three protons, default), for Asp and Glu unprotonated (default) or protonated, for His the
proton can be either on ND1, on NE2 or on both. By default these selections are done automatically. For His, this
is based on an optimal hydrogen bonding conformation. Hydrogen bonds are defined based on a simple geometric
criterion, specified by the maximum hydrogen-donor-acceptor angle and donor-acceptor distance, which are set
by -angle and -dist respectively.

The protonation state of N- and C-termini can be chosen interactively with the -ter flag. Default termini are
ionized (NH3+ and COO-), respectively. Some force fields support zwitterionic forms for chains of one residue,
but for polypeptides these options should NOT be selected. The AMBER force fields have unique forms for
the terminal residues, and these are incompatible with the -ter mechanism. You need to prefix your N- or C-
terminal residue names with “N” or “C” respectively to use these forms, making sure you preserve the format of
the coordinate file. Alternatively, use named terminating residues (e.g. ACE, NME).

3.11. Command-line reference 235

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The separation of chains is not entirely trivial since the markup in user-generated PDB files frequently varies and
sometimes it is desirable to merge entries across a TER record, for instance if you want a disulfide bridge or
distance restraints between two protein chains or if you have a HEME group bound to a protein. In such cases
multiple chains should be contained in a single moleculetype definition. To handle this, gmx pdb2gmx
uses two separate options. First, -chainsep allows you to choose when a new chemical chain should start,
and termini added when applicable. This can be done based on the existence of TER records, when the chain id
changes, or combinations of either or both of these. You can also do the selection fully interactively. In addition,
there is a -merge option that controls how multiple chains are merged into one moleculetype, after adding all the
chemical termini (or not). This can be turned off (no merging), all non-water chains can be merged into a single
molecule, or the selection can be done interactively.

gmx pdb2gmx will also check the occupancy field of the .pdb (page 490) file. If any of the occupancies are
not one, indicating that the atom is not resolved well in the structure, a warning message is issued. When a .pdb
(page 490) file does not originate from an X-ray structure determination all occupancy fields may be zero. Either
way, it is up to the user to verify the correctness of the input data (read the article!).

During processing the atoms will be reordered according to GROMACS conventions. With -n an index file can
be generated that contains one group reordered in the same way. This allows you to convert a GROMOS trajectory
and coordinate file to GROMOS. There is one limitation: reordering is done after the hydrogens are stripped from
the input and before new hydrogens are added. This means that you should not use -ignh.

The .gro (page 486) and .g96 file formats do not support chain identifiers. Therefore it is useful to enter a .pdb
(page 490) file name at the -o option when you want to convert a multi-chain .pdb (page 490) file.

The option -vsite removes hydrogen and fast improper dihedral motions. Angular and out-of-plane motions
can be removed by changing hydrogens into virtual sites and fixing angles, which fixes their position relative to
neighboring atoms. Additionally, all atoms in the aromatic rings of the standard amino acids (i.e. PHE, TRP, TYR
and HIS) can be converted into virtual sites, eliminating the fast improper dihedral fluctuations in these rings (but
this feature is deprecated). Note that in this case all other hydrogen atoms are also converted to virtual sites. The
mass of all atoms that are converted into virtual sites, is added to the heavy atoms.

Also slowing down of dihedral motion can be done with -heavyh done by increasing the hydrogen-mass by a
factor of 4. This is also done for water hydrogens to slow down the rotational motion of water. The increase in mass
of the hydrogens is subtracted from the bonded (heavy) atom so that the total mass of the system remains the same.
As a special case, ring-closed (or cyclic) molecules are considered. gmx pdb2gmx automatically determines if a
cyclic molecule is present by evaluating the distance between the terminal atoms of a given chain. If this distance
is greater than the -sb (“Short bond warning distance”, default 0.05 nm) and less than the -lb (“Long bond
warning distance”, default 0.25 nm) the molecule is considered to be ring closed and will be processed as such.
Please note that this does not detect cyclic bonds over periodic boundaries.

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (protein.pdb)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

Options to specify output files:

-o [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-p [<.top>] (topol.top)
Topology file

-i [<.itp>] (posre.itp)
Include file for topology

-n [<.ndx>] (index.ndx) (Optional)
Index file

-q [<.gro/.g96/. . . >] (clean.pdb) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

3.11. Command-line reference 236

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Other options:

-chainsep <enum> (id_or_ter)
Condition in PDB files when a new chain should be started (adding termini): id_or_ter, id_and_ter, ter, id,
interactive

-merge <enum> (no)
Merge multiple chains into a single [moleculetype]: no, all, interactive

-ff <string> (select)
Force field, interactive by default. Use -h for information.

-water <enum> (select)
Water model to use: select, none, spc, spce, tip3p, tip4p, tip5p, tips3p

-[no]inter (no)
Set the next 8 options to interactive

-[no]ss (no)
Interactive SS bridge selection

-[no]ter (no)
Interactive termini selection, instead of charged (default)

-[no]lys (no)
Interactive lysine selection, instead of charged

-[no]arg (no)
Interactive arginine selection, instead of charged

-[no]asp (no)
Interactive aspartic acid selection, instead of charged

-[no]glu (no)
Interactive glutamic acid selection, instead of charged

-[no]gln (no)
Interactive glutamine selection, instead of charged

-[no]his (no)
Interactive histidine selection, instead of checking H-bonds

-angle <real> (135)
Minimum hydrogen-donor-acceptor angle for a H-bond (degrees)

-dist <real> (0.3)
Maximum donor-acceptor distance for a H-bond (nm)

-[no]una (no)
Select aromatic rings with united CH atoms on phenylalanine, tryptophane and tyrosine

-[no]ignh (no)
Ignore hydrogen atoms that are in the coordinate file

-[no]missing (no)
Continue when atoms are missing and bonds cannot be made, dangerous

-[no]v (no)
Be slightly more verbose in messages

-posrefc <real> (1000)
Force constant for position restraints

-vsite <enum> (none)
Convert atoms to virtual sites: none, hydrogens, aromatics

-[no]heavyh (no)
Make hydrogen atoms heavy

3.11. Command-line reference 237

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]deuterate (no)
Change the mass of hydrogens to 2 amu

-[no]chargegrp (yes)
Use charge groups in the .rtp (page 491) file

-[no]cmap (yes)
Use cmap torsions (if enabled in the .rtp (page 491) file)

-[no]renum (no)
Renumber the residues consecutively in the output

-[no]rtpres (no)
Use .rtp (page 491) entry names as residue names

3.11.66 gmx pme_error

Synopsis

gmx pme_error [-s [<.tpr>]] [-o [<.out>]] [-so [<.tpr>]] [-beta <real>]
[-[no]tune] [-self <real>] [-seed <int>] [-[no]v]

Description

gmx pme_error estimates the error of the electrostatic forces if using the sPME algorithm. The flag -tune
will determine the splitting parameter such that the error is equally distributed over the real and reciprocal space
part. The part of the error that stems from self interaction of the particles is computationally demanding. However,
a good a approximation is to just use a fraction of the particles for this term which can be indicated by the flag
-self.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.out>] (error.out)
Generic output file

-so [<.tpr>] (tuned.tpr) (Optional)
Portable xdr run input file

Other options:

-beta <real> (-1)
If positive, overwrite ewald_beta from .tpr (page 494) file with this value

-[no]tune (no)
Tune the splitting parameter such that the error is equally distributed between real and reciprocal space

-self <real> (1)
If between 0.0 and 1.0, determine self interaction error from just this fraction of the charged particles

-seed <int> (0)
Random number seed used for Monte Carlo algorithm when -self is set to a value between 0.0 and 1.0

-[no]v (no)
Be loud and noisy

3.11. Command-line reference 238

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.67 gmx polystat

Synopsis

gmx polystat [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-v [<.xvg>]] [-p [<.xvg>]] [-i [<.xvg>]]
[-b <time>] [-e <time>] [-dt <time>] [-tu <enum>]
[-[no]w] [-xvg <enum>] [-[no]mw] [-[no]pc]

Description

gmx polystat plots static properties of polymers as a function of time and prints the average.

By default it determines the average end-to-end distance and radii of gyration of polymers. It asks for an index
group and split this into molecules. The end-to-end distance is then determined using the first and the last atom
in the index group for each molecules. For the radius of gyration the total and the three principal components
for the average gyration tensor are written. With option -v the eigenvectors are written. With option -pc also
the average eigenvalues of the individual gyration tensors are written. With option -i the mean square internal
distances are written.

With option -p the persistence length is determined. The chosen index group should consist of atoms that are
consecutively bonded in the polymer mainchains. The persistence length is then determined from the cosine of
the angles between bonds with an index difference that is even, the odd pairs are not used, because straight polymer
backbones are usually all trans and therefore only every second bond aligns. The persistence length is defined as
number of bonds where the average cos reaches a value of 1/e. This point is determined by a linear interpolation
of log(<cos>).

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (polystat.xvg)
xvgr/xmgr file

-v [<.xvg>] (polyvec.xvg) (Optional)
xvgr/xmgr file

-p [<.xvg>] (persist.xvg) (Optional)
xvgr/xmgr file

-i [<.xvg>] (intdist.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

3.11. Command-line reference 239

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]mw (yes)
Use the mass weighting for radii of gyration

-[no]pc (no)
Plot average eigenvalues

3.11.68 gmx potential

Synopsis

gmx potential [-f [<.xtc/.trr/...>]] [-n [<.ndx>]] [-s [<.tpr>]]
[-o [<.xvg>]] [-oc [<.xvg>]] [-of [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>]
[-d <string>] [-sl <int>] [-cb <int>] [-ce <int>]
[-tz <real>] [-[no]spherical] [-ng <int>] [-[no]center]
[-[no]symm] [-[no]correct]

Description

gmx potential computes the electrostatical potential across the box. The potential is calculated by first sum-
ming the charges per slice and then integrating twice of this charge distribution. Periodic boundaries are not taken
into account. Reference of potential is taken to be the left side of the box. It is also possible to calculate the
potential in spherical coordinates as function of r by calculating a charge distribution in spherical slices and twice
integrating them. epsilon_r is taken as 1, but 2 is more appropriate in many cases.

Option -center performs the histogram binning and potential calculation relative to the center of an arbitrary
group, in absolute box coordinates. If you are calculating profiles along the Z axis box dimension bZ, output
would be from -bZ/2 to bZ/2 if you center based on the entire system. Option -symm symmetrizes the output
around the center. This will automatically turn on -center too.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx)
Index file

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (potential.xvg)
xvgr/xmgr file

3.11. Command-line reference 240

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-oc [<.xvg>] (charge.xvg)
xvgr/xmgr file

-of [<.xvg>] (field.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-d <string> (Z)
Take the normal on the membrane in direction X, Y or Z.

-sl <int> (10)
Calculate potential as function of boxlength, dividing the box in this number of slices.

-cb <int> (0)
Discard this number of first slices of box for integration

-ce <int> (0)
Discard this number of last slices of box for integration

-tz <real> (0)
Translate all coordinates by this distance in the direction of the box

-[no]spherical (no)
Calculate in spherical coordinates

-ng <int> (1)
Number of groups to consider

-[no]center (no)
Perform the binning relative to the center of the (changing) box. Useful for bilayers.

-[no]symm (no)
Symmetrize the density along the axis, with respect to the center. Useful for bilayers.

-[no]correct (no)
Assume net zero charge of groups to improve accuracy

Known Issues

• Discarding slices for integration should not be necessary.

3.11. Command-line reference 241

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.69 gmx principal

Synopsis

gmx principal [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-a1 [<.xvg>]] [-a2 [<.xvg>]]
[-a3 [<.xvg>]] [-om [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-[no]w] [-xvg <enum>]
[-[no]foo]

Description

gmx principal calculates the three principal axes of inertia for a group of atoms. NOTE: Old versions of
GROMACS wrote the output data in a strange transposed way. As of GROMACS 5.0, the output file paxis1.dat
contains the x/y/z components of the first (major) principal axis for each frame, and similarly for the middle and
minor axes in paxis2.dat and paxis3.dat.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-a1 [<.xvg>] (paxis1.xvg)
xvgr/xmgr file

-a2 [<.xvg>] (paxis2.xvg)
xvgr/xmgr file

-a3 [<.xvg>] (paxis3.xvg)
xvgr/xmgr file

-om [<.xvg>] (moi.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 242

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]foo (no)
Dummy option to avoid empty array

3.11.70 gmx rama

Synopsis

gmx rama [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-o [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>]

Description

gmx rama selects the phi/psi dihedral combinations from your topology file and computes these as a function of
time. Using simple Unix tools such as grep you can select out specific residues.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Options to specify output files:

-o [<.xvg>] (rama.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11.71 gmx rdf

Synopsis

gmx rdf [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-cn [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>] [-xvg <enum>]
[-[no]rmpbc] [-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-bin <real>] [-norm <enum>] [-[no]xy]
[-[no]excl] [-cut <real>] [-rmax <real>] [-surf <enum>]
[-ref <selection>] [-sel <selection>]

3.11. Command-line reference 243

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx rdf calculates radial distribution functions from one reference set of position (set with -ref) to one or
more sets of positions (set with -sel). To compute the RDF with respect to the closest position in a set in -ref
instead, use -surf: if set, then -ref is partitioned into sets based on the value of -surf, and the closest
position in each set is used. To compute the RDF around axes parallel to the z-axis, i.e., only in the x-y plane, use
-xy.

To set the bin width and maximum distance to use in the RDF, use -bin and -rmax, respectively. The latter can
be used to limit the computational cost if the RDF is not of interest up to the default (half of the box size with
PBC, three times the box size without PBC).

To use exclusions from the topology (-s), set -excl and ensure that both -ref and -sel only select atoms. A
rougher alternative to exclude intra-molecular peaks is to set -cut to a non-zero value to clear the RDF at small
distances.

The RDFs are normalized by 1) average number of positions in -ref (the number of groups with -surf), 2) vol-
ume of the bin, and 3) average particle density of -sel positions for that selection. To change the normalization,
use -norm:

• rdf: Use all factors for normalization. This produces a normal RDF.

• number_density: Use the first two factors. This produces a number density as a function of distance.

• none: Use only the first factor. In this case, the RDF is only scaled with the bin width to make the integral
of the curve represent the number of pairs within a range.

Note that exclusions do not affect the normalization: even if -excl is set, or -ref and -sel contain the same
selection, the normalization factor is still N*M, not N*(M-excluded).

For -surf, the selection provided to -ref must select atoms, i.e., centers of mass are not supported. Further,
-nonorm is implied, as the bins have irregular shapes and the volume of a bin is not easily computable.

Option -cn produces the cumulative number RDF, i.e. the average number of particles within a distance r.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (rdf.xvg)
Computed RDFs

-cn [<.xvg>] (rdf_cn.xvg) (Optional)
Cumulative RDFs

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

3.11. Command-line reference 244

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-bin <real> (0.002)
Bin width (nm)

-norm <enum> (rdf)
Normalization: rdf, number_density, none

-[no]xy (no)
Use only the x and y components of the distance

-[no]excl (no)
Use exclusions from topology

-cut <real> (0)
Shortest distance (nm) to be considered

-rmax <real> (0)
Largest distance (nm) to calculate

-surf <enum> (no)
RDF with respect to the surface of the reference: no, mol, res

-ref <selection>
Reference selection for RDF computation

-sel <selection>
Selections to compute RDFs for from the reference

3.11. Command-line reference 245

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.72 gmx report-methods

Synopsis

gmx report-methods [-s [<.tpr/.gro/...>]] [-m [<.tex>]] [-o [<.out>]]

Description

gmx report-methods reports basic system information for the run input file specified with -s either to the
terminal, to a LaTeX formatted output file if run with the -m option or to an unformatted file with the -o option.
The functionality has been moved here from its previous place in gmx check (page 134).

Options

Options to specify input files:

-s [<.tpr/.gro/. . . >] (topol.tpr)
Run input file for report: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

Options to specify output files:

-m [<.tex>] (report.tex) (Optional)
LaTeX formatted report output

-o [<.out>] (report.out) (Optional)
Unformatted report output to file

3.11.73 gmx rms

Synopsis

gmx rms [-s [<.tpr/.gro/...>]] [-f [<.xtc/.trr/...>]]
[-f2 [<.xtc/.trr/...>]] [-n [<.ndx>]] [-o [<.xvg>]]
[-mir [<.xvg>]] [-a [<.xvg>]] [-dist [<.xvg>]] [-m [<.xpm>]]
[-bin [<.dat>]] [-bm [<.xpm>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-[no]w] [-xvg <enum>]
[-what <enum>] [-[no]pbc] [-fit <enum>] [-prev <int>]
[-[no]split] [-skip <int>] [-skip2 <int>] [-max <real>]
[-min <real>] [-bmax <real>] [-bmin <real>] [-[no]mw]
[-nlevels <int>] [-ng <int>]

Description

gmx rms compares two structures by computing the root mean square deviation (RMSD), the size-independent
rho similarity parameter (rho) or the scaled rho (rhosc), see Maiorov & Crippen, Proteins 22, 273 (1995). This
is selected by -what.

Each structure from a trajectory (-f) is compared to a reference structure. The reference structure is taken from
the structure file (-s).

With option -mir also a comparison with the mirror image of the reference structure is calculated. This is useful
as a reference for ‘significant’ values, see Maiorov & Crippen, Proteins 22, 273 (1995).

Option -prev produces the comparison with a previous frame the specified number of frames ago.

Option -m produces a matrix in .xpm (page 495) format of comparison values of each structure in the trajectory
with respect to each other structure. This file can be visualized with for instance xv and can be converted to
postscript with gmx xpm2ps (page 300).

3.11. Command-line reference 246

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Option -fit controls the least-squares fitting of the structures on top of each other: complete fit (rotation and
translation), translation only, or no fitting at all.

Option -mw controls whether mass weighting is done or not. If you select the option (default) and supply a valid
.tpr (page 494) file masses will be taken from there, otherwise the masses will be deduced from the atommass.
dat file in GMXLIB (deprecated). This is fine for proteins, but not necessarily for other molecules. You can check
whether this happened by turning on the -debug flag and inspecting the log file.

With -f2, the ‘other structures’ are taken from a second trajectory, this generates a comparison matrix of one
trajectory versus the other.

Option -bin does a binary dump of the comparison matrix.

Option -bm produces a matrix of average bond angle deviations analogously to the -m option. Only bonds
between atoms in the comparison group are considered.

Options

Options to specify input files:

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-f2 [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (rmsd.xvg)
xvgr/xmgr file

-mir [<.xvg>] (rmsdmir.xvg) (Optional)
xvgr/xmgr file

-a [<.xvg>] (avgrp.xvg) (Optional)
xvgr/xmgr file

-dist [<.xvg>] (rmsd-dist.xvg) (Optional)
xvgr/xmgr file

-m [<.xpm>] (rmsd.xpm) (Optional)
X PixMap compatible matrix file

-bin [<.dat>] (rmsd.dat) (Optional)
Generic data file

-bm [<.xpm>] (bond.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

3.11. Command-line reference 247

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-what <enum> (rmsd)
Structural difference measure: rmsd, rho, rhosc

-[no]pbc (yes)
PBC check

-fit <enum> (rot+trans)
Fit to reference structure: rot+trans, translation, none

-prev <int> (0)
Compare with previous frame

-[no]split (no)
Split graph where time is zero

-skip <int> (1)
Only write every nr-th frame to matrix

-skip2 <int> (1)
Only write every nr-th frame to matrix

-max <real> (-1)
Maximum level in comparison matrix

-min <real> (-1)
Minimum level in comparison matrix

-bmax <real> (-1)
Maximum level in bond angle matrix

-bmin <real> (-1)
Minimum level in bond angle matrix

-[no]mw (yes)
Use mass weighting for superposition

-nlevels <int> (80)
Number of levels in the matrices

-ng <int> (1)
Number of groups to compute RMS between

3.11.74 gmx rmsdist

Synopsis

gmx rmsdist [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-equiv [<.dat>]] [-o [<.xvg>]] [-rms [<.xpm>]]
[-scl [<.xpm>]] [-mean [<.xpm>]] [-nmr3 [<.xpm>]]
[-nmr6 [<.xpm>]] [-noe [<.dat>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-nlevels <int>]
[-max <real>] [-[no]sumh] [-[no]pbc]

3.11. Command-line reference 248

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx rmsdist computes the root mean square deviation of atom distances, which has the advantage that no fit is
needed like in standard RMS deviation as computed by gmx rms (page 246). The reference structure is taken from
the structure file. The RMSD at time t is calculated as the RMS of the differences in distance between atom-pairs
in the reference structure and the structure at time t.

gmx rmsdist can also produce matrices of the rms distances, rms distances scaled with the mean distance and
the mean distances and matrices with NMR averaged distances (1/r^3 and 1/r^6 averaging). Finally, lists of atom
pairs with 1/r^3 and 1/r^6 averaged distance below the maximum distance (-max, which will default to 0.6 in this
case) can be generated, by default averaging over equivalent hydrogens (all triplets of hydrogens named *[123]).
Additionally a list of equivalent atoms can be supplied (-equiv), each line containing a set of equivalent atoms
specified as residue number and name and atom name; e.g.:

HB* 3 SER HB1 3 SER HB2

Residue and atom names must exactly match those in the structure file, including case. Specifying non-sequential
atoms is undefined.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-equiv [<.dat>] (equiv.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (distrmsd.xvg)
xvgr/xmgr file

-rms [<.xpm>] (rmsdist.xpm) (Optional)
X PixMap compatible matrix file

-scl [<.xpm>] (rmsscale.xpm) (Optional)
X PixMap compatible matrix file

-mean [<.xpm>] (rmsmean.xpm) (Optional)
X PixMap compatible matrix file

-nmr3 [<.xpm>] (nmr3.xpm) (Optional)
X PixMap compatible matrix file

-nmr6 [<.xpm>] (nmr6.xpm) (Optional)
X PixMap compatible matrix file

-noe [<.dat>] (noe.dat) (Optional)
Generic data file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

3.11. Command-line reference 249

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-nlevels <int> (40)
Discretize RMS in this number of levels

-max <real> (-1)
Maximum level in matrices

-[no]sumh (yes)
Average distance over equivalent hydrogens

-[no]pbc (yes)
Use periodic boundary conditions when computing distances

3.11.75 gmx rmsf

Synopsis

gmx rmsf [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-q [<.pdb>]] [-oq [<.pdb>]] [-ox [<.pdb>]] [-o [<.xvg>]]
[-od [<.xvg>]] [-oc [<.xvg>]] [-dir [<.log>]] [-b <time>]
[-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>] [-[no]res]
[-[no]aniso] [-[no]fit]

Description

gmx rmsf computes the root mean square fluctuation (RMSF, i.e. standard deviation) of atomic positions in the
trajectory (supplied with -f) after (optionally) fitting to a reference frame (supplied with -s).

With option -oq the RMSF values are converted to B-factor values, which are written to a .pdb (page 490) file. By
default, the coordinates in this output file are taken from the structure file provided with -s,although you can also
use coordinates read from a different .pdb (page 490) fileprovided with -q. There is very little error checking, so
in this caseit is your responsibility to make sure all atoms in the structure fileand .pdb (page 490) file correspond
exactly to each other.

Option -ox writes the B-factors to a file with the average coordinates in the trajectory.

With the option -od the root mean square deviation with respect to the reference structure is calculated.

With the option -aniso, gmx rmsf will compute anisotropic temperature factors and then it will also output
average coordinates and a .pdb (page 490) file with ANISOU records (corresponding to the -oq or -ox option).
Please note that the U values are orientation-dependent, so before comparison with experimental data you should
verify that you fit to the experimental coordinates.

When a .pdb (page 490) input file is passed to the program and the -aniso flag is set a correlation plot of the Uij
will be created, if any anisotropic temperature factors are present in the .pdb (page 490) file.

With option -dir the average MSF (3x3) matrix is diagonalized. This shows the directions in which the atoms
fluctuate the most and the least.

3.11. Command-line reference 250

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-q [<.pdb>] (eiwit.pdb) (Optional)
Protein data bank file

Options to specify output files:

-oq [<.pdb>] (bfac.pdb) (Optional)
Protein data bank file

-ox [<.pdb>] (xaver.pdb) (Optional)
Protein data bank file

-o [<.xvg>] (rmsf.xvg)
xvgr/xmgr file

-od [<.xvg>] (rmsdev.xvg) (Optional)
xvgr/xmgr file

-oc [<.xvg>] (correl.xvg) (Optional)
xvgr/xmgr file

-dir [<.log>] (rmsf.log) (Optional)
Log file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]res (no)
Calculate averages for each residue

-[no]aniso (no)
Compute anisotropic temperature factors

-[no]fit (yes)
Do a least squares superposition before computing RMSF. Without this you must make sure that the refer-
ence structure and the trajectory match.

3.11. Command-line reference 251

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.76 gmx rotacf

Synopsis

gmx rotacf [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-[no]w] [-xvg <enum>] [-[no]d] [-[no]aver]
[-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

Description

gmx rotacf calculates the rotational correlation function for molecules. Atom triplets (i,j,k) must be given in
the index file, defining two vectors ij and jk. The rotational ACF is calculated as the autocorrelation function of
the vector n = ij x jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order of the
three atoms does not matter. Optionally, by invoking the -d switch, you can calculate the rotational correlation
function for linear molecules by specifying atom pairs (i,j) in the index file.

EXAMPLES

gmx rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-P1 -fa expfit-x-P1
-beginfit 2.5 -endfit 20.0

This will calculate the rotational correlation function using a first order Legendre polynomial of the angle of a
vector defined by the index file. The correlation function will be fitted from 2.5 ps until 20.0 ps to a two-parameter
exponential.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx)
Index file

Options to specify output files:

-o [<.xvg>] (rotacf.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

3.11. Command-line reference 252

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]d (no)
Use index doublets (vectors) for correlation function instead of triplets (planes)

-[no]aver (yes)
Average over molecules

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.77 gmx rotmat

Synopsis

gmx rotmat [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-[no]w] [-xvg <enum>] [-ref <enum>] [-skip <int>]
[-[no]fitxy] [-[no]mw]

Description

gmx rotmat plots the rotation matrix required for least squares fitting a conformation onto the reference con-
formation provided with -s. Translation is removed before fitting. The output are the three vectors that give the
new directions of the x, y and z directions of the reference conformation, for example: (zx,zy,zz) is the orientation
of the reference z-axis in the trajectory frame.

This tool is useful for, for instance, determining the orientation of a molecule at an interface, possibly on a
trajectory produced with gmx trjconv -fit rotxy+transxy to remove the rotation in the x-y plane.

Option -ref determines a reference structure for fitting, instead of using the structure from -s. The structure
with the lowest sum of RMSD’s to all other structures is used. Since the computational cost of this procedure
grows with the square of the number of frames, the -skip option can be useful. A full fit or only a fit in the x-y
plane can be performed.

Option -fitxy fits in the x-y plane before determining the rotation matrix.

3.11. Command-line reference 253

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (rotmat.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-ref <enum> (none)
Determine the optimal reference structure: none, xyz, xy

-skip <int> (1)
Use every nr-th frame for -ref

-[no]fitxy (no)
Fit the x/y rotation before determining the rotation

-[no]mw (yes)
Use mass weighted fitting

3.11.78 gmx saltbr

Synopsis

gmx saltbr [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-b <time>] [-e <time>]
[-dt <time>] [-t <real>] [-[no]sep]

3.11. Command-line reference 254

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx saltbr plots the distance between all combination of charged groups as a function of time. The groups
are combined in different ways. A minimum distance can be given (i.e. a cut-off), such that groups that are never
closer than that distance will not be plotted.

Output will be in a number of fixed filenames, min-min.xvg, plus-min.xvg and plus-plus.xvg,
or files for every individual ion pair if the -sep option is selected. In this case, files are named as
sb-(Resname)(Resnr)-(Atomnr). There may be many such files.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-t <real> (1000)
Groups that are never closer than this distance are not plotted

-[no]sep (no)
Use separate files for each interaction (may be MANY)

3.11.79 gmx sans-legacy

Synopsis

gmx sans-legacy [-s [<.tpr>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-d [<.dat>]] [-pr [<.xvg>]] [-sq [<.xvg>]]
[-prframe [<.xvg>]] [-sqframe [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-tu <enum>] [-xvg <enum>]
[-mode <enum>] [-mcover <real>] [-[no]pbc]
[-startq <real>] [-endq <real>] [-qstep <real>]
[-seed <int>] [-nt <int>]

3.11. Command-line reference 255

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx sans-legacy computes SANS spectra using Debye formula. It currently uses topology file (since it need
to assign element for each atom).

Parameters:

-pr Computes normalized g(r) function averaged over trajectory

-prframe Computes normalized g(r) function for each frame

-sq Computes SANS intensity curve averaged over trajectory

-sqframe Computes SANS intensity curve for each frame

-startq Starting q value in nm

-endq Ending q value in nm

-qstep Stepping in q space

Note: When using Debye direct method computational cost increases as 1/2 * N * (N - 1) where N is atom number
in group of interest.

WARNING: If sq or pr specified this tool can produce large number of files! Up to two times larger than number
of frames!

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

-d [<.dat>] (nsfactor.dat) (Optional)
Generic data file

Options to specify output files:

-pr [<.xvg>] (pr.xvg)
xvgr/xmgr file

-sq [<.xvg>] (sq.xvg)
xvgr/xmgr file

-prframe [<.xvg>] (prframe.xvg) (Optional)
xvgr/xmgr file

-sqframe [<.xvg>] (sqframe.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

3.11. Command-line reference 256

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-mode <enum> (direct)
Mode for sans spectra calculation: direct, mc

-mcover <real> (-1)
Monte-Carlo coverage should be -1(default) or (0,1]

-[no]pbc (yes)
Use periodic boundary conditions for computing distances

-startq <real> (0)
Starting q (1/nm)

-endq <real> (2)
Ending q (1/nm)

-qstep <real> (0.01)
Stepping in q (1/nm)

-seed <int> (0)
Random seed for Monte-Carlo

-nt <int> (96)
Number of threads to start

3.11.80 gmx sasa

Synopsis

gmx sasa [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-odg [<.xvg>]] [-or [<.xvg>]] [-oa [<.xvg>]]
[-tv [<.xvg>]] [-q [<.pdb>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-[no]pbc] [-sf <file>]
[-selrpos <enum>] [-probe <real>] [-ndots <int>] [-[no]prot]
[-dgs <real>] [-surface <selection>] [-output <selection>]

Description

gmx sasa computes solvent accessible surface areas. See Eisenhaber F, Lijnzaad P, Argos P, Sander C, &
Scharf M (1995) J. Comput. Chem. 16, 273-284 for the algorithm used. With -q, the Connolly surface can be
generated as well in a .pdb (page 490) file where the nodes are represented as atoms and the edges connecting the
nearest nodes as CONECT records. -odg allows for estimation of solvation free energies from per-atom solvation
energies per exposed surface area.

The program requires a selection for the surface calculation to be specified with -surface. This should always
consist of all non-solvent atoms in the system. The area of this group is always calculated. Optionally, -output
can specify additional selections, which should be subsets of the calculation group. The solvent-accessible areas
for these groups are also extracted from the full surface.

The average and standard deviation of the area over the trajectory can be calculated per residue and atom (options
-or and -oa).

With the -tv option the total volume and density of the molecule can be computed. With -pbc (the default),
you must ensure that your molecule/surface group is not split across PBC. Otherwise, you will get non-sensical
results. Please also consider whether the normal probe radius is appropriate in this case or whether you would
rather use, e.g., 0. It is good to keep in mind that the results for volume and density are very approximate. For

3.11. Command-line reference 257

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

example, in ice Ih, one can easily fit water molecules in the pores which would yield a volume that is too low, and
surface area and density that are both too high.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (area.xvg)
Total area as a function of time

-odg [<.xvg>] (dgsolv.xvg) (Optional)
Estimated solvation free energy as a function of time

-or [<.xvg>] (resarea.xvg) (Optional)
Average area per residue

-oa [<.xvg>] (atomarea.xvg) (Optional)
Average area per atom

-tv [<.xvg>] (volume.xvg) (Optional)
Total volume and density as a function of time

-q [<.pdb>] (connolly.pdb) (Optional)
PDB file for Connolly surface

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

3.11. Command-line reference 258

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-probe <real> (0.14)
Radius of the solvent probe (nm)

-ndots <int> (24)
Number of dots per sphere, more dots means more accuracy

-[no]prot (yes)
Output the protein to the Connolly .pdb (page 490) file too

-dgs <real> (0)
Default value for solvation free energy per area (kJ/mol/nm^2)

-surface <selection>
Surface calculation selection

-output <selection>
Output selection(s)

3.11.81 gmx saxs-legacy

Synopsis

gmx saxs-legacy [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-d [<.dat>]] [-sq [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-xvg <enum>] [-ng <int>]
[-startq <real>] [-endq <real>] [-energy <real>]

Description

gmx saxs-legacy calculates SAXS structure factors for given index groups based on Cromer’s method. Both
topology and trajectory files are required.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-d [<.dat>] (sfactor.dat) (Optional)
Generic data file

Options to specify output files:

-sq [<.xvg>] (sq.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

3.11. Command-line reference 259

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-ng <int> (1)
Number of groups to compute SAXS

-startq <real> (0)
Starting q (1/nm)

-endq <real> (60)
Ending q (1/nm)

-energy <real> (12)
Energy of the incoming X-ray (keV)

3.11.82 gmx scattering

Synopsis

gmx scattering [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-o [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-[no]pbc] [-sf <file>]
[-selrpos <enum>] [-seltype <enum>] [-sel <selection>]
[-startq <real>] [-endq <real>] [-qspacing <real>]
[-binwidth <real>] [-mc-coverage <real>] [-seed <int>]
[-[no]norm] [-[no]mc] [-scattering-type <enum>]

Description

gmx scattering calculates SANS and SAXS scattering curves using Debye method.

The scattering intensity, I(q), as a function of scattering angle q with averaging over frames.

Note that this is a new implementation of the SANS/SAXS utilities added in GROMACS 2024. If you need the
old ones, use gmx sans-legacy or gmx saxs-legacy.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-o [<.xvg>] (scattering.xvg) (Optional)
scattering intensity as a function of q

Other options:

3.11. Command-line reference 260

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-sel <selection>
Selection for Scattering calculation

-startq <real> (0)
smallest q value (1/nm)

-endq <real> (2)
largest q value (1/nm)

-qspacing <real> (0.01)
spacing of q values (1/nm)

-binwidth <real> (0.1)
Bin width (nm) for P(r)

-mc-coverage <real> (0.2)
coverage of Monte Carlo (%)

-seed <int> (2023)
random seed for Monte Carlo

-[no]norm (no)
normalize scattering intensities

-[no]mc (yes)
use Monte Carlo to scattering intensities

-scattering-type <enum> (sans)
Scattering type: saxs, sans

3.11. Command-line reference 261

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.83 gmx select

Synopsis

gmx select [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-os [<.xvg>]] [-oc [<.xvg>]] [-oi [<.dat>]]
[-on [<.ndx>]] [-om [<.xvg>]] [-of [<.xvg>]]
[-ofpdb [<.pdb>]] [-olt [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-fgroup <selection>]
[-xvg <enum>] [-[no]rmpbc] [-[no]pbc] [-sf <file>]
[-selrpos <enum>] [-seltype <enum>] [-select <selection>]
[-[no]norm] [-[no]cfnorm] [-resnr <enum>]
[-pdbatoms <enum>] [-[no]cumlt]

Description

gmx select writes out basic data about dynamic selections. It can be used for some simple analyses, or the
output can be combined with output from other programs and/or external analysis programs to calculate more
complex things. For detailed help on the selection syntax, please use gmx help selections.

Any combination of the output options is possible, but note that -om only operates on the first selection. Also
note that if you provide no output options, no output is produced.

With -os, calculates the number of positions in each selection for each frame. With -norm, the output is between
0 and 1 and describes the fraction from the maximum number of positions (e.g., for selection ‘resname RA and
x < 5’ the maximum number of positions is the number of atoms in RA residues). With -cfnorm, the output
is divided by the fraction covered by the selection. -norm and -cfnorm can be specified independently of one
another.

With -oc, the fraction covered by each selection is written out as a function of time.

With -oi, the selected atoms/residues/molecules are written out as a function of time. In the output, the first col-
umn contains the frame time, the second contains the number of positions, followed by the atom/residue/molecule
numbers. If more than one selection is specified, the size of the second group immediately follows the last number
of the first group and so on.

With -on, the selected atoms are written as a index file compatible with make_ndx and the analyzing tools.
Each selection is written as a selection group and for dynamic selections a group is written for each frame.

For residue numbers, the output of -oi can be controlled with -resnr: number (default) prints the residue
numbers as they appear in the input file, while index prints unique numbers assigned to the residues in the order
they appear in the input file, starting with 1. The former is more intuitive, but if the input contains multiple residues
with the same number, the output can be less useful.

With -om, a mask is printed for the first selection as a function of time. Each line in the output corre-
sponds to one frame, and contains either 0/1 for each atom/residue/molecule possibly selected. 1 stands for
the atom/residue/molecule being selected for the current frame, 0 for not selected.

With -of, the occupancy fraction of each position (i.e., the fraction of frames where the position is selected) is
printed.

With -ofpdb, a PDB file is written out where the occupancy column is filled with the occupancy fraction of each
atom in the selection. The coordinates in the PDB file will be those from the input topology. -pdbatoms can
be used to control which atoms appear in the output PDB file: with all all atoms are present, with maxsel all
atoms possibly selected by the selection are present, and with selected only atoms that are selected at least in
one frame are present.

With -olt, a histogram is produced that shows the number of selected positions as a function of the time the
position was continuously selected. -cumlt can be used to control whether subintervals of longer intervals are
included in the histogram.

-om, -of, and -olt only make sense with dynamic selections.

3.11. Command-line reference 262

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

To plot coordinates for selections, use gmx trajectory (page 278).

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-os [<.xvg>] (size.xvg) (Optional)
Number of positions in each selection

-oc [<.xvg>] (cfrac.xvg) (Optional)
Covered fraction for each selection

-oi [<.dat>] (index.dat) (Optional)
Indices selected by each selection

-on [<.ndx>] (index.ndx) (Optional)
Index file from the selection

-om [<.xvg>] (mask.xvg) (Optional)
Mask for selected positions

-of [<.xvg>] (occupancy.xvg) (Optional)
Occupied fraction for selected positions

-ofpdb [<.pdb>] (occupancy.pdb) (Optional)
PDB file with occupied fraction for selected positions

-olt [<.xvg>] (lifetime.xvg) (Optional)
Lifetime histogram

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

3.11. Command-line reference 263

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-select <selection>
Selections to analyze

-[no]norm (no)
Normalize by total number of positions with -os

-[no]cfnorm (no)
Normalize by covered fraction with -os

-resnr <enum> (number)
Residue number output type with -oi and -on: number, index

-pdbatoms <enum> (all)
Atoms to write with -ofpdb: all, maxsel, selected

-[no]cumlt (yes)
Cumulate subintervals of longer intervals in -olt

3.11.84 gmx sham

Synopsis

gmx sham [-f [<.xvg>]] [-ge [<.xvg>]] [-ene [<.xvg>]] [-dist [<.xvg>]]
[-histo [<.xvg>]] [-bin [<.ndx>]] [-lp [<.xpm>]]
[-ls [<.xpm>]] [-lsh [<.xpm>]] [-lss [<.xpm>]]
[-ls3 [<.pdb>]] [-g [<.log>]] [-[no]w] [-xvg <enum>]
[-[no]time] [-b <real>] [-e <real>] [-ttol <real>]
[-n <int>] [-[no]d] [-[no]sham] [-tsham <real>]
[-pmin <real>] [-dim <vector>] [-ngrid <vector>]
[-xmin <vector>] [-xmax <vector>] [-pmax <real>]
[-gmax <real>] [-emin <real>] [-emax <real>]
[-nlevels <int>]

Description

gmx shammakes multi-dimensional free-energy, enthalpy and entropy plots. gmx sham reads one or more .xvg
(page 497) files and analyzes data sets. The basic purpose of gmx sham is to plot Gibbs free energy landscapes
(option -ls) by Bolzmann inverting multi-dimensional histograms (option -lp), but it can also make enthalpy
(option -lsh) and entropy (option -lss) plots. The histograms can be made for any quantities the user supplies.
A line in the input file may start with a time (see option -time) and any number of y-values may follow. Multiple
sets can also be read when they are separated by & (option -n), in this case only one y-value is read from each
line. All lines starting with # and @ are skipped.

Option -ge can be used to supply a file with free energies when the ensemble is not a Boltzmann ensemble, but
needs to be biased by this free energy. One free energy value is required for each (multi-dimensional) data point
in the -f input.

3.11. Command-line reference 264

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Option -ene can be used to supply a file with energies. These energies are used as a weighting function in the
single histogram analysis method by Kumar et al. When temperatures are supplied (as a second column in the
file), an experimental weighting scheme is applied. In addition the vales are used for making enthalpy and entropy
plots.

With option -dim, dimensions can be gives for distances. When a distance is 2- or 3-dimensional, the circum-
ference or surface sampled by two particles increases with increasing distance. Depending on what one would
like to show, one can choose to correct the histogram and free-energy for this volume effect. The probability is
normalized by r and r^2 for dimensions of 2 and 3, respectively. A value of -1 is used to indicate an angle in
degrees between two vectors: a sin(angle) normalization will be applied. Note that for angles between vectors the
inner-product or cosine is the natural quantity to use, as it will produce bins of the same volume.

Options

Options to specify input files:

-f [<.xvg>] (graph.xvg)
xvgr/xmgr file

-ge [<.xvg>] (gibbs.xvg) (Optional)
xvgr/xmgr file

-ene [<.xvg>] (esham.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

-dist [<.xvg>] (ener.xvg) (Optional)
xvgr/xmgr file

-histo [<.xvg>] (edist.xvg) (Optional)
xvgr/xmgr file

-bin [<.ndx>] (bindex.ndx) (Optional)
Index file

-lp [<.xpm>] (prob.xpm) (Optional)
X PixMap compatible matrix file

-ls [<.xpm>] (gibbs.xpm) (Optional)
X PixMap compatible matrix file

-lsh [<.xpm>] (enthalpy.xpm) (Optional)
X PixMap compatible matrix file

-lss [<.xpm>] (entropy.xpm) (Optional)
X PixMap compatible matrix file

-ls3 [<.pdb>] (gibbs3.pdb) (Optional)
Protein data bank file

-g [<.log>] (shamlog.log) (Optional)
Log file

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]time (yes)
Expect a time in the input

-b <real> (-1)
First time to read from set

3.11. Command-line reference 265

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-e <real> (-1)
Last time to read from set

-ttol <real> (0)
Tolerance on time in appropriate units (usually ps)

-n <int> (1)
Read this number of sets separated by lines containing only an ampersand

-[no]d (no)
Use the derivative

-[no]sham (yes)
Turn off energy weighting even if energies are given

-tsham <real> (298.15)
Temperature for single histogram analysis

-pmin <real> (0)
Minimum probability. Anything lower than this will be set to zero

-dim <vector> (1 1 1)
Dimensions for distances, used for volume correction (max 3 values, dimensions > 3 will get the same value
as the last)

-ngrid <vector> (32 32 32)
Number of bins for energy landscapes (max 3 values, dimensions > 3 will get the same value as the last)

-xmin <vector> (0 0 0)
Minimum for the axes in energy landscape (see above for > 3 dimensions)

-xmax <vector> (1 1 1)
Maximum for the axes in energy landscape (see above for > 3 dimensions)

-pmax <real> (0)
Maximum probability in output, default is calculate

-gmax <real> (0)
Maximum free energy in output, default is calculate

-emin <real> (0)
Minimum enthalpy in output, default is calculate

-emax <real> (0)
Maximum enthalpy in output, default is calculate

-nlevels <int> (25)
Number of levels for energy landscape

3.11.85 gmx sigeps

Synopsis

gmx sigeps [-o [<.xvg>]] [-[no]w] [-xvg <enum>] [-c6 <real>]
[-cn <real>] [-pow <int>] [-sig <real>] [-eps <real>]
[-A <real>] [-B <real>] [-C <real>] [-qi <real>]
[-qj <real>] [-sigfac <real>]

3.11. Command-line reference 266

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx sigeps is a simple utility that converts C6/C12 or C6/Cn combinations to sigma and epsilon, or vice
versa. It can also plot the potential in file. In addition, it makes an approximation of a Buckingham potential to a
Lennard-Jones potential.

Options

Options to specify output files:

-o [<.xvg>] (potje.xvg)
xvgr/xmgr file

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-c6 <real> (0.001)
C6

-cn <real> (1e-06)
Constant for repulsion

-pow <int> (12)
Power of the repulsion term

-sig <real> (0.3)
sigma

-eps <real> (1)
epsilon

-A <real> (100000)
Buckingham A

-B <real> (32)
Buckingham B

-C <real> (0.001)
Buckingham C

-qi <real> (0)
qi

-qj <real> (0)
qj

-sigfac <real> (0.7)
Factor in front of sigma for starting the plot

3.11. Command-line reference 267

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.86 gmx solvate

Synopsis

gmx solvate [-cp [<.gro/.g96/...>]] [-cs [<.gro/.g96/...>]]
[-p [<.top>]] [-o [<.gro/.g96/...>]] [-box <vector>]
[-radius <real>] [-scale <real>] [-shell <real>]
[-maxsol <int>] [-[no]vel]

Description

gmx solvate can do one of 2 things:

1) Generate a box of solvent. Specify -cs and -box. Or specify -cs and -cp with a structure file with a box,
but without atoms.

2) Solvate a solute configuration, e.g. a protein, in a bath of solvent molecules. Specify -cp (solute) and -cs
(solvent). The box specified in the solute coordinate file (-cp) is used, unless -box is set. If you want the
solute to be centered in the box, the program gmx editconf (page 171) has sophisticated options to change the box
dimensions and center the solute. Solvent molecules are removed from the box where the distance between any
atom of the solute molecule(s) and any atom of the solvent molecule is less than the sum of the scaled van der
Waals radii of both atoms. A database (vdwradii.dat) of van der Waals radii is read by the program, and the
resulting radii scaled by -scale. If radii are not found in the database, those atoms are assigned the (pre-scaled)
distance -radius. Note that the usefulness of those radii depends on the atom names, and thus varies widely
with force field.

The default solvent is Simple Point Charge water (SPC), with coordinates from $GMXLIB/spc216.gro. These
coordinates can also be used for other 3-site water models, since a short equibilibration will remove the small
differences between the models. Other solvents are also supported, as well as mixed solvents. The only restriction
to solvent types is that a solvent molecule consists of exactly one residue. The residue information in the coordinate
files is used, and should therefore be more or less consistent. In practice this means that two subsequent solvent
molecules in the solvent coordinate file should have different residue number. The box of solute is built by stacking
the coordinates read from the coordinate file. This means that these coordinates should be equlibrated in periodic
boundary conditions to ensure a good alignment of molecules on the stacking interfaces. The -maxsol option
simply adds only the first -maxsol solvent molecules and leaves out the rest that would have fitted into the box.
This can create a void that can cause problems later. Choose your volume wisely.

Setting -shell larger than zero will place a layer of water of the specified thickness (nm) around the solute.
Hint: it is a good idea to put the protein in the center of a box first (using gmx editconf (page 171)).

Finally, gmx solvate will optionally remove lines from your topology file in which a number of solvent
molecules is already added, and adds a line with the total number of solvent molecules in your coordinate file.

Options

Options to specify input files:

-cp [<.gro/.g96/. . . >] (protein.gro) (Optional)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

-cs [<.gro/.g96/. . . >] (spc216.gro) (Library)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

Options to specify input/output files:

-p [<.top>] (topol.top) (Optional)
Topology file

Options to specify output files:

-o [<.gro/.g96/. . . >] (out.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

3.11. Command-line reference 268

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Other options:

-box <vector> (0 0 0)
Box size (in nm)

-radius <real> (0.105)
Default van der Waals distance

-scale <real> (0.57)
Scale factor to multiply Van der Waals radii from the database in share/gromacs/top/vdwradii.dat. The
default value of 0.57 yields density close to 1000 g/l for proteins in water.

-shell <real> (0)
Thickness of optional water layer around solute

-maxsol <int> (0)
Maximum number of solvent molecules to add if they fit in the box. If zero (default) this is ignored

-[no]vel (no)
Keep velocities from input solute and solvent

Known Issues

• Molecules must be whole in the initial configurations.

3.11.87 gmx sorient

Synopsis

gmx sorient [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-no [<.xvg>]] [-ro [<.xvg>]]
[-co [<.xvg>]] [-rc [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-[no]com] [-[no]v23]
[-rmin <real>] [-rmax <real>] [-cbin <real>]
[-rbin <real>] [-[no]pbc]

Description

gmx sorient analyzes solvent orientation around solutes. It calculates two angles between the vector from one
or more reference positions to the first atom of each solvent molecule:

• theta_1: the angle with the vector from the first atom of the solvent molecule to the midpoint between atoms
2 and 3.

• theta_2: the angle with the normal of the solvent plane, defined by the same three atoms, or, when the option
-v23 is set, the angle with the vector between atoms 2 and 3.

The reference can be a set of atoms or the center of mass of a set of atoms. The group of solvent atoms should
consist of 3 atoms per solvent molecule. Only solvent molecules between -rmin and -rmax are considered for
-o and -no each frame.

-o: distribution of cos(theta_1) for rmin<=r<=rmax.

-no: distribution of cos(theta_2) for rmin<=r<=rmax.

-ro: <cos(theta_1)> and <3cos(^2theta_2)-1> as a function of the distance.

-co: the sum over all solvent molecules within distance r of cos(theta_1) and 3cos(^2(theta_2)-1) as a function
of r.

-rc: the distribution of the solvent molecules as a function of r

3.11. Command-line reference 269

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (sori.xvg)
xvgr/xmgr file

-no [<.xvg>] (snor.xvg)
xvgr/xmgr file

-ro [<.xvg>] (sord.xvg)
xvgr/xmgr file

-co [<.xvg>] (scum.xvg)
xvgr/xmgr file

-rc [<.xvg>] (scount.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]com (no)
Use the center of mass as the reference position

-[no]v23 (no)
Use the vector between atoms 2 and 3

-rmin <real> (0)
Minimum distance (nm)

-rmax <real> (0.5)
Maximum distance (nm)

-cbin <real> (0.02)
Binwidth for the cosine

-rbin <real> (0.02)
Binwidth for r (nm)

-[no]pbc (no)
Check PBC for the center of mass calculation. Only necessary when your reference group consists of several
molecules.

3.11. Command-line reference 270

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.88 gmx spatial

Synopsis

gmx spatial [-s [<.tpr/.gro/...>]] [-f [<.xtc/.trr/...>]] [-n [<.ndx>]]
[-b <time>] [-e <time>] [-dt <time>] [-[no]w] [-[no]pbc]
[-[no]div] [-ign <int>] [-bin <real>] [-nab <int>]

Description

gmx spatial calculates the spatial distribution function and outputs it in a form that can be read by VMD
as Gaussian98 cube format. For a system of 32,000 atoms and a 50 ns trajectory, the SDF can be generated in
about 30 minutes, with most of the time dedicated to the two runs through trjconv that are required to center
everything properly. This also takes a whole bunch of space (3 copies of the trajectory file). Still, the pictures are
pretty and very informative when the fitted selection is properly made. 3-4 atoms in a widely mobile group (like a
free amino acid in solution) works well, or select the protein backbone in a stable folded structure to get the SDF
of solvent and look at the time-averaged solvation shell. It is also possible using this program to generate the SDF
based on some arbitrary Cartesian coordinate. To do that, simply omit the preliminary gmx trjconv (page 281)
steps.

Usage:

1. Use gmx make_ndx (page 213) to create a group containing the atoms around which you want the SDF

2. gmx trjconv -s a.tpr -f a.tng -o b.tng -boxcenter tric -ur compact -pbc
none

3. gmx trjconv -s a.tpr -f b.tng -o c.tng -fit rot+trans

4. run gmx spatial on the c.tng output of step #3.

5. Load grid.cube into VMD and view as an isosurface.

Note that systems such as micelles will require gmx trjconv -pbc cluster between steps 1 and 2.

Warnings

The SDF will be generated for a cube that contains all bins that have some non-zero occupancy. However, the
preparatory -fit rot+trans option to gmx trjconv (page 281) implies that your system will be rotating and
translating in space (in order that the selected group does not). Therefore the values that are returned will only be
valid for some region around your central group/coordinate that has full overlap with system volume throughout
the entire translated/rotated system over the course of the trajectory. It is up to the user to ensure that this is the
case.

Risky options

To reduce the amount of space and time required, you can output only the coords that are going to be used in the
first and subsequent run through gmx trjconv (page 281). However, be sure to set the -nab option to a sufficiently
high value since memory is allocated for cube bins based on the initial coordinates and the -nab option value.

3.11. Command-line reference 271

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-[no]pbc (no)
Use periodic boundary conditions for computing distances

-[no]div (yes)
Calculate and apply the divisor for bin occupancies based on atoms/minimal cube size. Set as TRUE for
visualization and as FALSE (-nodiv) to get accurate counts per frame

-ign <int> (-1)
Do not display this number of outer cubes (positive values may reduce boundary speckles; -1 ensures outer
surface is visible)

-bin <real> (0.05)
Width of the bins (nm)

-nab <int> (16)
Number of additional bins to ensure proper memory allocation

Known Issues

• When the allocated memory is not large enough, an error may occur suggesting the use of the -nab (Num-
ber of Additional Bins) option or increasing the -nab value.

3.11.89 gmx spol

Synopsis

gmx spol [-f [<.xtc/.trr/...>]] [-s [<.tpr>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>] [-[no]w]
[-xvg <enum>] [-[no]com] [-refat <int>] [-rmin <real>]
[-rmax <real>] [-dip <real>] [-bw <real>]

3.11. Command-line reference 272

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx spol analyzes dipoles around a solute; it is especially useful for polarizable water. A group of reference
atoms, or a center of mass reference (option -com) and a group of solvent atoms is required. The program splits
the group of solvent atoms into molecules. For each solvent molecule the distance to the closest atom in reference
group or to the COM is determined. A cumulative distribution of these distances is plotted. For each distance
between -rmin and -rmax the inner product of the distance vector and the dipole of the solvent molecule is
determined. For solvent molecules with net charge (ions), the net charge of the ion is subtracted evenly from all
atoms in the selection of each ion. The average of these dipole components is printed. The same is done for the
polarization, where the average dipole is subtracted from the instantaneous dipole. The magnitude of the average
dipole is set with the option -dip, the direction is defined by the vector from the first atom in the selected solvent
group to the midpoint between the second and the third atom.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (scdist.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]com (no)
Use the center of mass as the reference position

-refat <int> (1)
The reference atom of the solvent molecule

-rmin <real> (0)
Maximum distance (nm)

-rmax <real> (0.32)
Maximum distance (nm)

-dip <real> (0)
The average dipole (D)

-bw <real> (0.01)
The bin width

3.11. Command-line reference 273

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.90 gmx tcaf

Synopsis

gmx tcaf [-f [<.trr/.cpt/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-ot [<.xvg>]] [-oa [<.xvg>]] [-o [<.xvg>]] [-of [<.xvg>]]
[-oc [<.xvg>]] [-ov [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-[no]mol] [-[no]k34]
[-wt <real>] [-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

Description

gmx tcaf computes tranverse current autocorrelations. These are used to estimate the shear viscosity, eta. For
details see: Palmer, Phys. Rev. E 49 (1994) pp 359-366.

Transverse currents are calculated using the k-vectors (1,0,0) and (2,0,0) each also in the y- and z-direction,
(1,1,0) and (1,-1,0) each also in the 2 other planes (these vectors are not independent) and (1,1,1) and the 3 other
box diagonals (also not independent). For each k-vector the sine and cosine are used, in combination with the
velocity in 2 perpendicular directions. This gives a total of 16*2*2=64 transverse currents. One autocorrelation is
calculated fitted for each k-vector, which gives 16 TCAFs. Each of these TCAFs is fitted to f(t) = exp(-v)(cosh(Wv)
+ 1/W sinh(Wv)), v = -t/(2 tau), W = sqrt(1 - 4 tau eta/rho k^2), which gives 16 values of tau and eta. The
fit weights decay exponentially with time constant w (given with -wt) as exp(-t/w), and the TCAF and fit are
calculated up to time 5*w. The eta values should be fitted to 1 - a eta(k) k^2, from which one can estimate the
shear viscosity at k=0.

When the box is cubic, one can use the option -oc, which averages the TCAFs over all k-vectors with the same
length. This results in more accurate TCAFs. Both the cubic TCAFs and fits are written to -oc The cubic eta
estimates are also written to -ov.

With option -mol, the transverse current is determined of molecules instead of atoms. In this case, the index
group should consist of molecule numbers instead of atom numbers.

The k-dependent viscosities in the -ov file should be fitted to eta(k) = eta_0 (1 - a k^2) to obtain the viscosity at
infinite wavelength.

Note: make sure you write coordinates and velocities often enough. The initial, non-exponential, part of the
autocorrelation function is very important for obtaining a good fit.

Options

Options to specify input files:

-f [<.trr/.cpt/. . . >] (traj.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-ot [<.xvg>] (transcur.xvg) (Optional)
xvgr/xmgr file

-oa [<.xvg>] (tcaf_all.xvg)
xvgr/xmgr file

-o [<.xvg>] (tcaf.xvg)
xvgr/xmgr file

3.11. Command-line reference 274

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-of [<.xvg>] (tcaf_fit.xvg)
xvgr/xmgr file

-oc [<.xvg>] (tcaf_cub.xvg) (Optional)
xvgr/xmgr file

-ov [<.xvg>] (visc_k.xvg)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]mol (no)
Calculate TCAF of molecules

-[no]k34 (no)
Also use k=(3,0,0) and k=(4,0,0)

-wt <real> (5)
Exponential decay time for the TCAF fit weights

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.91 gmx traj

Synopsis

gmx traj [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-ox [<.xvg>]] [-oxt [<.xtc/.trr/...>]] [-ov [<.xvg>]]
[-of [<.xvg>]] [-ob [<.xvg>]] [-ot [<.xvg>]] [-ekt [<.xvg>]]
[-ekr [<.xvg>]] [-vd [<.xvg>]] [-cv [<.pdb>]] [-cf [<.pdb>]]
[-av [<.xvg>]] [-af [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-tu <enum>] [-[no]w] [-xvg <enum>] [-[no]com]
[-[no]pbc] [-[no]mol] [-[no]nojump] [-[no]x] [-[no]y]
[-[no]z] [-ng <int>] [-[no]len] [-[no]fp] [-bin <real>]
[-ctime <real>] [-scale <real>]

3.11. Command-line reference 275

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx traj plots coordinates, velocities, forces and/or the box. With -com the coordinates, velocities and forces
are calculated for the center of mass of each group. When -mol is set, the numbers in the index file are interpreted
as molecule numbers and the same procedure as with -com is used for each molecule.

Option -ot plots the temperature of each group, provided velocities are present in the trajectory file. No correc-
tions are made for constrained degrees of freedom! This implies -com.

Options -ekt and -ekr plot the translational and rotational kinetic energy of each group, provided velocities are
present in the trajectory file. This implies -com.

Options -cv and -cf write the average velocities and average forces as temperature factors to a .pdb (page 490)
file with the average coordinates or the coordinates at -ctime. The temperature factors are scaled such that the
maximum is 10. The scaling can be changed with the option -scale. To get the velocities or forces of one
frame set both -b and -e to the time of desired frame. When averaging over frames you might need to use the
-nojump option to obtain the correct average coordinates. If you select either of these option the average force
and velocity for each atom are written to an .xvg (page 497) file as well (specified with -av or -af).

Option -vd computes a velocity distribution, i.e. the norm of the vector is plotted. In addition in the same graph
the kinetic energy distribution is given.

See gmx trajectory (page 278) for plotting similar data for selections.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-ox [<.xvg>] (coord.xvg) (Optional)
xvgr/xmgr file

-oxt [<.xtc/.trr/. . . >] (coord.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-ov [<.xvg>] (veloc.xvg) (Optional)
xvgr/xmgr file

-of [<.xvg>] (force.xvg) (Optional)
xvgr/xmgr file

-ob [<.xvg>] (box.xvg) (Optional)
xvgr/xmgr file

-ot [<.xvg>] (temp.xvg) (Optional)
xvgr/xmgr file

-ekt [<.xvg>] (ektrans.xvg) (Optional)
xvgr/xmgr file

-ekr [<.xvg>] (ekrot.xvg) (Optional)
xvgr/xmgr file

3.11. Command-line reference 276

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-vd [<.xvg>] (veldist.xvg) (Optional)
xvgr/xmgr file

-cv [<.pdb>] (veloc.pdb) (Optional)
Protein data bank file

-cf [<.pdb>] (force.pdb) (Optional)
Protein data bank file

-av [<.xvg>] (all_veloc.xvg) (Optional)
xvgr/xmgr file

-af [<.xvg>] (all_force.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]com (no)
Plot data for the com of each group

-[no]pbc (yes)
Make molecules whole for COM

-[no]mol (no)
Index contains molecule numbers instead of atom numbers

-[no]nojump (no)
Remove jumps of atoms across the box

-[no]x (yes)
Plot X-component

-[no]y (yes)
Plot Y-component

-[no]z (yes)
Plot Z-component

-ng <int> (1)
Number of groups to consider

-[no]len (no)
Plot vector length

-[no]fp (no)
Full precision output

-bin <real> (1)
Binwidth for velocity histogram (nm/ps)

-ctime <real> (-1)
Use frame at this time for x in -cv and -cf instead of the average x

3.11. Command-line reference 277

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-scale <real> (0)
Scale factor for .pdb (page 490) output, 0 is autoscale

3.11.92 gmx trajectory

Synopsis

gmx trajectory [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]]
[-n [<.ndx>]] [-ox [<.xvg>]] [-ov [<.xvg>]]
[-of [<.xvg>]] [-b <time>] [-e <time>] [-dt <time>]
[-tu <enum>] [-fgroup <selection>] [-xvg <enum>]
[-[no]rmpbc] [-[no]pbc] [-sf <file>] [-selrpos <enum>]
[-seltype <enum>] [-select <selection>] [-[no]x]
[-[no]y] [-[no]z] [-[no]len]

Description

gmx trajectory plots coordinates, velocities, and/or forces for provided selections. By default, the X, Y, and
Z components for the requested vectors are plotted, but specifying one or more of -len, -x, -y, and -z overrides
this.

For dynamic selections, currently the values are written out for all positions that the selection could select.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc) (Optional)
Input trajectory or single configuration: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96
(page 486) pdb (page 490) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Input structure: tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Extra index groups

Options to specify output files:

-ox [<.xvg>] (coord.xvg) (Optional)
Coordinates for each position as a function of time

-ov [<.xvg>] (veloc.xvg) (Optional)
Velocities for each position as a function of time

-of [<.xvg>] (force.xvg) (Optional)
Forces for each position as a function of time

Other options:

-b <time> (0)
First frame (ps) to read from trajectory

-e <time> (0)
Last frame (ps) to read from trajectory

-dt <time> (0)
Only use frame if t MOD dt == first time (ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

3.11. Command-line reference 278

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-fgroup <selection>
Atoms stored in the trajectory file (if not set, assume first N atoms)

-xvg <enum> (xmgrace)
Plot formatting: xmgrace, xmgr, none

-[no]rmpbc (yes)
Make molecules whole for each frame

-[no]pbc (yes)
Use periodic boundary conditions for distance calculation

-sf <file>
Provide selections from files

-selrpos <enum> (atom)
Selection reference positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_res_-
cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog, dyn_-
res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-seltype <enum> (atom)
Default selection output positions: atom, res_com, res_cog, mol_com, mol_cog, whole_res_com, whole_-
res_cog, whole_mol_com, whole_mol_cog, part_res_com, part_res_cog, part_mol_com, part_mol_cog,
dyn_res_com, dyn_res_cog, dyn_mol_com, dyn_mol_cog

-select <selection>
Selections to analyze

-[no]x (yes)
Plot X component

-[no]y (yes)
Plot Y component

-[no]z (yes)
Plot Z component

-[no]len (no)
Plot vector length

3.11.93 gmx trjcat

Synopsis

gmx trjcat [-f [<.xtc/.trr/...> [...]]] [-n [<.ndx>]] [-demux [<.xvg>]]
[-o [<.xtc/.trr/...> [...]]] [-tu <enum>] [-xvg <enum>]
[-b <time>] [-e <time>] [-dt <time>] [-[no]settime]
[-[no]sort] [-[no]keeplast] [-[no]overwrite] [-[no]cat]

Description

gmx trjcat concatenates several input trajectory files in sorted order. In case of double time frames the one in
the later file is used. By specifying -settime you will be asked for the start time of each file. The input files are
taken from the command line, such that a command like gmx trjcat -f *.trr -o fixed.trr should
do the trick. Using -cat, you can simply paste several files together without removal of frames with identical
time stamps.

One important option is inferred when the output file is amongst the input files. In that case that particular file will
be appended to which implies you do not need to store double the amount of data. Obviously the file to append to
has to be the one with lowest starting time since one can only append at the end of a file.

If the -demux option is given, the N trajectories that are read, are written in another order as specified in the .xvg
(page 497) file. The .xvg (page 497) file should contain something like:

3.11. Command-line reference 279

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0 0 1 2 3 4 5
2 1 0 2 3 5 4

The first number is the time, and subsequent numbers point to trajectory indices. The frames corresponding to the
numbers present at the first line are collected into the output trajectory. If the number of frames in the trajectory
does not match that in the .xvg (page 497) file then the program tries to be smart. Beware.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . > [. . .]] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-n [<.ndx>] (index.ndx) (Optional)
Index file

-demux [<.xvg>] (remd.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

-o [<.xtc/.trr/. . . > [. . .]] (trajout.xtc)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

Other options:

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-b <time> (-1)
First time to use (ps)

-e <time> (-1)
Last time to use (ps)

-dt <time> (0)
Only write frame when t MOD dt = first time (ps)

-[no]settime (no)
Change starting time interactively

-[no]sort (yes)
Sort trajectory files (not frames)

-[no]keeplast (no)
Keep overlapping frames at end of trajectory

-[no]overwrite (no)
Overwrite overlapping frames during appending

-[no]cat (no)
Do not discard double time frames

3.11. Command-line reference 280

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.94 gmx trjconv

Synopsis

gmx trjconv [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-fr [<.ndx>]] [-sub [<.ndx>]] [-drop [<.xvg>]]
[-o [<.xtc/.trr/...>]] [-b <time>] [-e <time>]
[-tu <enum>] [-[no]w] [-xvg <enum>] [-skip <int>]
[-dt <time>] [-[no]round] [-dump <time>] [-t0 <time>]
[-timestep <time>] [-pbc <enum>] [-ur <enum>]
[-[no]center] [-boxcenter <enum>] [-box <vector>]
[-trans <vector>] [-shift <vector>] [-fit <enum>]
[-ndec <int>] [-[no]vel] [-[no]force] [-trunc <time>]
[-exec <string>] [-split <time>] [-[no]sep]
[-nzero <int>] [-dropunder <real>] [-dropover <real>]
[-[no]conect]

Description

gmx trjconv can convert trajectory files in many ways:

• from one format to another

• select a subset of atoms

• change the periodicity representation

• keep multimeric molecules together

• center atoms in the box

• fit atoms to reference structure

• reduce the number of frames

• change the timestamps of the frames (-t0 and -timestep)

• select frames within a certain range of a quantity given in an .xvg (page 497) file.

The option to write subtrajectories (-sub) based on the information obtained from cluster analysis has been re-
moved from gmx trjconv and is now part of [gmx extract-cluster]

gmx trjcat (page 279) is better suited for concatenating multiple trajectory files.

The following formats are supported for input and output: .xtc (page 496), .trr (page 494), .gro (page 486), .g96,
.pdb (page 490) and .tng (page 492). The file formats are detected from the file extension. The precision of the
.xtc (page 496) output is taken from the input file for .xtc (page 496), .gro (page 486) and .pdb (page 490), and
from the -ndec option for other input formats. The precision is always taken from -ndec, when this option is
set. All other formats have fixed precision. .trr (page 494) output can be single or double precision, depending
on the precision of the gmx trjconv binary. Note that velocities are only supported in .trr (page 494), .tng
(page 492), .gro (page 486) and .g96 files.

Option -sep can be used to write every frame to a separate .gro, .g96 or .pdb (page 490) file. By default,
all frames all written to one file. .pdb (page 490) files with all frames concatenated can be viewed with rasmol
-nmrpdb.

It is possible to select part of your trajectory and write it out to a new trajectory file in order to save disk space,
e.g. for leaving out the water from a trajectory of a protein in water. ALWAYS put the original trajectory on tape!
We recommend to use the portable .xtc (page 496) format for your analysis to save disk space and to have portable
files. When writing .tng (page 492) output the file will contain one molecule type of the correct count if the
selection name matches the molecule name and the selected atoms match all atoms of that molecule. Otherwise
the whole selection will be treated as one single molecule containing all the selected atoms.

There are two options for fitting the trajectory to a reference either for essential dynamics analysis, etc. The
first option is just plain fitting to a reference structure in the structure file. The second option is a progressive fit

3.11. Command-line reference 281

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

in which the first timeframe is fitted to the reference structure in the structure file to obtain and each subsequent
timeframe is fitted to the previously fitted structure. This way a continuous trajectory is generated, which might not
be the case when using the regular fit method, e.g. when your protein undergoes large conformational transitions.

Option -pbc sets the type of periodic boundary condition treatment:

• mol puts the center of mass of molecules in the box, and requires a run input file to be supplied with -s.

• res puts the center of mass of residues in the box.

• atom puts all the atoms in the box.

• nojump checks if atoms jump across the box and then puts them back. This has the effect that all molecules
will remain whole (provided they were whole in the initial conformation). Note that this ensures a contin-
uous trajectory but molecules may diffuse out of the box. The starting configuration for this procedure is
taken from the structure file, if one is supplied, otherwise it is the first frame.

• cluster clusters all the atoms in the selected index such that they are all closest to the center of mass of
the cluster, which is iteratively updated. Note that this will only give meaningful results if you in fact have
a cluster. Luckily that can be checked afterwards using a trajectory viewer. Note also that if your molecules
are broken this will not work either.

• whole only makes broken molecules whole.

Option -ur sets the unit cell representation for options mol, res and atom of -pbc. All three options give
different results for triclinic boxes and identical results for rectangular boxes. rect is the ordinary brick shape.
tric is the triclinic unit cell. compact puts all atoms at the closest distance from the center of the box. This
can be useful for visualizing e.g. truncated octahedra or rhombic dodecahedra. The center for options tric and
compact is tric (see below), unless the option -boxcenter is set differently.

Option -center centers the system in the box. The user can select the group which is used to determine the geo-
metrical center. Option -boxcenter sets the location of the center of the box for options -pbc and -center.
The center options are: tric: half of the sum of the box vectors, rect: half of the box diagonal, zero: zero.
Use option -pbc mol in addition to -center when you want all molecules in the box after the centering.

Option -box sets the size of the new box. This option only works for leading dimensions and is thus generally
only useful for rectangular boxes. If you want to modify only some of the dimensions, e.g. when reading from a
trajectory, you can use -1 for those dimensions that should stay the same It is not always possible to use combina-
tions of -pbc, -fit, -ur and -center to do exactly what you want in one call to gmx trjconv. Consider
using multiple calls, and check out the GROMACS website for suggestions.

With -dt, it is possible to reduce the number of frames in the output. This option relies on the accuracy of the
times in your input trajectory, so if these are inaccurate use the -timestep option to modify the time (this can
be done simultaneously). For making smooth movies, the program gmx filter (page 182) can reduce the number
of frames while using low-pass frequency filtering, this reduces aliasing of high frequency motions.

Using -trunc gmx trjconv can truncate .trr (page 494) in place, i.e. without copying the file. This is useful
when a run has crashed during disk I/O (i.e. full disk), or when two contiguous trajectories must be concatenated
without having double frames.

Option -dump can be used to extract a frame at or near one specific time from your trajectory. If the frames in the
trajectory are not in temporal order, the result is unspecified.

Option -drop reads an .xvg (page 497) file with times and values. When options -dropunder and/or
-dropover are set, frames with a value below and above the value of the respective options will not be written.

3.11. Command-line reference 282

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

-fr [<.ndx>] (frames.ndx) (Optional)
Index file

-sub [<.ndx>] (cluster.ndx) (Optional)
Index file

-drop [<.xvg>] (drop.xvg) (Optional)
xvgr/xmgr file

Options to specify output files:

-o [<.xtc/.trr/. . . >] (trajout.xtc)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-tu <enum> (ps)
Unit for time values: fs, ps, ns, us, ms, s

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-skip <int> (1)
Only write every nr-th frame

-dt <time> (0)
Only write frame when t MOD dt = first time (ps)

-[no]round (no)
Round measurements to nearest picosecond

-dump <time> (-1)
Dump frame nearest specified time (ps)

-t0 <time> (0)
Starting time (ps) (default: don’t change)

-timestep <time> (0)
Change time step between input frames (ps)

-pbc <enum> (none)
PBC treatment (see help text for full description): none, mol, res, atom, nojump, cluster, whole

-ur <enum> (rect)
Unit-cell representation: rect, tric, compact

3.11. Command-line reference 283

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]center (no)
Center atoms in box

-boxcenter <enum> (tric)
Center for -pbc and -center: tric, rect, zero

-box <vector> (0 0 0)
Size for new cubic box (default: read from input)

-trans <vector> (0 0 0)
All coordinates will be translated by trans. This can advantageously be combined with -pbc mol -ur compact.

-shift <vector> (0 0 0)
All coordinates will be shifted by framenr*shift

-fit <enum> (none)
Fit molecule to ref structure in the structure file: none, rot+trans, rotxy+transxy, translation, transxy, pro-
gressive

-ndec <int> (3)
Number of decimal places to write to .xtc output

-[no]vel (yes)
Read and write velocities if possible

-[no]force (no)
Read and write forces if possible

-trunc <time> (-1)
Truncate input trajectory file after this time (ps)

-exec <string>
Execute command for every output frame with the frame number as argument

-split <time> (0)
Start writing new file when t MOD split = first time (ps)

-[no]sep (no)
Write each frame to a separate .gro, .g96 or .pdb file

-nzero <int> (0)
If the -sep flag is set, use these many digits for the file numbers and prepend zeros as needed

-dropunder <real> (0)
Drop all frames below this value

-dropover <real> (0)
Drop all frames above this value

-[no]conect (no)
Add CONECT PDB records when writing .pdb (page 490) files. Useful for visualization of non-standard
molecules, e.g. coarse grained ones. Can only be done when a topology (tpr) file is present

3.11.95 gmx trjorder

Synopsis

gmx trjorder [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xtc/.trr/...>]] [-nshell [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-xvg <enum>] [-na <int>]
[-da <int>] [-[no]com] [-r <real>] [-[no]z]

3.11. Command-line reference 284

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx trjorder orders molecules according to the smallest distance to atoms in a reference group or on z-
coordinate (with option -z). With distance ordering, it will ask for a group of reference atoms and a group of
molecules. For each frame of the trajectory the selected molecules will be reordered according to the shortest
distance between atom number -da in the molecule and all the atoms in the reference group. The center of mass
of the molecules can be used instead of a reference atom by setting -da to 0. All atoms in the trajectory are
written to the output trajectory.

gmx trjorder can be useful for e.g. analyzing the n waters closest to a protein. In that case the reference
group would be the protein and the group of molecules would consist of all the water atoms. When an index group
of the first n waters is made, the ordered trajectory can be used with any GROMACS program to analyze the n
closest waters.

If the output file is a .pdb (page 490) file, the distance to the reference target will be stored in the B-factor field in
order to color with e.g. Rasmol.

With option -nshell the number of molecules within a shell of radius -r around the reference group are printed.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xtc/.trr/. . . >] (ordered.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) gro (page 486) g96 (page 486) pdb (page 490) tng (page 492)

-nshell [<.xvg>] (nshell.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-na <int> (3)
Number of atoms in a molecule

-da <int> (1)
Atom used for the distance calculation, 0 is COM

-[no]com (no)
Use the distance to the center of mass of the reference group

3.11. Command-line reference 285

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-r <real> (0)
Cutoff used for the distance calculation when computing the number of molecules in a shell around e.g. a
protein

-[no]z (no)
Order molecules on z-coordinate

3.11.96 gmx tune_pme

Synopsis

gmx tune_pme [-s [<.tpr>]] [-cpi [<.cpt>]] [-table [<.xvg>]]
[-tablep [<.xvg>]] [-tableb [<.xvg>]]
[-rerun [<.xtc/.trr/...>]] [-ei [<.edi>]] [-p [<.out>]]
[-err [<.log>]] [-so [<.tpr>]] [-o [<.trr/.cpt/...>]]
[-x [<.xtc/.tng>]] [-cpo [<.cpt>]]
[-c [<.gro/.g96/...>]] [-e [<.edr>]] [-g [<.log>]]
[-dhdl [<.xvg>]] [-field [<.xvg>]] [-tpi [<.xvg>]]
[-tpid [<.xvg>]] [-eo [<.xvg>]] [-px [<.xvg>]]
[-pf [<.xvg>]] [-ro [<.xvg>]] [-ra [<.log>]]
[-rs [<.log>]] [-rt [<.log>]] [-mtx [<.mtx>]]
[-swap [<.xvg>]] [-bo [<.trr/.cpt/...>]] [-bx [<.xtc>]]
[-bcpo [<.cpt>]] [-bc [<.gro/.g96/...>]] [-be [<.edr>]]
[-bg [<.log>]] [-beo [<.xvg>]] [-bdhdl [<.xvg>]]
[-bfield [<.xvg>]] [-btpi [<.xvg>]] [-btpid [<.xvg>]]
[-bdevout [<.xvg>]] [-brunav [<.xvg>]] [-bpx [<.xvg>]]
[-bpf [<.xvg>]] [-bro [<.xvg>]] [-bra [<.log>]]
[-brs [<.log>]] [-brt [<.log>]] [-bmtx [<.mtx>]]
[-bdn [<.ndx>]] [-bswap [<.xvg>]] [-xvg <enum>]
[-mdrun <string>] [-np <int>] [-npstring <enum>]
[-ntmpi <int>] [-r <int>] [-max <real>] [-min <real>]
[-npme <enum>] [-fix <int>] [-rmax <real>]
[-rmin <real>] [-[no]scalevdw] [-ntpr <int>]
[-steps <int>] [-resetstep <int>] [-nsteps <int>]
[-[no]launch] [-[no]bench] [-[no]check]
[-gpu_id <string>] [-[no]append] [-[no]cpnum]
[-deffnm <string>]

Description

For a given number -np or -ntmpi of ranks, gmx tune_pme systematically times gmx mdrun (page 215) with
various numbers of PME-only ranks and determines which setting is fastest. It will also test whether performance
can be enhanced by shifting load from the reciprocal to the real space part of the Ewald sum. Simply pass your
.tpr (page 494) file to gmx tune_pme together with other options for gmx mdrun (page 215) as needed.

gmx tune_pme needs to call gmx mdrun (page 215) and so requires that you specify how to call mdrun with the
argument to the -mdrun parameter. Depending how you have built GROMACS, values such as ‘gmx mdrun’,
‘gmx_d mdrun’, or ‘gmx_mpi mdrun’ might be needed.

The program that runs MPI programs can be set in the environment variable MPIRUN (defaults to ‘mpirun’).
Note that for certain MPI frameworks, you need to provide a machine- or hostfile. This can also be passed via the
MPIRUN variable, e.g.

export MPIRUN="/usr/local/mpirun -machinefile hosts" Note that in such cases it is nor-
mally necessary to compile and/or run gmx tune_pme without MPI support, so that it can call the MPIRUN
program.

Before doing the actual benchmark runs, gmx tune_pme will do a quick check whether gmx mdrun (page 215)
works as expected with the provided parallel settings if the -check option is activated (the default). Please call

3.11. Command-line reference 286

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx tune_pme with the normal options you would pass to gmx mdrun (page 215) and add -np for the number
of ranks to perform the tests on, or -ntmpi for the number of threads. You can also add -r to repeat each test
several times to get better statistics.

gmx tune_pme can test various real space / reciprocal space workloads for you. With -ntpr you control
how many extra .tpr (page 494) files will be written with enlarged cutoffs and smaller Fourier grids respectively.
Typically, the first test (number 0) will be with the settings from the input .tpr (page 494) file; the last test (number
ntpr) will have the Coulomb cutoff specified by -rmax with a somewhat smaller PME grid at the same time. In
this last test, the Fourier spacing is multiplied with rmax/rcoulomb. The remaining .tpr (page 494) files will have
equally-spaced Coulomb radii (and Fourier spacings) between these extremes. Note that you can set -ntpr to
1 if you just seek the optimal number of PME-only ranks; in that case your input .tpr (page 494) file will remain
unchanged.

For the benchmark runs, the default of 1000 time steps should suffice for most MD systems. The dynamic load
balancing needs about 100 time steps to adapt to local load imbalances, therefore the time step counters are by
default reset after 100 steps. For large systems (>1M atoms), as well as for a higher accuracy of the measurements,
you should set -resetstep to a higher value. From the ‘DD’ load imbalance entries in the md.log output file
you can tell after how many steps the load is sufficiently balanced. Example call:

gmx tune_pme -np 64 -s protein.tpr -launch

After calling gmx mdrun (page 215) several times, detailed performance information is available in the output file
perf.out. Note that during the benchmarks, a couple of temporary files are written (options -b*), these will
be automatically deleted after each test.

If you want the simulation to be started automatically with the optimized parameters, use the command line option
-launch.

Basic support for GPU-enabled mdrun exists. Give a string containing the IDs of the GPUs that you wish to use
in the optimization in the -gpu_id command-line argument. This works exactly like mdrun -gpu_id, does
not imply a mapping, and merely declares the eligible set of GPU devices. gmx-tune_pme will construct calls
to mdrun that use this set appropriately. gmx-tune_pme does not support -gputasks.

Options

Options to specify input files:

-s [<.tpr>] (topol.tpr)
Portable xdr run input file

-cpi [<.cpt>] (state.cpt) (Optional)
Checkpoint file

-table [<.xvg>] (table.xvg) (Optional)
xvgr/xmgr file

-tablep [<.xvg>] (tablep.xvg) (Optional)
xvgr/xmgr file

-tableb [<.xvg>] (table.xvg) (Optional)
xvgr/xmgr file

-rerun [<.xtc/.trr/. . . >] (rerun.xtc) (Optional)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-ei [<.edi>] (sam.edi) (Optional)
ED sampling input

Options to specify output files:

-p [<.out>] (perf.out)
Generic output file

3.11. Command-line reference 287

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-err [<.log>] (bencherr.log)
Log file

-so [<.tpr>] (tuned.tpr)
Portable xdr run input file

-o [<.trr/.cpt/. . . >] (traj.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-x [<.xtc/.tng>] (traj_comp.xtc) (Optional)
Compressed trajectory (tng format or portable xdr format)

-cpo [<.cpt>] (state.cpt) (Optional)
Checkpoint file

-c [<.gro/.g96/. . . >] (confout.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-e [<.edr>] (ener.edr)
Energy file

-g [<.log>] (md.log)
Log file

-dhdl [<.xvg>] (dhdl.xvg) (Optional)
xvgr/xmgr file

-field [<.xvg>] (field.xvg) (Optional)
xvgr/xmgr file

-tpi [<.xvg>] (tpi.xvg) (Optional)
xvgr/xmgr file

-tpid [<.xvg>] (tpidist.xvg) (Optional)
xvgr/xmgr file

-eo [<.xvg>] (edsam.xvg) (Optional)
xvgr/xmgr file

-px [<.xvg>] (pullx.xvg) (Optional)
xvgr/xmgr file

-pf [<.xvg>] (pullf.xvg) (Optional)
xvgr/xmgr file

-ro [<.xvg>] (rotation.xvg) (Optional)
xvgr/xmgr file

-ra [<.log>] (rotangles.log) (Optional)
Log file

-rs [<.log>] (rotslabs.log) (Optional)
Log file

-rt [<.log>] (rottorque.log) (Optional)
Log file

-mtx [<.mtx>] (nm.mtx) (Optional)
Hessian matrix

-swap [<.xvg>] (swapions.xvg) (Optional)
xvgr/xmgr file

-bo [<.trr/.cpt/. . . >] (bench.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-bx [<.xtc>] (bench.xtc)
Compressed trajectory (portable xdr format): xtc

3.11. Command-line reference 288

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-bcpo [<.cpt>] (bench.cpt)
Checkpoint file

-bc [<.gro/.g96/. . . >] (bench.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp

-be [<.edr>] (bench.edr)
Energy file

-bg [<.log>] (bench.log)
Log file

-beo [<.xvg>] (benchedo.xvg) (Optional)
xvgr/xmgr file

-bdhdl [<.xvg>] (benchdhdl.xvg) (Optional)
xvgr/xmgr file

-bfield [<.xvg>] (benchfld.xvg) (Optional)
xvgr/xmgr file

-btpi [<.xvg>] (benchtpi.xvg) (Optional)
xvgr/xmgr file

-btpid [<.xvg>] (benchtpid.xvg) (Optional)
xvgr/xmgr file

-bdevout [<.xvg>] (benchdev.xvg) (Optional)
xvgr/xmgr file

-brunav [<.xvg>] (benchrnav.xvg) (Optional)
xvgr/xmgr file

-bpx [<.xvg>] (benchpx.xvg) (Optional)
xvgr/xmgr file

-bpf [<.xvg>] (benchpf.xvg) (Optional)
xvgr/xmgr file

-bro [<.xvg>] (benchrot.xvg) (Optional)
xvgr/xmgr file

-bra [<.log>] (benchrota.log) (Optional)
Log file

-brs [<.log>] (benchrots.log) (Optional)
Log file

-brt [<.log>] (benchrott.log) (Optional)
Log file

-bmtx [<.mtx>] (benchn.mtx) (Optional)
Hessian matrix

-bdn [<.ndx>] (bench.ndx) (Optional)
Index file

-bswap [<.xvg>] (benchswp.xvg) (Optional)
xvgr/xmgr file

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-mdrun <string>
Command line to run a simulation, e.g. ‘gmx mdrun’ or ‘gmx_mpi mdrun’

-np <int> (1)
Number of ranks to run the tests on (must be > 2 for separate PME ranks)

3.11. Command-line reference 289

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-npstring <enum> (np)
Name of the $MPIRUN option that specifies the number of ranks to use (‘np’, or ‘n’; use ‘none’ if there is
no such option): np, n, none

-ntmpi <int> (1)
Number of MPI-threads to run the tests on (turns MPI & mpirun off)

-r <int> (2)
Repeat each test this often

-max <real> (0.5)
Max fraction of PME ranks to test with

-min <real> (0.25)
Min fraction of PME ranks to test with

-npme <enum> (auto)
Within -min and -max, benchmark all possible values for -npme, or just a reasonable subset. Auto neglects
-min and -max and chooses reasonable values around a guess for npme derived from the .tpr: auto, all,
subset

-fix <int> (-2)
If >= -1, do not vary the number of PME-only ranks, instead use this fixed value and only vary rcoulomb
and the PME grid spacing.

-rmax <real> (0)
If >0, maximal rcoulomb for -ntpr>1 (rcoulomb upscaling results in fourier grid downscaling)

-rmin <real> (0)
If >0, minimal rcoulomb for -ntpr>1

-[no]scalevdw (yes)
Scale rvdw along with rcoulomb

-ntpr <int> (0)
Number of .tpr (page 494) files to benchmark. Create this many files with different rcoulomb scaling factors
depending on -rmin and -rmax. If < 1, automatically choose the number of .tpr (page 494) files to test

-steps <int> (1000)
Take timings for this many steps in the benchmark runs

-resetstep <int> (1500)
Let dlb equilibrate this many steps before timings are taken (reset cycle counters after this many steps)

-nsteps <int> (-1)
If non-negative, perform this many steps in the real run (overwrites nsteps from .tpr (page 494), add .cpt
(page 485) steps)

-[no]launch (no)
Launch the real simulation after optimization

-[no]bench (yes)
Run the benchmarks or just create the input .tpr (page 494) files?

-[no]check (yes)
Before the benchmark runs, check whether mdrun works in parallel

-gpu_id <string>
List of unique GPU device IDs that are eligible for use

-[no]append (yes)
Append to previous output files when continuing from checkpoint instead of adding the simulation part
number to all file names (for launch only)

-[no]cpnum (no)
Keep and number checkpoint files (launch only)

3.11. Command-line reference 290

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-deffnm <string>
Set the default filenames (launch only)

3.11.97 gmx vanhove

Synopsis

gmx vanhove [-f [<.xtc/.trr/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-om [<.xpm>]] [-or [<.xvg>]] [-ot [<.xvg>]] [-b <time>]
[-e <time>] [-dt <time>] [-[no]w] [-xvg <enum>]
[-sqrt <real>] [-fm <int>] [-rmax <real>] [-rbin <real>]
[-mmax <real>] [-nlevels <int>] [-nr <int>] [-fr <int>]
[-rt <real>] [-ft <int>]

Description

gmx vanhove computes the Van Hove correlation function. The Van Hove G(r,t) is the probability that a particle
that is at r_0 at time zero can be found at position r_0+r at time t. gmx vanhove determines G not for a vector
r, but for the length of r. Thus it gives the probability that a particle moves a distance of r in time t. Jumps across
the periodic boundaries are removed. Corrections are made for scaling due to isotropic or anisotropic pressure
coupling.

With option -om the whole matrix can be written as a function of t and r or as a function of sqrt(t) and r (option
-sqrt).

With option -or the Van Hove function is plotted for one or more values of t. Option -nr sets the number of
times, option -fr the number spacing between the times. The binwidth is set with option -rbin. The number
of bins is determined automatically.

With option -ot the integral up to a certain distance (option -rt) is plotted as a function of time.

For all frames that are read the coordinates of the selected particles are stored in memory. Therefore the program
may use a lot of memory. For options -om and -ot the program may be slow. This is because the calculation
scales as the number of frames times -fm or -ft. Note that with the -dt option the memory usage and calculation
time can be reduced.

Options

Options to specify input files:

-f [<.xtc/.trr/. . . >] (traj.xtc)
Trajectory: xtc (page 496) trr (page 494) cpt (page 485) gro (page 486) g96 (page 486) pdb (page 490) tng
(page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-om [<.xpm>] (vanhove.xpm) (Optional)
X PixMap compatible matrix file

-or [<.xvg>] (vanhove_r.xvg) (Optional)
xvgr/xmgr file

-ot [<.xvg>] (vanhove_t.xvg) (Optional)
xvgr/xmgr file

Other options:

3.11. Command-line reference 291

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-sqrt <real> (0)
Use sqrt(t) on the matrix axis which binspacing # in sqrt(ps)

-fm <int> (0)
Number of frames in the matrix, 0 is plot all

-rmax <real> (2)
Maximum r in the matrix (nm)

-rbin <real> (0.01)
Binwidth in the matrix and for -or (nm)

-mmax <real> (0)
Maximum density in the matrix, 0 is calculate (1/nm)

-nlevels <int> (81)
Number of levels in the matrix

-nr <int> (1)
Number of curves for the -or output

-fr <int> (0)
Frame spacing for the -or output

-rt <real> (0)
Integration limit for the -ot output (nm)

-ft <int> (0)
Number of frames in the -ot output, 0 is plot all

3.11.98 gmx velacc

Synopsis

gmx velacc [-f [<.trr/.cpt/...>]] [-s [<.tpr/.gro/...>]] [-n [<.ndx>]]
[-o [<.xvg>]] [-os [<.xvg>]] [-b <time>] [-e <time>]
[-dt <time>] [-[no]w] [-xvg <enum>] [-[no]m] [-[no]recip]
[-[no]mol] [-acflen <int>] [-[no]normalize] [-P <enum>]
[-fitfn <enum>] [-beginfit <real>] [-endfit <real>]

3.11. Command-line reference 292

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Description

gmx velacc computes the velocity autocorrelation function. When the -m option is used, the momentum
autocorrelation function is calculated.

With option -mol the velocity autocorrelation function of molecules is calculated. In this case the index group
should consist of molecule numbers instead of atom numbers.

By using option -os you can also extract the estimated (vibrational) power spectrum, which is the Fourier trans-
form of the velocity autocorrelation function. Be sure that your trajectory contains frames with velocity infor-
mation (i.e. nstvout was set in your original .mdp (page 488) file), and that the time interval between data
collection points is much shorter than the time scale of the autocorrelation.

Options

Options to specify input files:

-f [<.trr/.cpt/. . . >] (traj.trr)
Full precision trajectory: trr (page 494) cpt (page 485) tng (page 492)

-s [<.tpr/.gro/. . . >] (topol.tpr) (Optional)
Structure+mass(db): tpr (page 494) gro (page 486) g96 (page 486) pdb (page 490) brk ent

-n [<.ndx>] (index.ndx) (Optional)
Index file

Options to specify output files:

-o [<.xvg>] (vac.xvg)
xvgr/xmgr file

-os [<.xvg>] (spectrum.xvg) (Optional)
xvgr/xmgr file

Other options:

-b <time> (0)
Time of first frame to read from trajectory (default unit ps)

-e <time> (0)
Time of last frame to read from trajectory (default unit ps)

-dt <time> (0)
Only use frame when t MOD dt = first time (default unit ps)

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-[no]m (no)
Calculate the momentum autocorrelation function

-[no]recip (yes)
Use cm^-1 on X-axis instead of 1/ps for spectra.

-[no]mol (no)
Calculate the velocity acf of molecules

-acflen <int> (-1)
Length of the ACF, default is half the number of frames

-[no]normalize (yes)
Normalize ACF

3.11. Command-line reference 293

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-P <enum> (0)
Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2, 3

-fitfn <enum> (none)
Fit function: none, exp, aexp, exp_exp, exp5, exp7, exp9

-beginfit <real> (0)
Time where to begin the exponential fit of the correlation function

-endfit <real> (-1)
Time where to end the exponential fit of the correlation function, -1 is until the end

3.11.99 gmx wham

Synopsis

gmx wham [-ix [<.dat>]] [-if [<.dat>]] [-it [<.dat>]] [-is [<.dat>]]
[-iiact [<.dat>]] [-tab [<.dat>]] [-o [<.xvg>]]
[-hist [<.xvg>]] [-oiact [<.xvg>]] [-bsres [<.xvg>]]
[-bsprof [<.xvg>]] [-xvg <enum>] [-min <real>] [-max <real>]
[-[no]auto] [-bins <int>] [-temp <real>] [-tol <real>]
[-[no]v] [-b <real>] [-e <real>] [-dt <real>]
[-[no]histonly] [-[no]boundsonly] [-[no]log] [-unit <enum>]
[-zprof0 <real>] [-[no]cycl] [-[no]sym] [-[no]ac]
[-acsig <real>] [-ac-trestart <real>] [-nBootstrap <int>]
[-bs-method <enum>] [-bs-tau <real>] [-bs-seed <int>]
[-histbs-block <int>] [-[no]vbs]

Description

gmx wham is an analysis program that implements the Weighted Histogram Analysis Method (WHAM). It is
intended to analyze output files generated by umbrella sampling simulations to compute a potential of mean force
(PMF).

gmx wham is currently not fully up to date. It only supports pull setups where the first pull coordinate(s) is/are
umbrella pull coordinates and, if multiple coordinates need to be analyzed, all used the same geometry and di-
mensions. In most cases this is not an issue.

At present, three input modes are supported.

• With option -it, the user provides a file which contains the file names of the umbrella simulation run-input
files (.tpr (page 494) files), AND, with option -ix, a file which contains file names of the pullx mdrun
output files. The .tpr (page 494) and pullx files must be in corresponding order, i.e. the first .tpr (page 494)
created the first pullx, etc.

• Same as the previous input mode, except that the user provides the pull force output file names (pullf.
xvg) with option -if. From the pull force the position in the umbrella potential is computed. This does
not work with tabulated umbrella potentials.

By default, all pull coordinates found in all pullx/pullf files are used in WHAM. If only some of the pull coordi-
nates should be used, a pull coordinate selection file (option -is) can be provided. The selection file must contain
one line for each tpr file in tpr-files.dat. Each of these lines must contain one digit (0 or 1) for each pull coordinate
in the tpr file. Here, 1 indicates that the pull coordinate is used in WHAM, and 0 means it is omitted. Example:
If you have three tpr files, each containing 4 pull coordinates, but only pull coordinates 1 and 2 should be used,
coordsel.dat looks like this:

1 1 0 0
1 1 0 0
1 1 0 0

By default, the output files are:

3.11. Command-line reference 294

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

``-o`` PMF output file
``-hist`` Histograms output file

Always check whether the histograms sufficiently overlap.

The umbrella potential is assumed to be harmonic and the force constants are read from the .tpr (page 494) files.
If a non-harmonic umbrella force was applied a tabulated potential can be provided with -tab.

WHAM options

• -bins Number of bins used in analysis

• -temp Temperature in the simulations

• -tol Stop iteration if profile (probability) changed less than tolerance

• -auto Automatic determination of boundaries

• -min,-max Boundaries of the profile

The data points that are used to compute the profile can be restricted with options -b, -e, and -dt. Adjust -b to
ensure sufficient equilibration in each umbrella window.

With -log (default) the profile is written in energy units, otherwise (with -nolog) as probability. The unit can
be specified with -unit. With energy output, the energy in the first bin is defined to be zero. If you want the free
energy at a different position to be zero, set -zprof0 (useful with bootstrapping, see below).

For cyclic or periodic reaction coordinates (dihedral angle, channel PMF without osmotic gradient), the option
-cycl is useful. gmx wham will make use of the periodicity of the system and generate a periodic PMF. The
first and the last bin of the reaction coordinate will assumed be be neighbors.

Option -sym symmetrizes the profile around z=0 before output, which may be useful for, e.g. membranes.

Parallelization

If available, the number of OpenMP threads used by gmx wham can be controlled by setting the OMP_NUM_-
THREADS environment variable.

Autocorrelations

With -ac, gmx wham estimates the integrated autocorrelation time (IACT) tau for each umbrella window and
weights the respective window with 1/[1+2*tau/dt]. The IACTs are written to the file defined with -oiact. In
verbose mode, all autocorrelation functions (ACFs) are written to hist_autocorr.xvg. Because the IACTs
can be severely underestimated in case of limited sampling, option -acsig allows one to smooth the IACTs along
the reaction coordinate with a Gaussian (sigma provided with -acsig, see output in iact.xvg). Note that the
IACTs are estimated by simple integration of the ACFs while the ACFs are larger 0.05. If you prefer to compute
the IACTs by a more sophisticated (but possibly less robust) method such as fitting to a double exponential, you
can compute the IACTs with gmx analyze (page 125) and provide them to gmx wham with the file iact-in.
dat (option -iiact), which should contain one line per input file (pullx/pullf file) and one column per pull
coordinate in the respective file.

3.11. Command-line reference 295

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Error analysis

Statistical errors may be estimated with bootstrap analysis. Use it with care, otherwise the statistical error may be
substantially underestimated. More background and examples for the bootstrap technique can be found in Hub,
de Groot and Van der Spoel, JCTC (2010) 6: 3713-3720. -nBootstrap defines the number of bootstraps (use,
e.g., 100). Four bootstrapping methods are supported and selected with -bs-method.

• b-hist Default: complete histograms are considered as independent data points, and the bootstrap is
carried out by assigning random weights to the histograms (“Bayesian bootstrap”). Note that each point
along the reaction coordinate must be covered by multiple independent histograms (e.g. 10 histograms),
otherwise the statistical error is underestimated.

• hist Complete histograms are considered as independent data points. For each bootstrap, N histograms
are randomly chosen from the N given histograms (allowing duplication, i.e. sampling with replacement).
To avoid gaps without data along the reaction coordinate blocks of histograms (-histbs-block) may be
defined. In that case, the given histograms are divided into blocks and only histograms within each block
are mixed. Note that the histograms within each block must be representative for all possible histograms,
otherwise the statistical error is underestimated.

• traj The given histograms are used to generate new random trajectories, such that the generated data
points are distributed according the given histograms and properly autocorrelated. The autocorrelation time
(ACT) for each window must be known, so use -ac or provide the ACT with -iiact. If the ACT of all
windows are identical (and known), you can also provide them with -bs-tau. Note that this method may
severely underestimate the error in case of limited sampling, that is if individual histograms do not represent
the complete phase space at the respective positions.

• traj-gauss The same as method traj, but the trajectories are not bootstrapped from the umbrella
histograms but from Gaussians with the average and width of the umbrella histograms. That method yields
similar error estimates like method traj.

Bootstrapping output:

• -bsres Average profile and standard deviations

• -bsprof All bootstrapping profiles

With -vbs (verbose bootstrapping), the histograms of each bootstrap are written, and, with bootstrap method
traj, the cumulative distribution functions of the histograms.

Options

Options to specify input files:

-ix [<.dat>] (pullx-files.dat) (Optional)
Generic data file

-if [<.dat>] (pullf-files.dat) (Optional)
Generic data file

-it [<.dat>] (tpr-files.dat) (Optional)
Generic data file

-is [<.dat>] (coordsel.dat) (Optional)
Generic data file

-iiact [<.dat>] (iact-in.dat) (Optional)
Generic data file

-tab [<.dat>] (umb-pot.dat) (Optional)
Generic data file

Options to specify output files:

-o [<.xvg>] (profile.xvg)
xvgr/xmgr file

3.11. Command-line reference 296

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-hist [<.xvg>] (histo.xvg)
xvgr/xmgr file

-oiact [<.xvg>] (iact.xvg) (Optional)
xvgr/xmgr file

-bsres [<.xvg>] (bsResult.xvg) (Optional)
xvgr/xmgr file

-bsprof [<.xvg>] (bsProfs.xvg) (Optional)
xvgr/xmgr file

Other options:

-xvg <enum> (xmgrace)
xvg plot formatting: xmgrace, xmgr, none

-min <real> (0)
Minimum coordinate in profile

-max <real> (0)
Maximum coordinate in profile

-[no]auto (yes)
Determine min and max automatically

-bins <int> (200)
Number of bins in profile

-temp <real> (298)
Temperature

-tol <real> (1e-06)
Tolerance

-[no]v (no)
Verbose mode

-b <real> (50)
First time to analyse (ps)

-e <real> (1e+20)
Last time to analyse (ps)

-dt <real> (0)
Analyse only every dt ps

-[no]histonly (no)
Write histograms and exit

-[no]boundsonly (no)
Determine min and max and exit (with -auto)

-[no]log (yes)
Calculate the log of the profile before printing

-unit <enum> (kJ)
Energy unit in case of log output: kJ, kCal, kT

-zprof0 <real> (0)
Define profile to 0.0 at this position (with -log)

-[no]cycl (no)
Create cyclic/periodic profile. Assumes min and max are the same point.

-[no]sym (no)
Symmetrize profile around z=0

-[no]ac (no)
Calculate integrated autocorrelation times and use in wham

3.11. Command-line reference 297

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-acsig <real> (0)
Smooth autocorrelation times along reaction coordinate with Gaussian of this sigma

-ac-trestart <real> (1)
When computing autocorrelation functions, restart computing every .. (ps)

-nBootstrap <int> (0)
nr of bootstraps to estimate statistical uncertainty (e.g., 200)

-bs-method <enum> (b-hist)
Bootstrap method: b-hist, hist, traj, traj-gauss

-bs-tau <real> (0)
Autocorrelation time (ACT) assumed for all histograms. Use option -ac if ACT is unknown.

-bs-seed <int> (-1)
Seed for bootstrapping. (-1 = use time)

-histbs-block <int> (8)
When mixing histograms only mix within blocks of -histbs-block.

-[no]vbs (no)
Verbose bootstrapping. Print the CDFs and a histogram file for each bootstrap.

3.11.100 gmx wheel

Synopsis

gmx wheel [-f [<.dat>]] [-o [<.eps>]] [-r0 <int>] [-rot0 <real>]
[-T <string>] [-[no]nn]

Description

gmx wheel plots a helical wheel representation of your sequence. The input sequence is in the .dat (page 485)
file where the first line contains the number of residues and each consecutive line contains a residue name.

Options

Options to specify input files:

-f [<.dat>] (nnnice.dat)
Generic data file

Options to specify output files:

-o [<.eps>] (plot.eps)
Encapsulated PostScript (tm) file

Other options:

-r0 <int> (1)
The first residue number in the sequence

-rot0 <real> (0)
Rotate around an angle initially (90 degrees makes sense)

-T <string>
Plot a title in the center of the wheel (must be shorter than 10 characters, or it will overwrite the wheel)

-[no]nn (yes)
Toggle numbers

3.11. Command-line reference 298

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.11.101 gmx x2top

Synopsis

gmx x2top [-f [<.gro/.g96/...>]] [-o [<.top>]] [-r [<.rtp>]]
[-ff <string>] [-[no]v] [-nexcl <int>] [-[no]H14]
[-[no]alldih] [-[no]remdih] [-[no]pairs] [-name <string>]
[-[no]pbc] [-[no]pdbq] [-[no]param] [-[no]round]
[-kb <real>] [-kt <real>] [-kp <real>]

Description

gmx x2top generates a primitive topology from a coordinate file. The program assumes all hydrogens are
present when defining the hybridization from the atom name and the number of bonds. The program can also
make an .rtp (page 491) entry, which you can then add to the .rtp (page 491) database.

When -param is set, equilibrium distances and angles and force constants will be printed in the topology for all
interactions. The equilibrium distances and angles are taken from the input coordinates, the force constant are set
with command line options. The force fields somewhat supported currently are:

G53a5 GROMOS96 53a5 Forcefield (official distribution)

oplsaa OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

The corresponding data files can be found in the library directory with name atomname2type.n2t. Check
Chapter 5 of the manual for more information about file formats. By default, the force field selection is interactive,
but you can use the -ff option to specify one of the short names above on the command line instead. In that case
gmx x2top just looks for the corresponding file.

Options

Options to specify input files:

-f [<.gro/.g96/. . . >] (conf.gro)
Structure file: gro (page 486) g96 (page 486) pdb (page 490) brk ent esp tpr (page 494)

Options to specify output files:

-o [<.top>] (out.top) (Optional)
Topology file

-r [<.rtp>] (out.rtp) (Optional)
Residue Type file used by pdb2gmx

Other options:

-ff <string> (oplsaa)
Force field for your simulation. Type “select” for interactive selection.

-[no]v (no)
Generate verbose output in the top file.

-nexcl <int> (3)
Number of exclusions

-[no]H14 (yes)
Use 3rd neighbour interactions for hydrogen atoms

-[no]alldih (no)
Generate all proper dihedrals

-[no]remdih (no)
Remove dihedrals on the same bond as an improper

3.11. Command-line reference 299

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-[no]pairs (yes)
Output 1-4 interactions (pairs) in topology file

-name <string> (ICE)
Name of your molecule

-[no]pbc (yes)
Use periodic boundary conditions.

-[no]pdbq (no)
Use the B-factor supplied in a .pdb (page 490) file for the atomic charges

-[no]param (yes)
Print parameters in the output

-[no]round (yes)
Round off measured values

-kb <real> (400000)
Bonded force constant (kJ/mol/nm^2)

-kt <real> (400)
Angle force constant (kJ/mol/rad^2)

-kp <real> (5)
Dihedral angle force constant (kJ/mol/rad^2)

Known Issues

• The atom type selection is primitive. Virtually no chemical knowledge is used

• Periodic boundary conditions screw up the bonding

• No improper dihedrals are generated

• The atoms to atomtype translation table is incomplete (atomname2type.n2t file in the data directory).
Please extend it and send the results back to the GROMACS crew.

3.11.102 gmx xpm2ps

Synopsis

gmx xpm2ps [-f [<.xpm>]] [-f2 [<.xpm>]] [-di [<.m2p>]] [-do [<.m2p>]]
[-o [<.eps>]] [-xpm [<.xpm>]] [-[no]w] [-[no]frame]
[-title <enum>] [-[no]yonce] [-legend <enum>]
[-diag <enum>] [-size <real>] [-bx <real>] [-by <real>]
[-rainbow <enum>] [-gradient <vector>] [-skip <int>]
[-[no]zeroline] [-legoffset <int>] [-combine <enum>]
[-cmin <real>] [-cmax <real>]

Description

gmx xpm2ps makes a beautiful color plot of an XPixelMap file. Labels and axis can be displayed, when they
are supplied in the correct matrix format. Matrix data may be generated by programs such as gmx rms (page 246)
or gmx mdmat (page 213).

Parameters are set in the .m2p file optionally supplied with -di. Reasonable defaults are provided. Settings for
the y-axis default to those for the x-axis. Font names have a defaulting hierarchy: titlefont -> legendfont; titlefont
-> (xfont -> yfont -> ytickfont) -> xtickfont, e.g. setting titlefont sets all fonts, setting xfont sets yfont, ytickfont
and xtickfont.

3.11. Command-line reference 300

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

When no .m2p file is supplied, many settings are taken from command line options. The most important option
is -size, which sets the size of the whole matrix in postscript units. This option can be overridden with the
-bx and -by options (and the corresponding parameters in the .m2p file), which set the size of a single matrix
element.

With -f2 a second matrix file can be supplied. Both matrix files will be read simultaneously and the upper left
half of the first one (-f) is plotted together with the lower right half of the second one (-f2). The diagonal
will contain values from the matrix file selected with -diag. Plotting of the diagonal values can be suppressed
altogether by setting -diag to none. In this case, a new color map will be generated with a red gradient for
negative numbers and a blue for positive. If the color coding and legend labels of both matrices are identical, only
one legend will be displayed, else two separate legends are displayed. With -combine, an alternative operation
can be selected to combine the matrices. The output range is automatically set to the actual range of the combined
matrix. This can be overridden with -cmin and -cmax.

-title can be set to none to suppress the title, or to ylabel to show the title in the Y-label position (alongside
the y-axis).

With the -rainbow option, dull grayscale matrices can be turned into attractive color pictures.

Merged or rainbowed matrices can be written to an XPixelMap file with the -xpm option.

Options

Options to specify input files:

-f [<.xpm>] (root.xpm)
X PixMap compatible matrix file

-f2 [<.xpm>] (root2.xpm) (Optional)
X PixMap compatible matrix file

-di [<.m2p>] (ps.m2p) (Optional, Library)
Input file for mat2ps

Options to specify output files:

-do [<.m2p>] (out.m2p) (Optional)
Input file for mat2ps

-o [<.eps>] (plot.eps) (Optional)
Encapsulated PostScript (tm) file

-xpm [<.xpm>] (root.xpm) (Optional)
X PixMap compatible matrix file

Other options:

-[no]w (no)
View output .xvg (page 497), .xpm (page 495), .eps (page 486) and .pdb (page 490) files

-[no]frame (yes)
Display frame, ticks, labels, title and legend

-title <enum> (top)
Show title at: top, once, ylabel, none

-[no]yonce (no)
Show y-label only once

-legend <enum> (both)
Show legend: both, first, second, none

-diag <enum> (first)
Diagonal: first, second, none

-size <real> (400)
Horizontal size of the matrix in ps units

3.11. Command-line reference 301

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-bx <real> (0)
Element x-size, overrides -size (also y-size when -by is not set)

-by <real> (0)
Element y-size

-rainbow <enum> (no)
Rainbow colors, convert white to: no, blue, red

-gradient <vector> (0 0 0)
Re-scale colormap to a smooth gradient from white {1,1,1} to {r,g,b}

-skip <int> (1)
only write out every nr-th row and column

-[no]zeroline (no)
insert line in .xpm (page 495) matrix where axis label is zero

-legoffset <int> (0)
Skip first N colors from .xpm (page 495) file for the legend

-combine <enum> (halves)
Combine two matrices: halves, add, sub, mult, div

-cmin <real> (0)
Minimum for combination output

-cmax <real> (0)
Maximum for combination output

GROMACS includes many tools for preparing, running and analyzing molecular dynamics simulations. These are
all structured as part of a single gmx wrapper binary, and invoked with commands like gmx grompp. or gmx
mdrun. Documentation for these can be found at the respective sections below, as well as on man pages (e.g.,
gmx-grompp(1)) and with gmx help command or gmx command -h.

If you’ve installed an MPI version of GROMACS, by default the gmx binary is called gmx_mpi and you should
adapt accordingly.

3.11.103 Command-line interface and conventions

All GROMACS commands require an option before any arguments (i.e., all command-line arguments need to be
preceded by an argument starting with a dash, and values not starting with a dash are arguments to the preceding
option). Most options, except for boolean flags, expect an argument (or multiple in some cases) after the option
name. The argument must be a separate command-line argument, i.e., separated by space, as in -f traj.xtc.
If more than one argument needs to be given to an option, they should be similarly separated from each other.
Some options also have default arguments, i.e., just specifying the option without any argument uses the default
argument. If an option is not specified at all, a default value is used; in the case of optional files, the default might
be not to use that file (see below).

All GROMACS command options start with a single dash, whether they are single- or multiple-letter options.
However, two dashes are also recognized (starting from 5.1).

In addition to command-specific options, some options are handled by the gmx wrapper, and can be specified for
any command. See wrapper binary help (page 115) for the list of such options. These options are recognized
both before the command name (e.g., gmx -quiet grompp) as well as after the command name (e.g., gmx
grompp -quiet). There is also a -hidden option that can be specified in combination with -h to show help
for advanced/developer-targeted options.

Most analysis commands can process a trajectory with fewer atoms than the run input or structure file, but only if
the trajectory consists of the first n atoms of the run input or structure file.

3.11. Command-line reference 302

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Handling specific types of command-line options

boolean options
Boolean flags can be specified like -pbc and negated like -nopbc. It is also possible to use an explicit
value like -pbc no and -pbc yes.

file name options
Options that accept files names have features that support using default file names (where the default file
name is specific to that option):

• If a required option is not set, the default is used.

• If an option is marked optional, the file is not used unless the option is set (or other conditions make
the file required).

• If an option is set, and no file name is provided, the default is used.

All such options will accept file names without a file extension. The extension is automatically appended
in such a case. When multiple input formats are accepted, such as a generic structure format, the directory
will be searched for files of each type with the supplied or default name. When no file with a recognized
extension is found, an error is given. For output files with multiple formats, a default file type will be used.

Some file formats can also be read from compressed (.Z or .gz) formats.

enum options
Enumerated options (enum) should be used with one of the arguments listed in the option description. The
argument may be abbreviated, and the first match to the shortest argument in the list will be selected.

vector options
Some options accept a vector of values. Either 1 or 3 parameters can be supplied; when only one parameter
is supplied the two other values are also set to this value.

selection options
See Selection syntax and usage (page 312).

3.11.104 Commands by name

• gmx (page 115) - molecular dynamics simulation suite

• gmx anaeig (page 122) - Analyze eigenvectors/normal modes

• gmx analyze (page 125) - Analyze data sets

• gmx angle (page 128) - Calculate distributions and correlations for angles and dihedrals

• gmx awh (page 130) - Extract data from an accelerated weight histogram (AWH) run

• gmx bar (page 131) - Calculate free energy difference estimates through Bennett’s acceptance ratio

• gmx bundle (page 133) - Analyze bundles of axes, e.g., helices

• gmx check (page 134) - Check and compare files

• gmx chi (page 136) - Calculate everything you want to know about chi and other dihedrals

• gmx cluster (page 139) - Cluster structures

• gmx clustsize (page 143) - Calculate size distributions of atomic clusters

• gmx confrms (page 144) - Fit two structures and calculates the RMSD

• gmx convert-tpr (page 146) - Make a modified run-input file

• gmx convert-trj (page 147) - Converts between different trajectory types

• gmx covar (page 148) - Calculate and diagonalize the covariance matrix

• gmx current (page 150) - Calculate dielectric constants and current autocorrelation function

• gmx density (page 152) - Calculate the density of the system

3.11. Command-line reference 303

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• gmx densmap (page 154) - Calculate 2D planar or axial-radial density maps

• gmx densorder (page 155) - Calculate surface fluctuations

• gmx dielectric (page 157) - Calculate frequency dependent dielectric constants

• gmx dipoles (page 158) - Compute the total dipole plus fluctuations

• gmx disre (page 161) - Analyze distance restraints

• gmx distance (page 163) - Calculate distances between pairs of positions

• gmx dos (page 165) - Analyze density of states and properties based on that

• gmx dssp (page 166) - Calculate protein secondary structure via DSSP algorithm

• gmx dump (page 169) - Make binary files human readable

• gmx dyecoupl (page 170) - Extract dye dynamics from trajectories

• gmx editconf (page 171) - Convert and manipulates structure files

• gmx eneconv (page 174) - Convert energy files

• gmx enemat (page 175) - Extract an energy matrix from an energy file

• gmx energy (page 177) - Writes energies to xvg files and display averages

• gmx extract-cluster (page 181) - Allows extracting frames corresponding to clusters from trajectory

• gmx filter (page 182) - Frequency filter trajectories, useful for making smooth movies

• gmx freevolume (page 183) - Calculate free volume

• gmx gangle (page 185) - Calculate angles

• gmx genconf (page 187) - Multiply a conformation in ‘random’ orientations

• gmx genion (page 188) - Generate monoatomic ions on energetically favorable positions

• gmx genrestr (page 189) - Generate position restraints or distance restraints for index groups

• gmx grompp (page 190) - Make a run input file

• gmx gyrate (page 193) - Calculate radius of gyration of a molecule

• gmx gyrate-legacy (page 194) - Calculate the radius of gyration

• gmx h2order (page 196) - Compute the orientation of water molecules

• gmx hbond (page 197) - Compute and analyze hydrogen bonds.

• gmx hbond-legacy (page 199) - Compute and analyze hydrogen bonds

• gmx helix (page 202) - Calculate basic properties of alpha helices

• gmx helixorient (page 204) - Calculate local pitch/bending/rotation/orientation inside helices

• gmx help (page 205) - Print help information

• gmx hydorder (page 205) - Compute tetrahedrality parameters around a given atom

• gmx insert-molecules (page 207) - Insert molecules into existing vacancies

• gmx lie (page 208) - Estimate free energy from linear combinations

• gmx make_edi (page 209) - Generate input files for essential dynamics sampling

• gmx make_ndx (page 213) - Make index files

• gmx mdmat (page 213) - Calculate residue contact maps

• gmx mdrun (page 215) - Perform a simulation, do a normal mode analysis or an energy minimization

• gmx mindist (page 220) - Calculate the minimum distance between two groups

• gmx mk_angndx (page 222) - Generate index files for ‘gmx angle’

3.11. Command-line reference 304

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• gmx msd (page 222) - Compute mean squared displacements

• gmx nmeig (page 224) - Diagonalize the Hessian for normal mode analysis

• gmx nmens (page 226) - Generate an ensemble of structures from the normal modes

• gmx nmr (page 227) - Analyze nuclear magnetic resonance properties from an energy file

• gmx nmtraj (page 228) - Generate a virtual oscillating trajectory from an eigenvector

• gmx nonbonded-benchmark (page 229) - Benchmarking tool for the non-bonded pair kernels.

• gmx order (page 231) - Compute the order parameter per atom for carbon tails

• gmx pairdist (page 233) - Calculate pairwise distances between groups of positions

• gmx pdb2gmx (page 235) - Convert coordinate files to topology and FF-compliant coordinate files

• gmx pme_error (page 238) - Estimate the error of using PME with a given input file

• gmx polystat (page 239) - Calculate static properties of polymers

• gmx potential (page 240) - Calculate the electrostatic potential across the box

• gmx principal (page 242) - Calculate principal axes of inertia for a group of atoms

• gmx rama (page 243) - Compute Ramachandran plots

• gmx rdf (page 243) - Calculate radial distribution functions

• gmx report-methods (page 246) - Write short summary about the simulation setup to a text file and/or to the
standard output.

• gmx rms (page 246) - Calculate RMSDs with a reference structure and RMSD matrices

• gmx rmsdist (page 248) - Calculate atom pair distances averaged with power -2, -3 or -6

• gmx rmsf (page 250) - Calculate atomic fluctuations

• gmx rotacf (page 252) - Calculate the rotational correlation function for molecules

• gmx rotmat (page 253) - Plot the rotation matrix for fitting to a reference structure

• gmx saltbr (page 254) - Compute salt bridges

• gmx sans-legacy (page 255) - Compute small angle neutron scattering spectra

• gmx sasa (page 257) - Compute solvent accessible surface area

• gmx saxs-legacy (page 259) - Compute small angle X-ray scattering spectra

• gmx scattering (page 260) - Calculate small angle scattering profiles for SANS or SAXS

• gmx select (page 262) - Print general information about selections

• gmx sham (page 264) - Compute free energies or other histograms from histograms

• gmx sigeps (page 266) - Convert c6/12 or c6/cn combinations to and from sigma/epsilon

• gmx solvate (page 268) - Solvate a system

• gmx sorient (page 269) - Analyze solvent orientation around solutes

• gmx spatial (page 271) - Calculate the spatial distribution function

• gmx spol (page 272) - Analyze solvent dipole orientation and polarization around solutes

• gmx tcaf (page 274) - Calculate viscosities of liquids

• gmx traj (page 275) - Plot x, v, f, box, temperature and rotational energy from trajectories

• gmx trajectory (page 278) - Print coordinates, velocities, and/or forces for selections

• gmx trjcat (page 279) - Concatenate trajectory files

• gmx trjconv (page 281) - Convert and manipulates trajectory files

3.11. Command-line reference 305

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• gmx trjorder (page 284) - Order molecules according to their distance to a group

• gmx tune_pme (page 286) - Time mdrun as a function of PME ranks to optimize settings

• gmx vanhove (page 291) - Compute Van Hove displacement and correlation functions

• gmx velacc (page 292) - Calculate velocity autocorrelation functions

• gmx wham (page 294) - Perform weighted histogram analysis after umbrella sampling

• gmx wheel (page 298) - Plot helical wheels

• gmx x2top (page 299) - Generate a primitive topology from coordinates

• gmx xpm2ps (page 300) - Convert XPM (XPixelMap) matrices to postscript or XPM

3.11.105 Commands by topic

Trajectory analysis

gmx gangle (page 185)
Calculate angles

gmx convert-trj (page 147)
Converts between different trajectory types

gmx distance (page 163)
Calculate distances between pairs of positions

gmx dssp (page 166)
Calculate protein secondary structure via DSSP algorithm

gmx extract-cluster (page 181)
Allows extracting frames corresponding to clusters from trajectory

gmx freevolume (page 183)
Calculate free volume

gmx hbond (page 197)
Compute and analyze hydrogen bonds.

gmx msd (page 222)
Compute mean squared displacements

gmx pairdist (page 233)
Calculate pairwise distances between groups of positions

gmx rdf (page 243)
Calculate radial distribution functions

gmx sasa (page 257)
Compute solvent accessible surface area

gmx scattering (page 260)
Calculate small angle scattering profiles for SANS or SAXS

gmx select (page 262)
Print general information about selections

gmx trajectory (page 278)
Print coordinates, velocities, and/or forces for selections

gmx gyrate (page 193)
Calculate radius of gyration of a molecule

3.11. Command-line reference 306

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Generating topologies and coordinates

gmx editconf (page 171)
Edit the box and write subgroups

gmx x2top (page 299)
Generate a primitive topology from coordinates

gmx solvate (page 268)
Solvate a system

gmx insert-molecules (page 207)
Insert molecules into existing vacancies

gmx genconf (page 187)
Multiply a conformation in ‘random’ orientations

gmx genion (page 188)
Generate monoatomic ions on energetically favorable positions

gmx genrestr (page 189)
Generate position restraints or distance restraints for index groups

gmx pdb2gmx (page 235)
Convert coordinate files to topology and FF-compliant coordinate files

Running a simulation

gmx grompp (page 190)
Make a run input file

gmx mdrun (page 215)
Perform a simulation, do a normal mode analysis or an energy minimization

gmx convert-tpr (page 146)
Make a modified run-input file

Viewing trajectories

gmx nmtraj (page 228)
Generate a virtual oscillating trajectory from an eigenvector

Processing energies

gmx enemat (page 175)
Extract an energy matrix from an energy file

gmx energy (page 177)
Writes energies to xvg files and display averages

gmx mdrun (page 215)
(Re)calculate energies for trajectory frames with -rerun

3.11. Command-line reference 307

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Converting files

gmx editconf (page 171)
Convert and manipulates structure files

gmx eneconv (page 174)
Convert energy files

gmx sigeps (page 266)
Convert c6/12 or c6/cn combinations to and from sigma/epsilon

gmx trjcat (page 279)
Concatenate trajectory files

gmx trjconv (page 281)
Convert and manipulates trajectory files

gmx xpm2ps (page 300)
Convert XPM (XPixelMap) matrices to postscript or XPM

Tools

gmx analyze (page 125)
Analyze data sets

gmx awh (page 130)
Extract data from an accelerated weight histogram (AWH) run

gmx filter (page 182)
Frequency filter trajectories, useful for making smooth movies

gmx lie (page 208)
Estimate free energy from linear combinations

gmx pme_error (page 238)
Estimate the error of using PME with a given input file

gmx sham (page 264)
Compute free energies or other histograms from histograms

gmx spatial (page 271)
Calculate the spatial distribution function

gmx traj (page 275)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx tune_pme (page 286)
Time mdrun as a function of PME ranks to optimize settings

gmx wham (page 294)
Perform weighted histogram analysis after umbrella sampling

gmx check (page 134)
Check and compare files

gmx dump (page 169)
Make binary files human readable

gmx make_ndx (page 213)
Make index files

gmx mk_angndx (page 222)
Generate index files for ‘gmx angle’

gmx trjorder (page 284)
Order molecules according to their distance to a group

3.11. Command-line reference 308

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx xpm2ps (page 300)
Convert XPM (XPixelMap) matrices to postscript or XPM

gmx report-methods (page 246)
Write short summary about the simulation setup to a text file and/or to the standard output.

Distances between structures

gmx cluster (page 139)
Cluster structures

gmx confrms (page 144)
Fit two structures and calculates the RMSD

gmx rms (page 246)
Calculate RMSDs with a reference structure and RMSD matrices

gmx rmsf (page 250)
Calculate atomic fluctuations

Distances in structures over time

gmx mindist (page 220)
Calculate the minimum distance between two groups

gmx mdmat (page 213)
Calculate residue contact maps

gmx polystat (page 239)
Calculate static properties of polymers

gmx rmsdist (page 248)
Calculate atom pair distances averaged with power -2, -3 or -6

Mass distribution properties over time

gmx gyrate-legacy (page 194)
Calculate the radius of gyration

gmx polystat (page 239)
Calculate static properties of polymers

gmx rdf (page 243)
Calculate radial distribution functions

gmx rotacf (page 252)
Calculate the rotational correlation function for molecules

gmx rotmat (page 253)
Plot the rotation matrix for fitting to a reference structure

gmx sans-legacy (page 255)
Compute small angle neutron scattering spectra

gmx saxs-legacy (page 259)
Compute small angle X-ray scattering spectra

gmx traj (page 275)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx vanhove (page 291)
Compute Van Hove displacement and correlation functions

3.11. Command-line reference 309

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Analyzing bonded interactions

gmx angle (page 128)
Calculate distributions and correlations for angles and dihedrals

gmx mk_angndx (page 222)
Generate index files for ‘gmx angle’

Structural properties

gmx bundle (page 133)
Analyze bundles of axes, e.g., helices

gmx clustsize (page 143)
Calculate size distributions of atomic clusters

gmx disre (page 161)
Analyze distance restraints

gmx hbond-legacy (page 199)
Compute and analyze hydrogen bonds

gmx order (page 231)
Compute the order parameter per atom for carbon tails

gmx principal (page 242)
Calculate principal axes of inertia for a group of atoms

gmx rdf (page 243)
Calculate radial distribution functions

gmx saltbr (page 254)
Compute salt bridges

gmx sorient (page 269)
Analyze solvent orientation around solutes

gmx spol (page 272)
Analyze solvent dipole orientation and polarization around solutes

Kinetic properties

gmx bar (page 131)
Calculate free energy difference estimates through Bennett’s acceptance ratio

gmx current (page 150)
Calculate dielectric constants and current autocorrelation function

gmx dos (page 165)
Analyze density of states and properties based on that

gmx dyecoupl (page 170)
Extract dye dynamics from trajectories

gmx principal (page 242)
Calculate principal axes of inertia for a group of atoms

gmx tcaf (page 274)
Calculate viscosities of liquids

gmx traj (page 275)
Plot x, v, f, box, temperature and rotational energy from trajectories

gmx vanhove (page 291)
Compute Van Hove displacement and correlation functions

3.11. Command-line reference 310

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx velacc (page 292)
Calculate velocity autocorrelation functions

Electrostatic properties

gmx current (page 150)
Calculate dielectric constants and current autocorrelation function

gmx dielectric (page 157)
Calculate frequency dependent dielectric constants

gmx dipoles (page 158)
Compute the total dipole plus fluctuations

gmx potential (page 240)
Calculate the electrostatic potential across the box

gmx spol (page 272)
Analyze solvent dipole orientation and polarization around solutes

gmx genion (page 188)
Generate monoatomic ions on energetically favorable positions

Protein-specific analysis

gmx chi (page 136)
Calculate everything you want to know about chi and other dihedrals

gmx helix (page 202)
Calculate basic properties of alpha helices

gmx helixorient (page 204)
Calculate local pitch/bending/rotation/orientation inside helices

gmx rama (page 243)
Compute Ramachandran plots

gmx wheel (page 298)
Plot helical wheels

Interfaces

gmx bundle (page 133)
Analyze bundles of axes, e.g., helices

gmx density (page 152)
Calculate the density of the system

gmx densmap (page 154)
Calculate 2D planar or axial-radial density maps

gmx densorder (page 155)
Calculate surface fluctuations

gmx h2order (page 196)
Compute the orientation of water molecules

gmx hydorder (page 205)
Compute tetrahedrality parameters around a given atom

gmx order (page 231)
Compute the order parameter per atom for carbon tails

3.11. Command-line reference 311

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx potential (page 240)
Calculate the electrostatic potential across the box

Covariance analysis

gmx anaeig (page 122)
Analyze the eigenvectors

gmx covar (page 148)
Calculate and diagonalize the covariance matrix

gmx make_edi (page 209)
Generate input files for essential dynamics sampling

Normal modes

gmx anaeig (page 122)
Analyze the normal modes

gmx nmeig (page 224)
Diagonalize the Hessian for normal mode analysis

gmx nmtraj (page 228)
Generate a virtual oscillating trajectory from an eigenvector

gmx nmens (page 226)
Generate an ensemble of structures from the normal modes

gmx grompp (page 190)
Make a run input file

gmx mdrun (page 215)
Find a potential energy minimum and calculate the Hessian

3.11.106 Special topics

The information in these topics is also accessible through gmx help topic on the command line.

Selection syntax and usage

Selection syntax and usage

Selections are used to select atoms/molecules/residues for analysis. In contrast to traditional index files, selections
can be dynamic, i.e., select different atoms for different trajectory frames. The GROMACS manual contains a
short introductory section to selections in the Analysis chapter, including suggestions on how to get familiar with
selections if you are new to the concept. The subtopics listed below provide more details on the technical and
syntactic aspects of selections.

Each analysis tool requires a different number of selections and the selections are interpreted differently. The
general idea is still the same: each selection evaluates to a set of positions, where a position can be an atom
position or center-of-mass or center-of-geometry of a set of atoms. The tool then uses these positions for its
analysis to allow very flexible processing. Some analysis tools may have limitations on the types of selections
allowed.

3.11. Command-line reference 312

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Specifying selections from command line

If no selections are provided on the command line, you are prompted to type the selections interactively (a pipe
can also be used to provide the selections in this case for most tools). While this works well for testing, it is easier
to provide the selections from the command line if they are complex or for scripting.

Each tool has different command-line arguments for specifying selections (see the help for the individual tools).
You can either pass a single string containing all selections (separated by semicolons), or multiple strings, each
containing one selection. Note that you need to quote the selections to protect them from the shell.

If you set a selection command-line argument, but do not provide any selections, you are prompted to type the
selections for that argument interactively. This is useful if that selection argument is optional, in which case it is
not normally prompted for.

To provide selections from a file, use -sf file.dat in the place of the selection for a selection argument
(e.g., -select -sf file.dat). In general, the -sf argument reads selections from the provided file and
assigns them to selection arguments that have been specified up to that point, but for which no selections have
been provided. As a special case, -sf provided on its own, without preceding selection arguments, assigns the
selections to all (yet unset) required selections (i.e., those that would be promted interactively if no selections are
provided on the command line).

To use groups from a traditional index file, use argument -n to provide a file. See the “syntax” subtopic for how
to use them. If this option is not provided, default groups are generated. The default groups are generated with the
same logic as for non-selection tools.

Depending on the tool, two additional command-line arguments may be available to control the behavior:

• -seltype can be used to specify the default type of positions to calculate for each selection.

• -selrpos can be used to specify the default type of positions used in selecting atoms by coordinates.

See the “positions” subtopic for more information on these options.

Tools that take selections apply them to a structure/topology and/or a trajectory file. If the tool takes both (typically
as -s for structure/topology and -f for trajectory), then the trajectory file is only used for coordinate information,
and all other information, such as atom names and residue information, is read from the structure/topology file. If
the tool only takes a structure file, or if only that input parameter is provided, then also the coordinates are taken
from that file. For example, to select atoms from a .pdb/.gro file in a tool that provides both options, pass it
as -s (only). There is no warning if the trajectory file specifies, e.g., different atom names than the structure file.
Only the number of atoms is checked. Many selection-enabled tools also provide an -fgroup option to specify
the atom indices that are present in the trajectory for cases where the trajectory only has a subset of atoms from
the topology/structure file.

Selection syntax

A set of selections consists of one or more selections, separated by semicolons. Each selection defines a set of
positions for the analysis. Each selection can also be preceded by a string that gives a name for the selection for
use in, e.g., graph legends. If no name is provided, the string used for the selection is used automatically as the
name.

For interactive input, the syntax is slightly altered: line breaks can also be used to separate selections. followed
by a line break can be used to continue a line if necessary. Notice that the above only applies to real interactive
input, not if you provide the selections, e.g., from a pipe.

It is possible to use variables to store selection expressions. A variable is defined with the following syntax:

VARNAME = EXPR ;

where EXPR is any valid selection expression. After this, VARNAME can be used anywhere where EXPR would be
valid.

3.11. Command-line reference 313

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Selections are composed of three main types of expressions, those that define atoms (ATOM_EXPR), those that
define positions (POS_EXPR), and those that evaluate to numeric values (NUM_EXPR). Each selection should be
a POS_EXPR or a ATOM_EXPR (the latter is automatically converted to positions). The basic rules are as follows:

• An expression like NUM_EXPR1 < NUM_EXPR2 evaluates to an ATOM_EXPR that selects all the atoms
for which the comparison is true.

• Atom expressions can be combined with boolean operations such as not ATOM_EXPR, ATOM_EXPR
and ATOM_EXPR, or ATOM_EXPR or ATOM_EXPR. Parentheses can be used to alter the evaluation
order.

• ATOM_EXPR expressions can be converted into POS_EXPR expressions in various ways, see the “positions”
subtopic for more details.

• POS_EXPR can be converted into NUM_EXPR using syntax like “x of POS_EXPR”. Currently, this is
only supported for single positions like in expression “x of cog of ATOM_EXPR”.

Some keywords select atoms based on string values such as the atom name. For these keywords, it is possible to use
wildcards (name "C*") or regular expressions (e.g., resname "R[AB]"). The match type is automatically
guessed from the string: if it contains other characters than letters, numbers, ‘*’, or ‘?’, it is interpreted as a regular
expression. To force the matching to use literal string matching, use name = "C*" to match a literal C*. To
force other type of matching, use ‘?’ or ‘~’ in place of ‘=’ to force wildcard or regular expression matching,
respectively.

Strings that contain non-alphanumeric characters should be enclosed in double quotes as in the examples. For
other strings, the quotes are optional, but if the value conflicts with a reserved keyword, a syntax error will occur.
If your strings contain uppercase letters, this should not happen.

Index groups provided with the -n command-line option or generated by default can be accessed with group
NR or group NAME, where NR is a zero-based index of the group and NAME is part of the name of the desired
group. The keyword group is optional if the whole selection is provided from an index group. To see a list of
available groups in the interactive mode, press enter in the beginning of a line.

Specifying positions in selections

Possible ways of specifying positions in selections are:

1. A constant position can be defined as [XX, YY, ZZ], where XX, YY and ZZ are real numbers.

2. com of ATOM_EXPR [pbc] or cog of ATOM_EXPR [pbc] calculate the center of mass/geometry
of ATOM_EXPR. If pbc is specified, the center is calculated iteratively to try to deal with cases where
ATOM_EXPR wraps around periodic boundary conditions.

3. POSTYPE of ATOM_EXPR calculates the specified positions for the atoms in ATOM_EXPR. POSTYPE
can be atom, res_com, res_cog, mol_com or mol_cog, with an optional prefix whole_ part_ or
dyn_. whole_ calculates the centers for the whole residue/molecule, even if only part of it is selected.
part_ prefix calculates the centers for the selected atoms, but uses always the same atoms for the same
residue/molecule. The used atoms are determined from the largest group allowed by the selection. dyn_-
calculates the centers strictly only for the selected atoms. If no prefix is specified, whole selections default
to part_ and other places default to whole_. The latter is often desirable to select the same molecules
in different tools, while the first is a compromise between speed (dyn_ positions can be slower to evaluate
than part_) and intuitive behavior.

4. ATOM_EXPR, when given for whole selections, is handled as 3. above, using the position type from the
command-line argument -seltype.

Selection keywords that select atoms based on their positions, such as dist from, use by default the positions
defined by the -selrpos command-line option. This can be overridden by prepending a POSTYPE specifier to
the keyword. For example, res_com dist from POS evaluates the residue center of mass distances. In the
example, all atoms of a residue are either selected or not, based on the single distance calculated.

3.11. Command-line reference 314

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Arithmetic expressions in selections

Basic arithmetic evaluation is supported for numeric expressions. Supported operations are addition, subtraction,
negation, multiplication, division, and exponentiation (using ^). Result of a division by zero or other illegal
operations is undefined.

Selection keywords

The following selection keywords are currently available. For keywords marked with a plus, additional help is
available through a subtopic KEYWORD, where KEYWORD is the name of the keyword.

• Keywords that select atoms by an integer property:

atomnr
mol (synonym for molindex)
molecule (synonym for molindex)
molindex
resid (synonym for resnr)
residue (synonym for resindex)
resindex
resnr

(use in expressions or like “atomnr 1 to 5 7 9”)

• Keywords that select atoms by a numeric property:

beta (synonym for betafactor)
betafactor
charge
distance from POS [cutoff REAL]
distance from POS [cutoff REAL]
mass
mindistance from POS_EXPR [cutoff REAL]
mindistance from POS_EXPR [cutoff REAL]
occupancy
x
y
z

(use in expressions or like “occupancy 0.5 to 1”)

• Keywords that select atoms by a string property:

altloc
atomname
atomtype
chain
insertcode
name (synonym for atomname)
pdbatomname
pdbname (synonym for pdbatomname)
resname
type (synonym for atomtype)

(use like “name PATTERN [PATTERN] . . . ”)

• Additional keywords that directly select atoms:

3.11. Command-line reference 315

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

all
insolidangle center POS span POS_EXPR [cutoff REAL]
none
same KEYWORD as ATOM_EXPR
within REAL of POS_EXPR

• Keywords that directly evaluate to positions:

cog of ATOM_EXPR [pbc]
com of ATOM_EXPR [pbc]

(see also “positions” subtopic)

• Additional keywords:

merge POSEXPR
POSEXPR permute P1 ... PN
plus POSEXPR

Selecting atoms by name - atomname, name, pdbatomname, pdbname

name
pdbname
atomname
pdbatomname

These keywords select atoms by name. name selects atoms using the GROMACS atom naming convention. For
input formats other than PDB, the atom names are matched exactly as they appear in the input file. For PDB files,
4 character atom names that start with a digit are matched after moving the digit to the end (e.g., to match 3HG2
from a PDB file, use name HG23). pdbname can only be used with a PDB input file, and selects atoms based
on the exact name given in the input file, without the transformation described above.

atomname and pdbatomname are synonyms for the above two keywords.

Selecting based on distance - dist, distance, mindist, mindistance, within

distance from POS [cutoff REAL]
mindistance from POS_EXPR [cutoff REAL]
within REAL of POS_EXPR

distance and mindistance calculate the distance from the given position(s), the only difference being in
that distance only accepts a single position, while any number of positions can be given for mindistance,
which then calculates the distance to the closest position. within directly selects atoms that are within REAL of
POS_EXPR.

For the first two keywords, it is possible to specify a cutoff to speed up the evaluation: all distances above the
specified cutoff are returned as equal to the cutoff.

3.11. Command-line reference 316

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Selecting atoms in a solid angle - insolidangle

insolidangle center POS span POS_EXPR [cutoff REAL]

This keyword selects atoms that are within REAL degrees (default=5) of any position in POS_EXPR as seen from
POS a position expression that evaluates to a single position), i.e., atoms in the solid angle spanned by the positions
in POS_EXPR and centered at POS.

Technically, the solid angle is constructed as a union of small cones whose tip is at POS and the axis goes through
a point in POS_EXPR. There is such a cone for each position in POS_EXPR, and point is in the solid angle if it
lies within any of these cones. The cutoff determines the width of the cones.

Merging selections - merge, plus

POSEXPR merge POSEXPR [stride INT]
POSEXPR merge POSEXPR [merge POSEXPR ...]
POSEXPR plus POSEXPR [plus POSEXPR ...]

Basic selection keywords can only create selections where each atom occurs at most once. The merge and plus
selection keywords can be used to work around this limitation. Both create a selection that contains the positions
from all the given position expressions, even if they contain duplicates. The difference between the two is that
merge expects two or more selections with the same number of positions, and the output contains the input
positions selected from each expression in turn, i.e., the output is like A1 B1 A2 B2 and so on. It is also possible
to merge selections of unequal size as long as the size of the first is a multiple of the second one. The stride
parameter can be used to explicitly provide this multiplicity. plus simply concatenates the positions after each
other, and can work also with selections of different sizes. These keywords are valid only at the selection level,
not in any subexpressions.

Permuting selections - permute

permute P1 ... PN

By default, all selections are evaluated such that the atom indices are returned in ascending order. This can be
changed by appending permute P1 P2 ... PN to an expression. The Pi should form a permutation of the
numbers 1 to N. This keyword permutes each N-position block in the selection such that the i’th position in the
block becomes Pi’th. Note that it is the positions that are permuted, not individual atoms. A fatal error occurs if
the size of the selection is not a multiple of n. It is only possible to permute the whole selection expression, not
any subexpressions, i.e., the permute keyword should appear last in a selection.

Selecting atoms by residue number - resid, residue, resindex, resnr

resnr
resid
resindex
residue

resnr selects atoms using the residue numbering in the input file. resid is synonym for this keyword for VMD
compatibility.

resindex N selects the N th residue starting from the beginning of the input file. This is useful for uniquely
identifying residues if there are duplicate numbers in the input file (e.g., in multiple chains). residue is a
synonym for resindex. This allows same residue as to work as expected.

3.11. Command-line reference 317

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Extending selections - same

same KEYWORD as ATOM_EXPR

The keyword same can be used to select all atoms for which the given KEYWORD matches any of the atoms in
ATOM_EXPR. Keywords that evaluate to integer or string values are supported.

Selection evaluation and optimization

Boolean evaluation proceeds from left to right and is short-circuiting i.e., as soon as it is known whether an atom
will be selected, the remaining expressions are not evaluated at all. This can be used to optimize the selections:
you should write the most restrictive and/or the most inexpensive expressions first in boolean expressions. The
relative ordering between dynamic and static expressions does not matter: all static expressions are evaluated only
once, before the first frame, and the result becomes the leftmost expression.

Another point for optimization is in common subexpressions: they are not automatically recognized, but can be
manually optimized by the use of variables. This can have a big impact on the performance of complex selections,
in particular if you define several index groups like this:

rdist = distance from com of resnr 1 to 5;
resname RES and rdist < 2;
resname RES and rdist < 4;
resname RES and rdist < 6;

Without the variable assignment, the distances would be evaluated three times, although they are exactly the same
within each selection. Anything assigned into a variable becomes a common subexpression that is evaluated only
once during a frame. Currently, in some cases the use of variables can actually lead to a small performance loss
because of the checks necessary to determine for which atoms the expression has already been evaluated, but this
should not be a major problem.

Selection limitations

• Some analysis programs may require a special structure for the input selections (e.g., some options of gmx
gangle require the index group to be made of groups of three or four atoms). For such programs, it is up
to the user to provide a proper selection expression that always returns such positions.

• All selection keywords select atoms in increasing order, i.e., you can consider them as set operations that in
the end return the atoms in sorted numerical order. For example, the following selections select the same
atoms in the same order:

resname RA RB RC
resname RB RC RA

atomnr 10 11 12 13
atomnr 12 13 10 11
atomnr 10 to 13
atomnr 13 to 10

If you need atoms/positions in a different order, you can:

– use external index groups (for some static selections),

– use the permute keyword to change the final order, or

– use the merge or plus keywords to compose the final selection from multiple distinct selections.

• Due to technical reasons, having a negative value as the first value in expressions like

3.11. Command-line reference 318

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

charge -1 to -0.7

result in a syntax error. A workaround is to write

charge {-1 to -0.7}

instead.

• When name selection keyword is used together with PDB input files, the behavior may be unintuitive.
When GROMACS reads in a PDB file, 4 character atom names that start with a digit are transformed such
that, e.g., 1HG2 becomes HG21, and the latter is what is matched by the name keyword. Use pdbname to
match the atom name as it appears in the input PDB file.

Selection examples

Below, examples of different types of selections are given.

• Selection of all water oxygens:

resname SOL and name OW

• Centers of mass of residues 1 to 5 and 10:

res_com of resnr 1 to 5 10

• All atoms farther than 1 nm of a fixed position:

not within 1 of [1.2, 3.1, 2.4]

• All atoms of a residue LIG within 0.5 nm of a protein (with a custom name):

"Close to protein" resname LIG and within 0.5 of group "Protein"

• All protein residues that have at least one atom within 0.5 nm of a residue LIG:

group "Protein" and same residue as within 0.5 of resname LIG

• All RES residues whose COM is between 2 and 4 nm from the COM of all of them:

rdist = res_com distance from com of resname RES
resname RES and rdist >= 2 and rdist <= 4

• Selection like with duplicate atoms like C1 C2 C2 C3 C3 C4 . . . C8 C9:

name "C[1-8]" merge name "C[2-9]"

This can be used with gmx distance to compute C1-C2, C2-C3 etc. distances.

• Selection with atoms in order C2 C1:

name C1 C2 permute 2 1

This can be used with gmx gangle to get C2->C1 vectors instead of C1->C2.

• Selection with COMs of two index groups:

com of group 1 plus com of group 2

This can be used with gmx distance to compute the distance between these two COMs.

• Fixed vector along x (can be used as a reference with gmx gangle):

3.11. Command-line reference 319

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

[0, 0, 0] plus [1, 0, 0]

• The following examples explain the difference between the various position types. This selection selects a
position for each residue where any of the three atoms C[123] has x < 2. The positions are computed as
the COM of all three atoms. This is the default behavior if you just write res_com of.

part_res_com of name C1 C2 C3 and x < 2

This selection does the same, but the positions are computed as COM positions of whole residues:

whole_res_com of name C1 C2 C3 and x < 2

Finally, this selection selects the same residues, but the positions are computed as COM of exactly those
atoms atoms that match the x < 2 criterion:

dyn_res_com of name C1 C2 C3 and x < 2

• Without the of keyword, the default behavior is different from above, but otherwise the rules are the same:

name C1 C2 C3 and res_com x < 2

works as if whole_res_com was specified, and selects the three atoms from residues whose COM satis-
fiex x < 2. Using

name C1 C2 C3 and part_res_com x < 2

instead selects residues based on the COM computed from the C[123] atoms.

3.11.107 Command changes between versions

Starting from GROMACS 5.0, some of the analysis commands (and a few other commands as well) have changed
significantly.

One main driver for this has been that many new tools mentioned below now accept selections through one or
more command-line options instead of prompting for a static index group. To take full advantage of selections, the
interface to the commands has changed somewhat, and some previous command-line options are no longer present
as the same effect can be achieved with suitable selections. Please see Selection syntax and usage (page 312)
additional information on how to use selections.

In the process, some old analysis commands have been removed in favor of more powerful functionality that is
available through an alternative tool. For removed or replaced commands, this page documents how to perform
the same tasks with new tools. For new commands, a brief note on the available features is given. See the linked
help for the new commands for a full description.

This section lists only major changes; minor changes like additional/removed options or bug fixes are not typically
included.

For more information about changed features, please check out the Release notes (page 709).

3.11. Command-line reference 320

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Version 2020

gmx convert-trj

new

gmx convert-trj (page 147) has been introduced as a selection-enabled alternative for exchanging trajectory file
format (previously done in gmx trjconv (page 281)).

gmx extract-cluster

new

gmx extract-cluster (page 181) has been introduced as a selection-enabled way to write sub-trajectories based on
the output from a cluster analysis. The corresponding option -sub in gmx trjconv (page 281) has been removed.

Version 2018

gmx trajectory

new

gmx trajectory (page 278) has been introduced as a selection-enabled version of gmx traj (page 275). It supports
output of coordinates, velocities, and/or forces for positions calculated for selections.

Version 2016

Analysis on arbitrary subsets of atoms

Tools implemented in the new analysis framework can now operate upon trajectories that match only a subset of
the atoms in the input structure file.

gmx insert-molecules

improved

gmx insert-molecules (page 207) has gained an option -replace that makes it possible to insert molecules into
a solvated configuration, replacing any overlapping solvent atoms. In a fully solvated box, it is also possible to
insert into a certain region of the solvent only by selecting a subset of the solvent atoms (-replace takes a
selection that can also contain expressions like not within 1 of ...).

gmx rdf

improved

The normalization for the output RDF can now also be the radial number density.

3.11. Command-line reference 321

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx genconf

simplified

Removed -block, -sort and -shuffle.

Version 5.1

General

Symbolic links from 5.0 are no longer supported. The only way to invoke a command is through gmx
<command>.

gmx pairdist

new

gmx pairdist (page 233) has been introduced as a selection-enabled replacement for gmx mindist (page 220)
(gmx mindist still exists unchanged). It can calculate min/max pairwise distances between a pair of selections,
including, e.g., per-residue minimum distances or distances from a single point to a set of residue-centers-of-mass.

gmx rdf

rewritten

gmx rdf (page 243) has been rewritten for 5.1 to use selections for specifying the points from which the RDFs
are calculated. The interface is mostly the same, except that there are new command-line options to specify the
selections. The following additional changes have been made:

• -com and -rdf options have been removed. Equivalent functionality is available through selections:

– -com can be replaced with a com of <selection> as the reference selection.

– -rdf can be replaced with a suitable set of selections (e.g., res_com of <selection>) and/or
using -seltype.

• -rmax option is added to specify a cutoff for the RDFs. If set to a value that is significantly smaller than
half the box size, it can speed up the calculation significantly if a grid-based neighborhood search can be
used.

• -hq and -fade options have been removed, as they are simply postprocessing steps on the raw numbers
that can be easily done after the analysis.

Version 5.0

General

Version 5.0 introduced the gmx wrapper binary. For backwards compatibility, this version still creates symbolic
links by default for old tools: e.g., g_order <options> is equivalent to gmx order <options>, and
g_order is simply a symbolic link on the file system.

3.11. Command-line reference 322

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

g_bond

replaced

This tool has been removed in 5.0. A replacement is gmx distance (page 163).

You can provide your existing index file to gmx distance (page 163), and it will calculate the same distances. The
differences are:

• -blen and -tol options have different default values.

• You can control the output histogram with -binw.

• -aver and -averdist options are not present. Instead, you can choose between the different things
to calculate using -oav (corresponds to -d with -averdist), -oall (corresponds to -d without
-averdist), -oh (corresponds to -o with -aver), and -oallstat (corresponds to -l without
-aver).

You can produce any combination of output files. Compared to g_bond, gmx distance -oall is currently
missing labels for the output columns.

g_dist

replaced

This tool has been removed in 5.0. A replacement is gmx distance (page 163) (for most options) or gmx select
(page 262) (for -dist or -lt).

If you had index groups A and B in index.ndx for g_dist, you can use the following command to compute
the same distance with gmx distance:

gmx distance -n index.ndx -select 'com of group "A" plus com of group "B"'
→˓-oxyz -oall

The -intra switch is replaced with -nopbc.

If you used -dist D, you can do the same calculation with gmx select:

gmx select -n index.ndx -select 'group "B" and within D of com of group "A"
→˓' -on/-oi/-os/-olt

You can select the output option that best suits your post-processing needs (-olt is a replacement for g_dist
-dist -lt)

gmx distance

new

gmx distance (page 163) has been introduced as a selection-enabled replacement for various tools that computed
distances between fixed pairs of atoms (or centers-of-mass of groups). It has a combination of the features of
g_bond and g_dist, allowing computation of one or multiple distances, either between atom-atom pairs or
centers-of-mass of groups, and providing a combination of output options that were available in one of the tools.

3.11. Command-line reference 323

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx gangle

new

gmx gangle (page 185) has been introduced as a selection-enabled replacement for g_sgangle. In addition
to supporting atom-atom vectors, centers-of-mass can be used as endpoints of the vectors, and there are a few
additional angle types that can be calculated. The command also has basic support for calculating normal angles
between three atoms and/or centers-of-mass, making it a partial replacement for gmx angle (page 128) as well.

gmx protonate

replaced

This was a very old tool originally written for united atom force fields, where it was necessary to generate all
hydrogens after running a trajectory in order to calculate e.g. distance restraint violations. The functionality to
simply protonate a structure is available in gmx pdb2gmx (page 235). If there is significant interest, we might
reintroduce it after moving to new topology formats in the future.

gmx freevolume

new

This tool has been introduced in 5.0. It uses a Monte Carlo sampling method to calculate the fraction of free
volume within the box (using a probe of a given size).

g_sas

rewritten

This tool has been rewritten in 5.0, and renamed to gmx sasa (page 257) (the underlying surface area calculation
algorithm is still the same).

The main difference in the new tool is support for selections. Instead of prompting for an index group, a (poten-
tially dynamic) selection for the calculation can be given with -surface. Any number of output groups can be
given with -output, allowing multiple parts of the surface area to be computed in a single run. The total area of
the -surface group is now always calculated.

The tool no longer automatically divides the surface into hydrophobic and hydrophilic areas, and there is no -f_-
index option. The same effects can be obtained by defining suitable selections for -output. If you want output
that contains the same numbers as with the old tool for a calculation group A and output group B, you can use

gmx sasa -surface 'group "A"' -output '"Hydrophobic" group "A" and charge
→˓{-0.2 to 0.2}; "Hydrophilic" group "B" and not charge {-0.2 to 0.2};
→˓"Total" group "B"'

Solvation free energy estimates are now calculated only if separately requested with -odg, and are written into a
separate file.

Output option -i for a position restraint file is not currently implemented in the new tool, but would not be very
difficult to add if requested.

3.11. Command-line reference 324

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

g_sgangle

replaced

This tool has been removed in 5.0. A replacement is gmx gangle (page 185) (for angle calculation) and gmx
distance (page 163) (for -od, -od1, -od2).

If you had index groups A and B in index.ndx for g_sgangle, you can use the following command to compute
the same angle with gmx gangle:

gmx gangle -n index.ndx -g1 vector/plane -group1 'group "A"' -g2 vector/
→˓plane -group2 'group "B"' -oav

You need to select either vector or plane for the -g1 and -g2 options depending on which one your index
groups specify.

If you only had a single index group A in index.ndx and you used g_sgangle -z or -one, you can use:

gmx gangle -n index.ndx -g1 vector/plane -group1 'group "A"' -g2 z/t0 -oav

For the distances, you can use gmx distance (page 163) to compute one or more distances as you want. Both
distances between centers of groups or individual atoms are supported using the new selection syntax.

genbox

This tool has been split to gmx solvate (page 268) and gmx insert-molecules (page 207).

tpbconv

This tool has been renamed gmx convert-tpr (page 146).

3.12 Terminology

3.12.1 Pressure

The pressure in molecular dynamics can be computed from the kinetic energy and the virial.

Fluctuation

Whether or not pressure coupling is used within a simulation, the pressure value for the simulation box will
oscillate significantly. Instantaneous pressure is meaningless, and not well-defined. Over a picosecond time scale
it usually will not be a good indicator of the true pressure. This variation is entirely normal due to the fact that
pressure is a macroscopic property and can only be measured properly as time average, while it is being measured
and/or adjusted with pressure coupling on the microscopic scale. How much it varies and the speed at which
it does depends on the number of atoms in the system, the type of pressure coupling used and the value of the
coupling constants. Fluctuations of the order of hundreds of bar are typical. For a box of 216 waters, fluctuations
of 500-600 bar are standard. Since the fluctuations go down with the square root of the number of particles, a
system of 21600 water molecules (100 times larger) will still have pressure fluctuations of 50-60 bar.

3.12. Terminology 325

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.12.2 Periodic boundary conditions

Periodic boundary conditions (PBC) are used in molecular dynamics simulations to avoid problems with boundary
effects caused by finite size, and make the system more like an infinite one, at the cost of possible periodicity
effects.

Beginners visualizing a trajectory sometimes think they are observing a problem when

• the molecule(s) does not stay in the centre of the box, or

• it appears that (parts of) the molecule(s) diffuse out of the box, or

• holes are created, or

• broken molecules appear, or

• their unit cell was a rhombic dodecahedron or cubic octahedron but it looks like a slanted cube after the
simulation, or

• crazy bonds all across the simulation cell appear.

This is not a problem or error that is occurring, it is what you should expect.

The existence of PBC means that any atom that leaves a simulation box by, say, the right-hand face, then enters
the simulation box by the left-hand face. In the example of a large protein, if you look at the face of the simulation
box that is opposite to the one from which the protein is protruding, then a hole in the solvent will be visible. The
reason that the molecule(s) move from where they were initially located within the box is (for the vast majority
of simulations) they are free to diffuse around. And so they do. They are not held in a magic location of the box.
The box is not centered around anything while performing the simulation. Molecules are not made whole as a
matter of course. Moreover, any periodic cell shape can be expressed as a parallelepiped (a.k.a. triclinic cell), and
GROMACS does so internally regardless of the initial shape of the box.

These visual issues can be fixed after the conclusion of the simulation by judicious use of the optional inputs to
gmx trjconv (page 281) to process the trajectory files. Similarly, analyses such as RMSD of atomic positions can
be flawed when a reference structure is compared with a structure that needs adjusting for periodicity effects, and
the solution with gmx trjconv (page 281) follows the same lines. Some complex cases needing more than one
operation will require more than one invocation of gmx trjconv (page 281) in order to work.

For further information, see the corresponding section in the Reference Manual (page 361).

Suggested workflow

Fixing periodicity effects with gmx trjconv (page 281) to suit visualization or analysis can be tricky. Multiple
invocations can be necessary. You may need to create custom index groups (e.g. to keep your ligand with your
protein) Following the steps below in order (omitting those not required) should help get a pleasant result. You
will need to consult gmx trjconv -h to find out the details for each step. That’s deliberate – there is no magic
“do what I want” recipe. You have to decide what you want, first. :-)

1. First make your molecules whole if you want them whole.

2. Cluster your molecules/particles if you want them clustered.

3. If you want jumps removed, extract the first frame from the trajectory to use as the reference, and then use
-pbc nojump with that first frame as reference.

4. Center your system using some criterion. Doing so shifts the system, so don’t use -pbc nojump after
this step.

5. Perhaps put everything in some box with the other -pbc or -ur options.

6. Fit the resulting trajectory to some (other) reference structure (if desired), and don’t use any PBC related
option afterwards.

With point three, the issue is that gmx trjconv (page 281) removes the jumps from the first frame using the reference
structure provided with -s. If the reference structure (run input file) is not clustered/whole, using -pbc nojump
will undo steps 1 and 2.

3.12. Terminology 326

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.12.3 Thermostats

Thermostats are designed to help a simulation sample from the correct ensemble (i.e. NVT or NPT) by modulating
the temperature of the system in some fashion. First, we need to establish what we mean by temperature. In
simulations, the “instantaneous (kinetic) temperature” is usually computed from the kinetic energy of the system
using the equipartition theorem. In other words, the temperature is computed from the system’s total kinetic
energy.

So, what’s the goal of a thermostat? Actually, it turns out the goal is not to keep the temperature constant, as that
would mean fixing the total kinetic energy, which would be silly and not the aim of NVT or NPT. Rather, it’s to
ensure that the average temperature of a system be correct.

To see why this is the case, imagine a glass of water sitting in a room. Suppose you can look very closely at a
few molecules in some small region of the glass, and measure their kinetic energies. You would not expect the
kinetic energy of this small number of particles to remain precisely constant; rather, you’d expect fluctuations in
the kinetic energy due to the small number of particles. As you average over larger and larger numbers of particles,
the fluctuations in the average get smaller and smaller, so finally by the time you look at the whole glass, you say
it has “constant temperature”.

Molecular dynamics simulations are often fairly small compared to a glass of water, so we have bigger fluctuations.
So it’s really more appropriate here to think of the role of a thermostat as ensuring that we have

(a) the correct average temperature, and

(b) the fluctuations of the correct size.

See the relevant section in the Reference Manual (page 376) for details on how temperature coupling is applied
and the types currently available.

What to do

Some hints on practices that generally are a good idea:

• Preferably, use a thermostat that samples the correct distribution of temperatures (for examples, see the
corresponding manual section), in addition to giving you the correct average temperature.

• At least: use a thermostat that gives you the correct average temperature, and apply it to components of your
system for which they are justified (see the first bullet in What not to do (page 327)). In some cases, using
tc-grps = System may lead to the “hot solvent/cold solute” problem described in the 3rd reference in
Further reading (page 328).

What not to do

Some hints on practices that generally not a good idea to use:

• Do not use separate thermostats for every component of your system. Some molecular dynamics thermostats
only work well in the thermodynamic limit. A group must be of sufficient size to justify its own thermostat.
If you use one thermostat for, say, a small molecule, another for protein, and another for water, you are
likely introducing errors and artifacts that are hard to predict. In particular, do not couple ions in aqueous
solvent in a separate group from that solvent. For a protein simulation, using tc-grps = Protein
Non-Protein is usually best.

• Do not use thermostats that work well only in the limit of a large number of degrees of freedom for systems
with few degrees of freedom. For example, do not use Nosé-Hoover or Berendsen thermostats for types of
free energy calculations where you will have a component of the system with very few degrees of freedom
in an end state (i.e. a noninteracting small molecule).

3.12. Terminology 327

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Further reading

1. Cheng, A. & Merz, K. M. Application of the Nosé-Hoover chain algorithm to the study of protein dynamics.
J. Phys. Chem. 100 (5), 1927–1937 (1996).

2. Mor, A., Ziv, G. & Levy, Y. Simulations of proteins with inhomogeneous degrees of freedom: the effect of
thermostats. J. Comput. Chem. 29 (12), 1992–1998 (2008).

3. Lingenheil, M., Denschlag, R., Reichold, R. & Tavan, P. The “hot-solvent/cold-solute” problem revisited.
J. Chem. Theory Comput. 4 (8), 1293–1306 (2008).

3.12.4 Energy conservation

In principle, a molecular dynamics simulation should conserve the total energy, the total momentum and (in a
non-periodic system) the total angular momentum. A number of algorithmic and numerical issues make that this
is not always the case:

• Cut-off treatment and/or long-range electrostatics treatment (see Van Der Spoel, D. & van Maaren, P. J. The
origin of layer structure artifacts in simulations of liquid water. J. Chem. Theor. Comp. 2, 1–11 (2006).)

• Treatment of pair lists,

• Constraint algorithms (see e.g. Hess, B. P-LINCS: A parallel linear constraint solver for molecular simula-
tion. J. Chem. Theor. Comp. 4, 116–122 (2008).).

• The integration timestep.

• Temperature coupling (page 327) and pressure coupling (page 325).

• Round-off error (in particular in single precision), for example subtracting large numbers (Lippert, R. A. et
al. A common, avoidable source of error in molecular dynamics integrators. J. Chem. Phys. 126, 046101
(2007).).

• The choice of the integration algorithm (in GROMACS this is normally leap-frog).

• Removal of center of mass motion: when doing this in more than one group the conservation of energy will
be violated.

3.12.5 Average structure

Various GROMACS utilities can compute average structures. Presumably the idea for this comes from something
like an ensemble-average NMR structure. In some cases, it makes sense to calculate an average structure (as a step
on the way to calculating root-mean-squared fluctuations (RMSF), for example, one needs the average position of
all of the atoms).

However, it’s important to remember that an average structure isn’t necessarily meaningful. By way of analogy,
suppose I alternate holding a ball in my left hand, then in my right hand. What’s the average position of the
ball? Halfway in between – even though I always have it either in my left hand or my right hand. Similarly, for
structures, averages will tend to be meaningless anytime there are separate metastable conformational states. This
can happen on a sidechain level, or for some regions of backbone, or even whole helices or components of the
secondary structure.

Thus, if you derive an average structure from a molecular dynamics simulation, and find artifacts like unphysical
bond lengths, weird structures, etc., this doesn’t necessarily mean something is wrong. It just shows the above: an
average structure from a simulation is not necessarily a physically meaningful structure.

3.12. Terminology 328

http://pubs.acs.org/doi/abs/10.1021/jp951968y
https://doi.org/10.1002/jcc.20951
http://pubs.acs.org/doi/abs/10.1021/ct8000365
https://doi.org/10.1021/ct0502256
https://doi.org/10.1021/ct700200b
https://doi.org/10.1063/1.2431176

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.12.6 Blowing up

Blowing up is a highly technical term used to describe a common sort of simulation failure. In brief, it describes a
failure typically due to an unacceptably large force that ends up resulting in a failure of the integrator.

To give a bit more background, it’s important to remember that molecular dynamics numerically integrates New-
ton’s equations of motion by taking small, discrete timesteps, and using these timesteps to determine new veloci-
ties and positions from velocities, positions, and forces at the previous timestep. If forces become too large at one
timestep, this can result in extremely large changes in velocity/position when going to the next timestep. Typically,
this will result in a cascade of errors: one atom experiences a very large force one timestep, and thus goes shooting
across the system in an uncontrolled way in the next timestep, overshooting its preferred location or landing on top
of another atom or something similar. This then results in even larger forces the next timestep, more uncontrolled
motions, and so on. Ultimately, this will cause the simulation package to crash in some way, since it can’t cope
with such situations. In simulations with constraints, the first symptom of this will usually be some LINCS or
SHAKE warning or error – not because the constraints are the source of the problem, but just because they’re the
first thing to crash. Similarly, in simulations with domain decomposition, you may see messages about particles
being more than a cell length out of the domain decomposition cell of their charge group, which are symptomatic
of your underlying problem, and not the domain decomposition algorithm itself. Likewise for warnings about
tabulated or 1-4 interactions being outside the distance supported by the table. This can happen on one computer
system while another resulted in a stable simulation because of the impossibility of numerical reproducibility of
these calculations on different computer systems.

Possible causes include:

• you didn’t minimize well enough,

• you have a bad starting structure, perhaps with steric clashes,

• you are using too large a timestep (particularly given your choice of constraints),

• you are doing particle insertion in free energy calculations without using soft core,

• you are using inappropriate pressure coupling (e.g. when you are not in equilibrium, Berendsen can be
best while relaxing the volume, but you will need to switch to a more accurate pressure-coupling algorithm
later),

• you are using inappropriate temperature coupling, perhaps on inappropriate groups, or

• your position restraints are to coordinates too different from those present in the system, or

• you have a single water molecule somewhere within the system that is isolated from the other water
molecules, or

• you are experiencing a bug in gmx mdrun (page 215).

Because blowing up is due, typically, to forces that are too large for a particular timestep size, there are a couple
of basic solutions:

• make sure the forces don’t get that large, or

• use a smaller timestep.

Better system preparation is a way to make sure that forces don’t get large, if the problems are occurring near the
beginning of a simulation.

3.12. Terminology 329

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.12.7 Diagnosing an unstable system

Troubleshooting a system that is blowing up can be challenging, especially for an inexperienced user. Here are a
few general tips that one may find useful when addressing such a scenario:

1. If the crash is happening relatively early (within a few steps), set nstxout (or nstxout-compressed)
to 1, capturing all possible frames. Watch the resulting trajectory to see which atoms/residues/molecules
become unstable first.

2. Simplify the problem to try to establish a cause:

• If you have a new box of solvent, try minimizing and simulating a single molecule to see if the insta-
bility is due to some inherent problem with the molecule’s topology or if instead there are clashes in
your starting configuration.

• If you have a protein-ligand system, try simulating the protein alone in the desired solvent. If it is
stable, simulate the ligand in vacuo to see if its topology gives stable configurations, energies, etc.

• Remove the use of fancy algorithms, particularly if you haven’t equilibrated thoroughly first

3. Monitor various components of the system’s energy using gmx energy (page 177). If an intramolecular term
is spiking, that may indicate improper bonded parameters, for example.

4. Make sure you haven’t been ignoring error messages (missing atoms when running gmx pdb2gmx
(page 235), mismatching names when running gmx grompp (page 190), etc.) or using work-arounds (like
using gmx grompp -maxwarn when you shouldn’t be) to make sure your topology is intact and being
interpreted correctly.

5. Make sure you are using appropriate settings in your mdp (page 488) file for the force field you have chosen
and the type of system you have. Particularly important settings are treatment of cutoffs, proper neighbor
searching interval (nstlist), and temperature coupling. Improper settings can lead to a breakdown in the
model physics, even if the starting configuration of the system is reasonable.

When using no explict solvent, starting your equilibration with a smaller time step than your production run can
help energy equipartition more stably.

There are several common situations in which instability frequently arises, usually in the introduction of new
species (ligands or other molecules) into the system. To determine the source of the problem, simplify the system
(e.g. the case of a protein-ligand complex) in the following way.

1. Does the protein (in water) minimize adequately by itself? This is a test of the integrity of the coordi-
nates and system preparation. If this fails, something probably went wrong when running gmx pdb2gmx
(page 235) (see below), or maybe gmx genion (page 188) placed an ion very close to the protein (it is
random, after all).

2. Does the ligand minimize in vacuo? This is a test of the topology. If it does not, check your parameterization
of the ligand and any implementation of new parameters in force field files.

3. (If previous item is successful) Does the ligand minimize in water, and/or does a short simulation of the
ligand in water succeed?

Other sources of possible problems are in the biomolecule topology itself.

1. Did you use -missing when running gmx pdb2gmx (page 235)? If so, don’t. Reconstruct missing coor-
dinates rather than ignoring them.

2. Did you override long/short bond warnings by changing the lengths? If so, don’t. You probably have
missing atoms or some terrible input geometry.

3.12. Terminology 330

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.12.8 Molecular dynamics

Molecular dynamics (MD) is computer simulation with atoms and/or molecules interacting using some basic laws
of physics. The GROMACS Reference Manual (page 365) provides a good general introduction to this area,
as well as specific material for use with GROMACS. The first few chapters are mandatory reading for anybody
wishing to use GROMACS and not waste time.

• Introduction to molecular modeling (slides, video)] - theoretical framework, modeling levels, limitations
and possibilities, systems and methods (Erik Lindahl).

Books

There are several text books around.

Good introductory books are:

• A. Leach (2001) Molecular Modeling: Principles and Applications.

• T. Schlick (2002) Molecular Modeling and Simulation

With programming background:

• D. Rapaport (1996) The Art of Molecular Dynamics Simulation

• D. Frenkel, B. Smith (2001) Understanding Molecular Simulation

More from the physicist’s view:

• M. Allen, D. Tildesley (1989) Computer simulation of liquids

• H.J.C. Berendsen (2007) Simulating the Physical World: Hierarchical Modeling from Quantum Mechanics
to Fluid Dynamics

Types / Ensembles

• NVE - number of particles (N), system volume (V) and energy (E) are constant / conserved.

• NVT - number of particles (N), system volume (V) and temperature (T) are constant / conserved. (See
thermostats (page 327) for more on constant temperature).

• NPT - number of particles (N), system pressure (P) and temperature (T) are constant / conserved. (See
pressure coupling (page 325) for more on constant pressure).

3.12.9 Force field

Force fields are sets of potential functions and parametrized interactions that can be used to study physical systems.
A general introduction to their history, function and use is beyond the scope of this guide, and the user is asked to
consult either the relevant literature or try to start at the relevant Wikipedia page.

3.13 Environment Variables

GROMACS programs may be influenced by the use of environment variables. First of all, the variables set in
the GMXRC file are essential for running and compiling GROMACS. Some other useful environment variables
are listed in the following sections. Most environment variables function by being set in your shell to any non-
NULL value. Specific requirements are described below if other values need to be set. You should consult
the documentation for your shell for instructions on how to set environment variables in the current shell, or in
configuration files for future shells. Note that requirements for exporting environment variables to jobs run under
batch control systems vary and you should consult your local documentation for details.

3.13. Environment Variables 331

https://extras.csc.fi/chem/courses/gmx2007/Erik_Talks/preworkshop_tutorial_introduction.pdf
https://video.csc.fi/playlist/dedicated/0_7z3nas0q/0_tccn9xof
https://en.wikipedia.org/wiki/Force_field_(chemistry)

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

3.13.1 Output Control

GMX_COMPELDUMP
Applies for computational electrophysiology setups only (see reference manual). The initial structure gets
dumped to pdb (page 490) file, which allows to check whether multimeric channels have the correct PBC
representation.

GMX_DISABLE_GPU_TIMING
Disables GPU timings in the log file for OpenCL.

GMX_ENABLE_GPU_TIMING
Enables GPU timings in the log file for CUDA and SYCL. Note that CUDA timings are incorrect with
multiple streams, as happens with domain decomposition or with both non-bondeds and PME on the GPU
(this is also the main reason why they are not turned on by default).

GMX_LOG_BUFFER
the size of the buffer for file I/O. When set to 0, all file I/O will be unbuffered and therefore very slow. This
can be handy for debugging purposes, because it ensures that all files are always totally up-to-date.

GMX_MAXBACKUP
GROMACS automatically backs up old copies of files when trying to write a new file of the same name, and
this variable controls the maximum number of backups that will be made, default 99. If set to 0 it fails to
run if any output file already exists. And if set to -1 it overwrites any output file without making a backup.

GMX_NO_QUOTES
if this is explicitly set, no cool quotes will be printed at the end of a program.

GMX_PRINT_LONGFORMAT
use long float format when printing decimal values.

GMX_SUPPRESS_DUMP
prevent dumping of step files during (for example) blowing up during failure of constraint algorithms.

GMX_TPI_DUMP
dump all configurations to a pdb (page 490) file that have an interaction energy less than the value set in this
environment variable.

GMX_TRAJECTORY_IO_VERBOSITY
Defaults to 1, which prints frame count e.g. when reading trajectory files. Set to 0 for quiet operation.

GMX_VIEW_XVG
GMX_VIEW_EPS and GMX_VIEW_PDB, commands used to automatically view xvg (page 497), eps
(page 486) and pdb (page 490) file types, respectively; they default to xmgrace, ghostview and
rasmol. Set to empty to disable automatic viewing of a particular file type. The command will be forked
off and run in the background at the same priority as the GROMACS tool (which might not be what you
want). Be careful not to use a command which blocks the terminal (e.g. vi), since multiple instances might
be run.

3.13.2 Debugging

GMX_DD_NPULSE
over-ride the number of DD pulses used (default 0, meaning no over-ride). Normally 1 or 2.

GMX_DD_DEBUG
general debugging trigger for every domain decomposition (default 0, meaning off). Currently only checks
global-local atom index mapping for consistency.

GMX_DD_NST_DUMP
number of steps that elapse between dumping the current DD to a PDB file (default 0). This only takes
effect during domain decomposition, so it should typically be 0 (never), 1 (every DD phase) or a multiple
of nstlist (page 48).

3.13. Environment Variables 332

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_DD_NST_DUMP_GRID
number of steps that elapse between dumping the current DD grid to a PDB file (default 0). This only takes
effect during domain decomposition, so it should typically be 0 (never), 1 (every DD phase) or a multiple
of nstlist (page 48).

GMX_DISABLE_ALTERNATING_GPU_WAIT
disables the specialized polling wait path used to wait for the PME and nonbonded GPU tasks completion
to overlap to do the reduction of the resulting forces that arrive first. Setting this variable switches to the
generic path with fixed waiting order.

GMX_TEST_REQUIRED_NUMBER_OF_DEVICES
sets the number of GPUs required by the test suite. By default, the test suite would fall-back to using CPU if
GPUs could not be detected. Set it to a positive integer value to ensure that at least this at least this number
of usable GPUs are detected. Default: 0 (not testing GPU availability).

There are a number of extra environment variables like these that are used in debugging - check the code!

3.13.3 Performance and Run Control

GMX_AWH_NO_POINT_LIMIT
Removes the upper limit on the number of points in an AWH bias grid. By default, an error is raised if
the grid is unreasonably large and can cause sampling problems. Setting this variable will only remove this
safety check. It is recommended instead to reduce the grid size, e.g., by using lower force constants.

GMX_BONDED_NTHREAD_UNIFORM
Value of the number of threads per rank from which to switch from uniform to localized bonded interaction
distribution; optimal value dependent on system and hardware, default value is 4.

GMX_CUDA_GRAPH
Use CUDA Graphs to schedule a graph on each step rather than multiple activities scheduled to multiple
CUDA streams, if the run conditions allow. Experimental.

GMX_CYCLE_ALL
times all code during runs. Incompatible with threads.

GMX_CYCLE_BARRIER
calls MPI_Barrier before each cycle start/stop call.

GMX_DD_ORDER_ZYX
build domain decomposition cells in the order (z, y, x) rather than the default (x, y, z).

GMX_DD_RECORD_LOAD
record DD load statistics for reporting at end of the run (default 1, meaning on)

GMX_DD_SINGLE_RANK
Controls the use of the domain decomposition machinery when using a single MPI rank. Value 0 turns DD
off, 1 turns DD on. Default is automated choice based on heuristics.

GMX_DD_USE_SENDRECV2
during constraint and vsite communication, use a pair of MPI_Sendrecv calls instead of two simultaneous
non-blocking calls (default 0, meaning off). Might be faster on some MPI implementations.

GMX_DETAILED_PERF_STATS
when set, print slightly more detailed performance information to the log (page 487) file. The resulting
output is the way performance summary is reported in versions 4.5.x and thus may be useful for anyone
using scripts to parse log (page 487) files or standard output.

GMX_DISABLE_CUDA_TIMING
Deprecated. Use GMX_DISABLE_GPU_TIMING instead.

GMX_DISABLE_DYNAMICPRUNING
disables dynamic pair-list pruning. Note that gmx mdrun (page 215) will still tune nstlist to the optimal
value picked assuming dynamic pruning. Thus for good performance the -nstlist option should be used.

3.13. Environment Variables 333

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_DISABLE_GPU_DETECTION
when set, disables GPU detection even if gmx mdrun (page 215) was compiled with GPU support.

GMX_DISABLE_GPU_TIMING
timing of asynchronously executed GPU operations can have a non-negligible overhead with short step
times. Disabling timing can improve performance in these cases. Timings are disabled by default with
CUDA and SYCL.

GMX_DISABLE_SIMD_KERNELS
disables architecture-specific SIMD-optimized (SSE2, SSE4.1, AVX, etc.) non-bonded kernels thus forcing
the use of plain C kernels.

GMX_DISABLE_STAGED_GPU_TO_CPU_PMEPP_COMM
Use direct rather than staged GPU communications for PME force transfers from the PME GPU to the CPU
memory of a PP rank. This may have advantages in PCIe-only servers, or for runs with low atom counts
(which are more sensitive to latency than bandwidth).

GMX_DISRE_ENSEMBLE_SIZE
the number of systems for distance restraint ensemble averaging. Takes an integer value.

GMX_DLB_BASED_ON_FLOPS
do domain-decomposition dynamic load balancing based on flop count rather than measured time elapsed
(default 0, meaning off). This makes the load balancing reproducible, which can be useful for debugging
purposes. A value of 1 uses the flops; a value > 1 adds (value - 1)*5% of noise to the flops to increase the
imbalance and the scaling.

GMX_DLB_MAX_BOX_SCALING
maximum percentage box scaling permitted per domain-decomposition load-balancing step (default 10)

GMX_DO_GALACTIC_DYNAMICS
planetary simulations are made possible (just for fun) by setting this environment variable, which allows
setting epsilon-r (page 50) to -1 in the mdp (page 488) file. Normally, epsilon-r (page 50) must be
greater than zero to prevent a fatal error. See webpage for example input files for a planetary simulation.

GMX_EMULATE_GPU
emulate GPU runs by using algorithmically equivalent CPU reference code instead of GPU-accelerated
functions. As the CPU code is slow, it is intended to be used only for debugging purposes.

GMX_ENABLE_DIRECT_GPU_COMM
Enable direct GPU communication in multi-rank parallel runs. Note that domain decomposition with GPU-
aware MPI does not support multiple pulses along the second and third decomposition dimension, so for
very small systems the feature will be disabled internally.

GMX_ENABLE_STAGED_GPU_TO_CPU_PMEPP_COMM
Use a staged implementation of GPU communications for PME force transfers from the PME GPU to the
CPU memory of a PP rank for thread-MPI. The staging is done via a GPU buffer on the PP GPU. This is
expected to be beneficial for servers with direct communication links between GPUs.

GMX_ENX_NO_FATAL
disable exiting upon encountering a corrupted frame in an edr (page 485) file, allowing the use of all frames
up until the corruption.

GMX_FILLERS_IN_LOCAL_STATE
Fillers particles are needed to make the number of particles a multiple of the SIMD or GPU warp/wave-
front width for computing non-bonded interactions. These fillers can also be added to the local state, if all
algorithms support this, which avoids indexing but increases the size of buffers. This environment variable
can be set to 0 or 2 to force this behavior off or on. Setting it to 1 turns the behavior on when supported.

GMX_FORCE_UPDATE
update forces when invoking mdrun -rerun.

GMX_FORCE_GPU_AWARE_MPI
Override the result of build- and runtime GPU-aware MPI detection and force the use of direct GPU MPI
communication. Aimed at cases where the user knows that the MPI library is GPU-aware, but GROMACS
is not able to detect this. Note that only CUDA and SYCL builds support such functionality.

3.13. Environment Variables 334

http://www.gromacs.org

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_FORCE_UPDATE_DEFAULT_CPU
Force update to run on the CPU by default, makes the mdrun -update auto behave as -update
cpu.

GMX_GPU_DD_COMMS
Removed, use GMX_ENABLE_DIRECT_GPU_COMM instead.

GMX_GPU_DISABLE_COMPATIBILITY_CHECK
Disables the hardware compatibility check in OpenCL and SYCL. Useful for developers and allows testing
the OpenCL/SYCL kernels on non-supported platforms without source code modification.

GMX_GPU_ID
set in the same way as mdrun -gpu_id, GMX_GPU_ID allows the user to specify different GPU IDs for
different ranks, which can be useful for selecting different devices on different compute nodes in a cluster.
Cannot be used in conjunction with mdrun -gpu_id.

GMX_GPU_NB_EWALD_TWINCUT
force the use of twin-range cutoff kernel even if rvdw (page 52) equals rcoulomb (page 50) after PP-
PME load balancing. The switch to twin-range kernels is automated, so this variable should be used only
for benchmarking.

GMX_GPU_NB_ANA_EWALD
force the use of analytical Ewald kernels. Should be used only for benchmarking.

GMX_GPU_NB_TAB_EWALD
force the use of tabulated Ewald kernels. Should be used only for benchmarking.

GMX_GPU_PME_DECOMPOSITION
Enable the support for PME decomposition on GPU. This feature is supported with CUDA and SYCL back-
ends, and allows using multiple PME ranks with GPU offload, which is expected to improve performance
when scaling over many GPUs. Note: this feature still lacks substantial testing.

GMX_GPU_PME_PP_COMMS
Removed, use GMX_ENABLE_DIRECT_GPU_COMM instead.

GMX_GPUTASKS
set in the same way as mdrun -gputasks, GMX_GPUTASKS allows the mapping of GPU tasks to GPU
device IDs to be different on different ranks, if e.g. the MPI runtime permits this variable to be different for
different ranks. Cannot be used in conjunction with mdrun -gputasks. Has all the same requirements
as mdrun -gputasks.

GMX_HEFFTE_RESHAPE_ALGORITHM
Sets heffte::plan_options::reshape_algorithm to p2p (the default) or p2p_plined,
alltoallv, or alltoall. See the HeFFTe docs for details.

GMX_HEFFTE_USE_GPU_AWARE
Sets heffte::plan_options::use_gpu_aware to true (the default) or false. See the HeFFTe
docs for details.

GMX_HEFFTE_USE_PENCILS
Sets heffte::plan_options::use_pencils to true or false (the default). See the HeFFTe
docs for details.

GMX_HEFFTE_USE_REORDER
Sets heffte::plan_options::use_reorder to true (the default) or false. See the HeFFTe
docs for details.

GMX_IGNORE_FSYNC_FAILURE_ENV
allow gmx mdrun (page 215) to continue even if a file is missing.

GMX_LJCOMB_TOL
when set to a floating-point value, overrides the default tolerance of 1e-5 for force-field floating-point pa-
rameters.

GMX_MAXCONSTRWARN
if set to -1, gmx mdrun (page 215) will not exit if it produces too many LINCS warnings.

3.13. Environment Variables 335

https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html
https://icl-utk-edu.github.io/heffte/structheffte_1_1plan__options.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_NB_MIN_CI
neighbor list balancing parameter used when running on GPU. Sets the target minimum number pair-lists
in order to improve multi-processor load-balance for better performance with small simulation systems.
Must be set to a non-negative integer, the 0 value disables list splitting. The default value is optimized
for supported GPUs therefore changing it is not necessary for normal usage, but it can be useful on future
architectures.

GMX_NBNXN_CYCLE
when set, print detailed neighbor search cycle counting.

GMX_NBNXN_EWALD_ANALYTICAL
force the use of analytical Ewald non-bonded kernels, mutually exclusive of GMX_NBNXN_EWALD_-
TABLE.

GMX_NBNXN_EWALD_TABLE
force the use of tabulated Ewald non-bonded kernels, mutually exclusive of GMX_NBNXN_EWALD_-
ANALYTICAL.

GMX_NBNXN_PLAINC_1X1
force the use of the reference 1x1 non-SIMD CPU non-bonded kernel

GMX_NBNXN_SIMD_2XNN
force the use of 2x(N+N) SIMD CPU non-bonded kernels, mutually exclusive of GMX_NBNXN_SIMD_-
4XN.

GMX_NBNXN_SIMD_4XN
force the use of 4xN SIMD CPU non-bonded kernels, mutually exclusive of GMX_NBNXN_SIMD_2XNN.

GMX_NO_CART_REORDER
used in initializing domain decomposition communicators. Rank reordering is default, but can be switched
off with this environment variable.

GMX_NO_INT, GMX_NO_TERM, GMX_NO_USR1
disable signal handlers for SIGINT, SIGTERM, and SIGUSR1, respectively.

GMX_NO_LJ_COMB_RULE
force the use of LJ parameter lookup instead of using combination rules in the non-bonded kernels.

GMX_NO_NODECOMM
do not use separate inter- and intra-node communicators.

GMX_NO_NONBONDED
skip non-bonded calculations; can be used to estimate the possible performance gain from adding a GPU
accelerator to the current hardware setup – assuming that this is fast enough to complete the non-bonded
calculations while the CPU does bonded force and PME computation. Freezing the particles will be required
to stop the system blowing up.

GMX_NO_UPDATEGROUPS
turns off update groups. May allow for a decomposition of more domains for small systems at the cost of
communication during update.

GMX_NOOPTIMIZEDKERNELS
deprecated, use GMX_DISABLE_SIMD_KERNELS instead.

GMX_NOPREDICT
shell positions are not predicted.

GMX_NSTLIST_DYNAMICPRUNING
overrides the dynamic pair-list pruning interval chosen heuristically by mdrun. Values should be between
the pruning frequency value (1 for CPU and 2 for GPU) and nstlist (page 48) - 1.

GMX_PME_NUM_THREADS
set the number of OpenMP or PME threads; overrides the default set by gmx mdrun (page 215); can be
used instead of the -npme command line option, also useful to set heterogeneous per-process/-node thread
count.

3.13. Environment Variables 336

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_PME_P3M
use P3M-optimized influence function instead of smooth PME B-spline interpolation.

GMX_PME_THREAD_DIVISION
PME thread division in the format “x y z” for all three dimensions. The sum of the threads in each dimension
must equal the total number of PME threads (set in GMX_PME_NTHREADS).

GMX_PMEONEDD
if the number of domain decomposition cells is set to 1 for both x and y, decompose PME in one dimension.

GMX_PULL_PARTICIPATE_ALL
disable the default heuristic for when to use a separate pull MPI communicator (at >=32 ranks).

GMX_REQUIRE_SHELL_INIT
require that shell positions are initiated.

GMX_TPIC_MASSES
should contain multiple masses used for test particle insertion into a cavity. The center of mass of the last
atoms is used for insertion into the cavity.

GMX_VERLET_BUFFER_PRESSURE_TOLERANCE
sets the maximum tolerated error in the pressure in bar for the automated tuning of the Verlet pair-list
buffering. Can only be used with system where this tolerance has not been set using the mdp parameter.

GMX_VERLET_BUFFER_RES
resolution of buffer size in Verlet cutoff scheme. The default value is 0.001, but can be overridden with this
environment variable.

HWLOC_XMLFILE
Not strictly a GROMACS environment variable, but on large machines the hwloc detection can take a few
seconds if you have lots of MPI processes. If you run the hwloc command lstopo out.xml and set this
environment variable to point to the location of this file, the hwloc library will use the cached information
instead, which can be faster.

MDRUN
the gmx mdrun (page 215) command used by gmx tune_pme (page 286).

MPIRUN
the mpirun command used by gmx tune_pme (page 286).

3.13.4 OpenCL management

Currently, several environment variables exist that help customize some aspects of the OpenCL version of GRO-
MACS. They are mostly related to the runtime compilation of OpenCL kernels, but they are also used in device
selection.

GMX_OCL_DEBUG
Use in conjunction with OCL_FORCE_CPU or with an AMD device. It adds the debug flag to the compiler
options (-g).

GMX_OCL_DISABLE_FASTMATH
Prevents the use of -cl-fast-relaxed-math compiler option. Note: fast math is always disabled on
Intel devices due to instability.

GMX_OCL_DISABLE_I_PREFETCH
Disables i-atom data (type or LJ parameter) prefetch allowing testing.

GMX_OCL_ENABLE_I_PREFETCH
Enables i-atom data (type or LJ parameter) prefetch allowing testing on platforms where this behavior is not
default.

GMX_OCL_DUMP_INTERM_FILES

If defined, intermediate language code corresponding to the OpenCL build process is saved to file.
Caching has to be turned off in order for this option to take effect.

3.13. Environment Variables 337

https://www.khronos.org/opencl/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• NVIDIA GPUs: PTX code is saved in the current directory with the name device_name.
ptx

• AMD GPUs: .IL/.ISA files will be created for each OpenCL kernel built. For details about
where these files are created check AMD documentation for -save-temps compiler option.

GMX_OCL_DUMP_LOG
If defined, the OpenCL build log is always written to the mdrun log file. Otherwise, the build log is written
to the log file only when an error occurs.

GMX_OCL_FILE_PATH
Use this parameter to force GROMACS to load the OpenCL kernels from a custom location. Use it only if
you want to override GROMACS default behavior, or if you want to test your own kernels.

GMX_OCL_FORCE_AMD_WAVEFRONT64
Force the use of Wave64 mode on AMD devices. This allows using OpenCL on RDNA-family devices, but
is not recommended. For development use only.

GMX_OCL_FORCE_CPU
Force the selection of a CPU device instead of a GPU. This exists only for debugging purposes. Do not
expect GROMACS to function properly with this option on, it is solely for the simplicity of stepping in a
kernel and see what is happening.

GMX_OCL_GENCACHE
Enable OpenCL binary caching. Only intended to be used for development and (expert) testing as neither
concurrency nor cache invalidation is implemented safely!

GMX_OCL_NOFASTGEN
If set, generate and compile all algorithm flavors, otherwise only the flavor required for the simulation is
generated and compiled.

GMX_OCL_NOOPT
Disable optimisations. Adds the option cl-opt-disable to the compiler options.

GMX_OCL_SHOW_DIAGNOSTICS
Use Intel OpenCL extension to show additional runtime performance diagnostics.

GMX_OCL_VERBOSE
If defined, it enables verbose mode for OpenCL kernel build. Currently available only for NVIDIA GPUs.
See GMX_OCL_DUMP_LOG for details about how to obtain the OpenCL build log.

3.13.5 Analysis and Core Functions

GMX_DIPOLE_SPACING
spacing used by gmx dipoles (page 158).

GMX_ENER_VERBOSE
make gmx energy (page 177) and gmx eneconv (page 174) loud and noisy.

GMX_MAXRESRENUM
sets the maximum number of residues to be renumbered by gmx grompp (page 190). A value of -1 indicates
all residues should be renumbered.

GMX_NO_FFRTP_TER_RENAME
Some force fields (like AMBER) use specific names for N- and C- terminal residues (NXXX and CXXX) as
rtp (page 491) entries that are normally renamed. Setting this environment variable disables this renaming.

GMX_USE_XMGR
sets viewer to xmgr (deprecated) instead of xmgrace.

GMXTIMEUNIT
the time unit used in output files, can be anything in fs, ps, ns, us, ms, s, m or h.

VMD_PLUGIN_PATH
where to find VMD plug-ins. Needed to be able to read file formats recognized only by a VMD plug-in.

3.13. Environment Variables 338

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

VMDDIR
base path of VMD installation.

3.14 Floating point arithmetic

GROMACS spends its life doing arithmetic on real numbers, often summing many millions of them. These
real numbers are encoded on computers in so-called binary floating-point representation. This representation is
somewhat like scientific exponential notation (but uses binary rather than decimal), and is necessary for the fastest
possible speed for calculations. Unfortunately the laws of algebra only approximately apply to binary floating-
point. In part, this is because some real numbers that are represented simply and exactly in decimal (like 1/5=0.2)
have no exact representation in binary floating-point, just as 1/3 cannot be represented in decimal. There are
many sources you can find with a search engine that discuss this issue more exhaustively, such as Wikipedia and
David Goldberg’s 1991 paper What every computer scientist should know about floating-point arithmetic (article,
addendum). Bruce Dawson also has a written a number of very valuable blog posts on modern floating-point
programming at his Random ASCII site that are worth reading.

So, the sum of a large number of binary representations of exact decimal numbers need not equal the expected
algebraic or decimal result. Users observe this phenomenon in sums of partial charges expressed to two decimal
places that sometimes only approximate the integer total charge to which they contribute (however a deviation
in the first decimal place would always be indicative of a badly-formed topology). When GROMACS has to
represent such floating-point numbers in output, it sometimes uses a computer form of scientific notation known
as E notation. In such notation, a number like -9.999971e-01 is actually -0.9999971, which is close enough to -1
for purposes of assessing the total charge of a system.

It is also not appropriate for GROMACS to guess to round things, because such rounding relies on assumptions
about the inputs that need not be true. Instead the user needs to understand how their tools work.

3.15 Security when using GROMACS

We advise the users of GROMACS to be careful when using GROMACS with files obtained from an unknown
source (e.g. the Internet).

We cannot guarantee that the program won’t crash with serious errors that could cause execution of code with the
same privileges as GROMACS and e.g. delete the contents of your home directory.

Files that the user has created themselves don’t carry those risks, but may still misbehave and crash or consume
large amounts of resources upon malformed input.

Run input files obtained from outside sources should be treated with the same caution as an executable file from
the same source.

3.16 Policy for deprecating GROMACS functionality

Occasionally functionality ceases being useful, is unable to be fixed or maintained, or its user interface needs to
be improved. The development team does this sparingly. Broken functionality might be removed without notice if
nobody willing to fix it can be found. Working functionality will be changed only after announcing in the previous
major release the intent to remove and/or change the form of such functionality. Thus there is typically a year for
users and external tool providers to prepare for such changes, and contact the GROMACS developers to see how
they might be affected and how best to adapt.

There is a current list of anticipated changes and deprecated functionality in the “Major release” notes (page 709).

When environment variables are deprecated, it is up to the user to make sure that their scripts are updated accord-
ingly for the new release. In cases where it is sensible, the development team should do the effort to keep the
old environment variables working for one extra release cycle, before fully removing them. The user should be
informed about this future deprecation with a warning. If keeping the old environment variable is not possible or

3.14. Floating point arithmetic 339

https://en.wikipedia.org/wiki/Floating-point_arithmetic
https://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://docs.oracle.com/cd/E37069_01/html/E39019/z400228248508.html
https://randomascii.wordpress.com/category/floating-point/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

highly problematic, setting the removed environment variable should be triggering a warning during one release
cycle.

3.16. Policy for deprecating GROMACS functionality 340

CHAPTER

FOUR

SHORT HOW-TO GUIDES

A number of short guides are presented here to help users getting started with simulations. Useful third-party
tutorials provided by Justin Lemkul are found here http://www.mdtutorials.com/.

4.1 Beginners

For those just starting out with GROMACS and / or Molecular Dynamics Simulations (page 331) it can be very
daunting. It is highly recommended that the various and extensive documentation that has been made available for
GROMACS is read first, plus papers published in the area of interest.

4.1.1 Resources

• GROMACS Reference Manual (page 351) - very detailed document that can also act as a very good intro-
duction for MD (page 331) in general.

• Flow Chart (page 30)- simple flow chart of a typical GROMACS MD run of a protein in a box of water.

• Molecular dynamics simulations and GROMACS introduction (slides, video) - force fields, integrators,
control of temperature and pressure (Berk Hess).

4.2 Adding a Residue to a Force Field

4.2.1 Adding a new residue

If you have the need to introduce a new residue into an existing force field so that you can use pdb2gmx (page 235),
or modify an existing one, there are several files you will need to modify. You must consult the Reference Manual
(page 351) for description of the required format. Follow these steps:

1. Add the residue to the rtp (page 491) file for your chosen force field. You might be able to copy an existing
residue, rename it and modify it suitably, or you may need to use an external topology generation tool and
adapt the results to the rtp (page 491) format.

2. If you need hydrogens to be able to be added to your residue, create an entry in the relevant hdb (page 487)
file.

3. If you are introducing new atom types, add them to the atomtypes.atp and ffnonbonded.itp files.

4. If you require any new bonded types, add them to ffbonded.itp.

5. Add your residue to residuetypes.dat with the appropriate specification (Protein, DNA, Ion, etc).

6. If the residue involves special connectivity to other residues, update specbond.dat.

Note that if all you are doing is simulating some weird ligand in water, or some weird ligand with a normal protein,
then the above is more work than generating a standalone itp (page 487) file containing a [moleculetype]

341

http://www.mdtutorials.com/
https://extras.csc.fi/chem/courses/gmx2007/Berk_talks/forcef.pdf
https://video.csc.fi/playlist/dedicated/0_7z3nas0q/0_9aehv6v2

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(for example, by modifying the top (page 492) produced by some parameterization server), and inserting an
#include of that itp (page 487) file into a top (page 492) generated for the system without that weird ligand.

4.2.2 Modifying a force field

Modifying a force field is best done by making a full copy of the installed forcefield directory and
residuetypes.dat into your local working directory:

cp -r $GMXLIB/residuetypes.dat $GMXLIB/amber99sb.ff .

Then, modify those local copies as above. pdb2gmx (page 235) will then find both the original and modified
version and you can choose the modified version interactively from the list, or if you use the pdb2gmx (page 235)
-ff option the local version will override the system version.

4.3 Water solvation

When using solvate (page 268) to generate a box of solvent, you need to supply a pre-equilibrated box of a suitable
solvent for solvate (page 268) to stack around your solute(s), and then to truncate to give the simulation volume
you desire. When using any 3-point model (e.g. SPC, SPC/E or TIP3P) you should specify -cs spc216.
gro which will take this file from the gromacs/share/top directory. Other water models (e.g. TIP4P
and TIP5P) are available as well. Check the contents of the /share/top subdirectory of your GROMACS
installation. After solvation, you should then be sure to equilibrate for at least 5-10ps at the desired temperature.
You will need to select the right water model in your top (page 492) file, either with the -water flag to pdb2gmx
(page 235), or by editing your top (page 492) file appropriately by hand.

For information about how to use solvents other than pure water, please see Non-Water Solvation (page 342) or
Mixed Solvents (page 343).

4.4 Non water solvent

It is possible to use solvents other than water in GROMACS. The only requirements are that you have a pre-
equilibrated box of whatever solvent you need, and suitable parameters for this species in a simulation. One can
then pass the solvent box to the -cs switch of solvate (page 268) to accomplish solvation.

A series of about 150 different equilibrated liquids validated for use with GROMACS, and for the OPLS/AA and
GAFF force fields, can be found at virtualchemistry.

4.4.1 Making a non-aqueous solvent box

Choose a box density and box size. The size does not have to be that of your eventual simulation box - a 1nm
cube is probably fine. Generate a single molecule of the solvent. Work out how much volume a single molecule
would have in the box of your chosen density and size. Use editconf (page 171) to place a box of that size around
your single molecule. Then use editconf (page 171) to move the molecule a little bit off center. Then use genconf
(page 187) -rot to replicate that box into a large one of the right size and density. Then equilibrate thoroughly
to remove the residual ordering of the molecules, using NVT and periodic boundary conditions. Now you have a
box you can pass to solvate (page 268) -cs, which will replicate it to fit the size of the actual simulation box.

4.3. Water solvation 342

https://virtualchemistry.org/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

4.5 Mixed solvent

A common question that new users have is how to create a system with mixed solvent (urea or DMSO at a given
concentration in water, for example). The simplest procedure for accomplishing this task is as follows:

• Determine the number of co-solvent molecules necessary, given the box dimensions of your system.

• Generate a coordinate file of a single molecule of your co-solvent (i.e., urea.gro).

• Use the -ci -nmol options of gmx insert-molecules (page 207) to add the required number of co-solvent
molecules to the box.

• Fill the remainder of the box with water (or whatever your other solvent is) using gmx solvate (page 268) or
gmx insert-molecules (page 207).

• Edit your topology (page 492) to #include the appropriate itp (page 487) files, as well as make changes
to the [molecules] directive to account for all the species in your system.

4.6 Making Disulfide Bonds

The easiest way to do this is by using the mechanism implemented with the specbond.dat file and pdb2gmx
(page 235). You may find pdb2gmx (page 235) -ss yes is useful. The sulfur atoms will need to be in the same
unit that pdb2gmx (page 235) is converting to a moleculetype, so invoking pdb2gmx (page 235) -chainsep
correctly may be required. See pdb2gmx (page 235) -h. This requires that the two sulfur atoms be within a
distance + tolerance (usually 10%) in order to be recognised as a disulfide. If your sulfur atoms are not this close,
then either you can

• edit the contents of specbond.dat to allow the bond formation and do energy minimization very care-
fully to allow the bond to relax to a sensible length, or

• run a preliminary EM or MD with a distance restraint (and no disulfide bond) between these sulfur atoms
with a large force constant so that they approach within the existing specbond.dat range to provide a
suitable coordinate file for a second invocation of pdb2gmx (page 235).

Otherwise, editing your top (page 492) file by hand is the only option.

4.7 Running membrane simulations in GROMACS

4.7.1 Running Membrane Simulations

Users frequently encounter problems when running simulations of lipid bilayers, especially when a protein is
involved. Users seeking to simulate membrane proteins may find this tutorial useful.

One protocol for the simulation of membrane proteins consists of the following steps:

1. Choose a force field for which you have parameters for the protein and lipids.

2. Insert the protein into the membrane. (For instance, use g_membed on a pre-formed bilayer or do a coarse-
grained self-assembly simulation and then convert back to the atomistic representation.)

3. Solvate the system and add ions to neutralize excess charges and adjust the final ion concentration.

4. Energy minimize.

5. Let the membrane adjust to the protein. Typically run MD for ~5-10ns with restraints (1000 kJ/(mol nm2)
on all protein heavy atoms.

6. Equilibrate without restraints.

7. Run production MD.

4.5. Mixed solvent 343

https://tutorials.gromacs.org/membrane-protein.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

4.7.2 Adding waters with genbox

When generating waters around a pre-formed lipid membrane with solvate (page 268) you may find that water
molecules get introduced into interstices in the membrane. There are several approaches to removing these,
including

• a short MD run to get the hydrophobic effect to exclude these waters. In general this is sufficient to reach
a water-free hydrophobic phase, as the molecules are usually expelled quickly and without disrupting the
general structure. If your setup relies on a completely water-free hydrophobic phase at the start, you can try
to follow the advice below:

• Set the -radius option in gmx solvate (page 268) to change the water exclusion radius,

• copy vdwradii.dat from your $GMXLIB location to the working directory, and edit it to increase the
radii of your lipid atoms (between 0.35 and 0.5nm is suggested for carbon) to prevent solvate (page 268)
from seeing interstices large enough for water insertion,

• editing your structure by hand to delete them (remembering to adjust your atom count for gro (page 486)
files and to account for any changes in the topology (page 492)), or

• use a script someone wrote to remove them.

4.7.3 External material

• Membrane simulations slides , membrane simulations video - (Erik Lindahl).

• tutorial for membrane protein simulations - designed to demonstrate what sorts of questions and problems
occur when simulating proteins that are embedded within a lipid bilayer.

• Combining the OPLS-AA forcefield with the Berger lipids A detailed description of the motivation, method,
and testing.

• Several Topologies for membrane proteins with different force fields gaff, charmm berger Shirley W. I. Siu,
Robert Vacha, Pavel Jungwirth, Rainer A. Böckmann: Biomolecular simulations of membranes: Physical
properties from different force fields.

• Lipidbook is a public repository for force-field parameters of lipids, detergents and other molecules that are
used in the simulation of membranes and membrane proteins. It is described in: J. Domański, P. Stansfeld,
M.S.P. Sansom, and O. Beckstein. J. Membrane Biol. 236 (2010), 255—258. doi:10.1007/s00232-010-
9296-8.

4.8 Parameterization of novel molecules

Most of your parametrization questions/problems can be resolved very simply, by remembering the following two
rules:

• You should not mix and match force fields. Force fields (page 331) are (at best) designed to be self-
consistent, and will not typically work well with other force fields. If you simulate part of your system with
one force field and another part with a different force field which is not parametrized with the first force
field in mind, your results will probably be questionable, and hopefully reviewers will be concerned. Pick a
force field. Use that force field.

• If you need to develop new parameters, derive them in a manner consistent with how the rest of the force
field was originally derived, which means that you will need to review the original literature. There isn’t a
single right way to derive force field parameters; what you need is to derive parameters that are consistent
with the rest of the force field. How you go about doing this depends on which force field you want to use.
For example, with AMBER force fields, deriving parameters for a non-standard amino acid would probably
involve doing a number of different quantum calculations, while deriving GROMOS or OPLS parameters
might involve more (a) fitting various fluid and liquid-state properties, and (b) adjusting parameters based
on experience/chemical intuition/analogy. Some suggestions for automated approaches can be found here
(page 34).

4.8. Parameterization of novel molecules 344

https://extras.csc.fi/chem/courses/gmx2007/Erik_Talks/membrane_simulations.pdf
https://video.csc.fi/playlist/dedicated/0_7z3nas0q/0_0tr9yd2p
http://www.mdtutorials.com/gmx/membrane_protein/index.html
http://pomes.biochemistry.utoronto.ca/files/lipidCombinationRules.pdf
https://doi.org/10.1063/1.2897760
https://doi.org/10.1063/1.2897760
https://www.lipidbook.org/
https://doi.org/10.1007/s00232-010-9296-8
https://doi.org/10.1007/s00232-010-9296-8

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

It would be wise to have a reasonable amount of simulation experience with GROMACS before attempting to
parametrize new force fields, or new molecules for existing force fields. These are expert topics, and not suitable
for giving to (say) undergraduate students for a research project, unless you like expensive quasi-random number
generators. A very thorough knowledge of Chapter 5: Interaction function and force fields (page 405) of the
GROMACS Reference Manual will be required. If you haven’t been warned strongly enough, please read below
about parametrization for exotic species.

Another bit of advice: Don’t be more haphazard in obtaining parameters than you would be buying fine jewellery.
Just because the guy on the street offers to sell you a diamond necklace for $10 doesn’t mean that’s where you
should buy one. Similarly, it isn’t necessarily the best strategy to just download parameters for your molecule
of interest from the website of someone you’ve never heard of, especially if they don’t explain how they got the
parameters.

Be forewarned about using PRODRG topologies without verifying their contents: the artifacts of doing so are now
published, along with some tips for properly deriving parameters for the GROMOS family of force fields.

4.8.1 Exotic Species

So, you want to simulate a protein/nucleic acid system, but it binds various exotic metal ions (ruthenium?), or there
is an iron-sulfur cluster essential for its functionality, or similar. But, (unfortunately?) there aren’t parameters
available for these in the force field you want to use. What should you do? You shoot an e-mail to the GROMACS
user discussion forum, and get referred to the FAQs.

If you really insist on simulating these in molecular dynamics, you’ll need to obtain parameters for them, either
from the literature, or by doing your own parametrization. But before doing so, it’s probably important to stop and
think, as sometimes there is a reason there may not already be parameters for such atoms/clusters. In particular,
here are a couple of basic questions you can ask yourself to see whether it’s reasonable to develop/obtain standard
parameters for these and use them in molecular dynamics:

• Are quantum effects (i.e. charge transfer) likely to be important? (i.e., if you have a divalent metal ion in an
enzyme active site and are interested in studying enzyme functionality, this is probably a huge issue).

• Are standard force field parametrization techniques used for my force field of choice likely to fail for an
atom/cluster of this type? (i.e. because Hartree-Fock 6-31G* can’t adequately describe transition metals,
for example)

If the answer to either of these questions is “Yes”, you may want to consider doing your simulations with some-
thing other than classical molecular dynamics.

Even if the answer to both of these is “No”, you probably want to consult with someone who is an expert on the
compounds you’re interested in, before attempting your own parametrization. Further, you probably want to try
parametrizing something more straightforward before you embark on one of these.

4.9 Potential of Mean Force

The potential of mean force (PMF) is defined as the potential that gives an average force over all the configurations
of a given system. There are several ways to calculate the PMF in GROMACS, probably the most common of
which is to make use of the pull code. The steps for obtaining a PMF using umbrella sampling, which allows for
sampling of statistically-improbable states, are:

• Generate a series of configurations along a reaction coordinate (from a steered MD simulation, a normal
MD simulation, or from some arbitrarily-created configurations)

• Use umbrella sampling to restrain these configurations within sampling windows.

• Use gmx wham (page 294) to make use of the WHAM algorithm to reconstruct a PMF curve.

A more detailed tutorial is linked here for umbrella sampling.

4.9. Potential of Mean Force 345

http://davapc1.bioch.dundee.ac.uk/cgi-bin/prodrg
http://pubs.acs.org/doi/abs/10.1021/ci100335w
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://tutorials.gromacs.org/umbrella-sampling.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

4.10 Single-Point Energy

Computing the energy of a single configuration is an operation that is sometimes useful. The best way to do this
with GROMACS is with the mdrun (page 215) -rerun mechanism, which applies the model physics in the tpr
(page 494) to the configuration in the trajectory or coordinate file supplied to mdrun.

mdrun -s input.tpr -rerun configuration.pdb

Note that the configuration supplied must match the topology you used when generating the tpr (page 494) file
with grompp (page 190). The configuration you supplied to grompp (page 190) is irrelevant, except perhaps for
atom names. You can also use this feature with energy groups (see the Reference manual), or with a trajectory
of multiple configurations (and in this case, by default mdrun (page 215) will do neighbour searching for each
configuration, because it can make no assumptions about the inputs being similar).

A zero-step energy minimization does a step before reporting the energy, and a zero-step MD run has (avoidable)
complications related to catering to possible restarts in the presence of constraints, so neither of those procedures
are recommended.

4.11 Carbon Nanotube

4.11.1 Robert Johnson’s Tips

Taken from Robert Johnson’s posts on the gmx-users mailing list archive.

• Be absolutely sure that the “terminal” carbon atoms are sharing a bond in the topology file.

• Use periodic_molecules = yes in your mdp (page 488) file for input in gmx grompp (page 190).

• Even if the topology is correct, crumpling may occur if you place the nanotube in a box of wrong dimension,
so use VMD to visualize the nanotube and its periodic images and make sure that the space between images
is correct. If the spacing is too small or too big, there will be a large amount of stress induced in the tube
which will lead to crumpling or stretching.

• Don’t apply pressure coupling along the axis of the nanotube. In fact, for debugging purposes, it might
be better to turn off pressure coupling altogether until you figure out if anything is going wrong, and if so,
what.

• When using x2top (page 299) with a specific force field, things are assumed about the connectivity of the
molecule. The terminal carbon atoms of your nanotube will only be bonded to, at most, 2 other carbons, if
periodic, or one if non-periodic and capped with hydrogens.

• You can generate an “infinite” nanotube with the -pbc option to x2top (page 299). Here, x2top (page 299)
will recognize that the terminal C atoms actually share a chemical bond. Thus, when you use grompp
(page 190) you won’t get an error about a single bonded C.

4.11.2 Andrea Minoia’s tutorial

Modeling Carbon Nanotubes with GROMACS (also archived as http://chembytes.wikidot.com/grocnt) contains
everything to set up simple simulations of a CNT using OPLS-AA parameters. Structures of simple CNTs can be
easily generated e.g. by buildCstruct (Python script that also adds terminal hydrogens) or TubeGen Online (just
copy and paste the PDB output into a file and name it cnt.pdb).

To make it work with modern GROMACS you’ll probably want to do the following:

• make a directory cnt_oplsaa.ff

• In this directory, create the following files, using the data from the tutorial page:

– forcefield.itp from the file in section itp (page 487)

– atomnames2types.n2t from the file in section n2t (page 490)

4.10. Single-Point Energy 346

https://mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-users
http://www.ks.uiuc.edu/Research/vmd/
http://chembytes.wikidot.com/grocnt
http://chembytes.wikidot.com/buildcstruct
http://turin.nss.udel.edu/research/tubegenonline.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

– aminoacids.rtp from the file in section rtp (page 491)

• generate a topology with the custom forcefield (the cnt_oplsaa.ff directory must be in the same directory as
where the gmx x2top (page 299) command is run or it must be found on the GMXLIB path), -noparam
instructs gmx x2top (page 299) to not use bond/angle/dihedral force constants from the command line (-
kb, -ka, -kd) but rely on the force field files; however, this necessitates the next step (fixing the dihedral
functions)

gmx x2top -f cnt.gro -o cnt.top -ff cnt_oplsaa -name CNT -noparam

The function type for the dihedrals is set to ‘1’ by gmx x2top (page 299) but the force field file specifies type ‘3’.
Therefore, replace func type ‘1’ with ‘3’ in the [dihedrals] section of the topology file. A quick way is to
use sed (but you might have to adapt this to your operating system; also manually look at the top file and check
that you only changed the dihedral func types):

sed -i~ '/\[dihedrals \]/,/\[system \]/s/1 *$/3/' cnt.top

Once you have the topology you can set up your system. For instance, a simple in-vacuo simulation (using your
favourite parameters in em.mdp (page 488) and md.mdp (page 488)):

Put into a slightly bigger box:

gmx editconf -f cnt.gro -o boxed.gro -bt dodecahedron -d 1

Energy minimise in vacuuo:

gmx grompp -f em.mdp -c boxed.gro -p cnt.top -o em.tpr
gmx mdrun -v -deffnm em

MD in vacuuo:

gmx grompp -f md.mdp -c em.gro -p cnt.top -o md.tpr
gmx mdrun -v -deffnm md

Look at trajectory:

gmx trjconv -f md.xtc -s md.tpr -o md_centered.xtc -pbc mol -center
gmx trjconv -s md.tpr -f md_centered.xtc -o md_fit.xtc -fit rot+trans
vmd em.gro md_fit.xtc

4.12 Visualization Software

Some programs that are useful for visualizing either a trajectory file and/or a coordinate file are:

• VMD - a molecular visualization program for displaying, animating, and analyzing large biomolecular
systems using 3-D graphics and built-in scripting. Reads GROMACS trajectories.

• PyMOL - capable molecular viewer with support for animations, high-quality rendering, crystallography,
and other common molecular graphics activities. Does not read GROMACS trajectories in default configu-
ration, requiring conversion to PDB or similar format. When compiled with VMD plugins, trr (page 494)
& xtc (page 496) files can be loaded.

• Rasmol - the derivative software Protein Explorer (below) might be a better alternative, but the Chime
component requires windows. Rasmol works fine on Unix.

• Protein Explorer - a RasMol-derivative, is the easiest-to-use and most powerful software for looking at
macromolecular structure and its relation to function. It runs on Windows or Macintosh/PPC computers.

• Chimera - A full featured, Python-based visualization program with all sorts of features for use on any
platform. The current version reads GROMACS trajectories.

4.12. Visualization Software 347

http://www.ks.uiuc.edu/Research/vmd/
http://www.pymol.org
http://www.ks.uiuc.edu/Research/vmd/
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.umass.edu/microbio/rasmol/
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.umass.edu/microbio/rasmol/
http://www.umass.edu/microbio/rasmol/index2.htm
http://www.rbvi.ucsf.edu/chimera/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• Molscript - This is a script-driven program form high-quality display of molecular 3D structures in both
schematic and detailed representations. You can get an academic license for free from Avatar.

4.12.1 Topology bonds vs Rendered bonds

Remember that each of these visualization tools is only looking at the coordinate file you gave it. Thus it’s not
using your topology which is described in either your top (page 492) file or your tpr (page 494) file. Each of
these programs makes their own guesses about where the chemical bonds are for rendering purposes, so do not be
surprised if the heuristics do not always match your topology.

4.13 Extracting Trajectory Information

There are several techniques available for finding information in GROMACS trajectory (trr (page 494), xtc
(page 496), tng (page 492)) files.

• use the GROMACS trajectory analysis utilities

• use gmx traj (page 275) to write a xvg (page 497) file and read that in an external program as above

• write your own C code using gromacs/share/template/template.cpp as a template

• use gmx dump (page 169) and redirect the shell output to a file and read that in an external program like
MATLAB, or Mathematica or other spreadsheet software.

4.14 External tools to perform trajectory analysis

In recent years several external tools have matured sufficiently to analyse diverse sets of trajectory data from
several simulation packages. Below is a short list of tools (in an alphabetical order) that are known to be able to
analyse GROMACS trajectory data.

• LOOS

• MDAnalysis

• MDTraj

• Pteros

4.15 Plotting Data

The various GROMACS analysis utilities can generate xvg (page 497) files. These are text files that have been
specifically formatted for direct use in Grace. You can, however, in all GROMACS analysis programs turn off
the Grace specific codes by running the programs with the -xvg none option. This circumvents problems with
tools like gnuplot and Excel (see below).

Note that Grace uses some embedded backslash codes to indicate superscripts, normal script, etc. in units. So
“Area (nmS2N)” is nm squared.

4.13. Extracting Trajectory Information 348

https://github.com/pekrau/MolScript
http://loos.sourceforge.net/
https://www.mdanalysis.org/
http://mdtraj.org/
https://github.com/yesint/pteros/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

4.15.1 Software

Some software packages that can be used to graph data in a xvg (page 497) file:

• Grace - WYSIWYG 2D plotting tool for the X Window System and M*tif. Grace runs on practically
any version of Unix-like OS, provided that you can satisfy its library dependencies (Lesstif is a valid free
alternative to Motif). It is also available for the other common operation systems.

• gnuplot - portable command-line driven interactive data and function plotting utility for UNIX, IBM OS/2,
MS Windows, DOS, Macintosh, VMS, Atari and many other platforms. Remember to use:

set datafile commentschars "#@&"

to avoid gnuplot trying to interpret Grace-specific commands in the xvg (page 497) file or use the -xvg
none option when running the analysis program. For simple usage,:

plot "file.xvg" using 1:2 with lines

is a hack that will achieve the right result.

• Matplotlib - a popular Python library for visualization. A simple script that will plot the data in file.xvg
and show the result on the screen

import numpy as np
import matplotlib.pyplot as plt
x, y = np.loadtxt("file.xvg", comments=["@", "#", "&"], unpack=True)
plt.plot(x, y)
plt.show()

• MS Excel - change the file extension to .csv and open the file (when prompted, choose to ignore the first 20
or so rows and select fixed-width columns, if you are using German MS Excel version, you have to change
decimal delimiter from “,” to “.”, or use your favourite *nix tool.

• Sigma Plot A commercial tool for windows with some useful analysis tools in it.

• R - freely available language and environment for statistical computing and graphics which provides a wide
variety of statistical and graphical techniques: linear and nonlinear modelling, statistical tests, time series
analysis, classification, clustering, etc.

• SPSS A commercial tool (Statistical Product and Service Solutions), which can also plot and analyse data.

4.16 Micelle Clustering

This is necessary for the gmx spatial (page 271) tool if you have a fully-formed single aggregate and want to
generate the spatial distribution function for that aggregate or for solvent around that aggregate.

Clustering to ensure that the micelle is not split across a periodic boundary condition (page 326) border is an
essential step prior to calculating properties such as the radius of gyration and the radial distribution function.
Without this step your results will be incorrect (a sign of this error is unexplained huge fluctuations in the calculated
value when the visualized trajectory looks fine).

Three steps are required:

• use trjconv (page 281) -pbc cluster to obtain a single frame that has all of the lipids in the unit cell.
This must be the first frame of your trajectory. A similar frame from some previous timepoint will not work.

• use grompp (page 190) to make a new tpr (page 494) file based on the frame that was output from the step
above.

• use trjconv (page 281) -pbc nojump to produce the desired trajectory using the newly produced tpr
(page 494) file.

More explicitly, the same steps are:

4.16. Micelle Clustering 349

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx trjconv -f a.xtc -o a_cluster.gro -e 0.001 -pbc cluster
gmx grompp -f a.mdp -c a_cluster.gro -o a_cluster.tpr
gmx trjconv -f a.xtc -o a_cluster.xtc -s a_cluster.tpr -pbc nojump

4.16. Micelle Clustering 350

CHAPTER

FIVE

REFERENCE MANUAL

This part of the documentation covers implementation details of GROMACS.

For quick simulation set-up and short explanations, please refer to the User guide (page 28).

Help with the installation of GROMACS can be found in the Install guide (page 3).

If you want to help with developing GROMACS, your are most welcome to read up on the Developer Guide
(page 628) and continue right away with coding for GROMACS.

5.1 Preface and Disclaimer

GROMACS - 2026.0-dev

Current Contributors: Mark Abraham, Andrey Alekseenko, Vladimir Basov, Cathrine Bergh, Eliane Briand, Ania
Brown, Mahesh Doijade, Giacomo Fiorin, Stefan Fleischmann, Sergey Gorelov, Gilles Gouaillardet, Alan Gray,
M. Eric Irrgang, Farzaneh Jalalypour, Joe Jordan, Carsten Kutzner, Justin A. Lemkul, Magnus Lundborg, Pascal
Merz, Vedran Miletic, Dmitry Morozov, Julien Nabet, Szilard Pall, Andrea Pasquadibisceglie, Michele Pellegrino,
Hubert Santuz, Roland Schulz, Tatiana Shugaeva, Alexey Shvetsov, Philip Turner, Alessandra Villa, Sebastian
Wingbermuehle

Previous Contributors: Emile Apol, Rossen Apostolov, James Barnett, Paul Bauer, Herman J.C. Berendsen,
Par Bjelkmar, Christian Blau, Viacheslav Bolnykh, Kevin Boyd, Aldert van Buuren, Carlo Camilloni, Rudi
van Drunen, Anton Feenstra, Oliver Fleetwood, Vytas Gapsys, Gaurav Garg, Gerrit Groenhof, Bert de Groot,
Anca Hamuraru, Vincent Hindriksen, Victor Holanda, Aleksei Iupinov, Christoph Junghans, Prashanth Kanduri,
Dimitrios Karkoulis, Peter Kasson, Sebastian Kehl, Sebastian Keller, Jiri Kraus, Per Larsson, Viveca Lindahl,
Erik Marklund, Pieter Meulenhoff, Teemu Murtola, Sander Pronk, Michael Shirts, Alfons Sijbers, Balint So-
proni, David van der Spoel, Peter Tieleman, Carsten Uphoff, Jon Vincent, Teemu Virolainen, Christian Wennberg,
Maarten Wolf, Artem Zhmurov

Project leaders: Berk Hess, Erik Lindahl

© 1991 – 2000:

Department of Biophysical Chemistry, University of Groningen. Nijenborgh 4, 9747 AG Groningen,
The Netherlands.

© 2001 – 2024:

The GROMACS development teams at the Royal Institute of Technology and Uppsala University,
Sweden.

This manual is not complete and has no pretension to be so, due to lack of time of the contributors – our first
priority is to improve the software. It is worked on continuously, which in some cases might mean the information
is not entirely correct.

Comments on form and content are welcome, please send them to the user discussion forum or the developer
discussion forum (see our webpage or this section on how to contribute (page 628)), or open an issue on our issue
tracker. Corrections can also be made in the GROMACS git source repository and uploaded to the GROMACS
GitLab.

351

https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gromacs.bioexcel.eu/c/gromacs-developers/10
https://gromacs.bioexcel.eu/c/gromacs-developers/10
http://www.gromacs.org
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

We release an updated version of the manual whenever we release a new version of the software, so in general it
is a good idea to use a manual with the same major and minor release number as your GROMACS installation.

5.1.1 Citation information

This is not a release build of GROMACS, so please reference one of the GROMACS papers and the base release
of the manual.

However, we prefer that you cite (some of) the GROMACS papers:

• Bekker et al. (1993) (page 577)

• Berendsen et al. (1995) (page 577)

• Lindahl et al. (2001) (page 577)

• van der Spoel at al. (2005) (page 577)

• Hess et al. (2008) (page 577)

• Pronk et al. (2013) (page 577)

• Pall et al. (2015) (page 577)

• Abraham et al. (2015) (page 577)

when you publish your results. Any future development depends on academic research grants, since the package
is distributed as free software!

5.1.2 GROMACS is Free Software

The entire GROMACS package is available under the GNU Lesser General Public License (LGPL), version 2.1.
This means it is free as in free speech, not just that you can use it without paying us money. You can redistribute
GROMACS and/or modify it under the terms of the LGPL as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. For details, check the COPYING file in the source
code or consult this page.

The GROMACS source code and selected set of binary packages are available on our homepage,
www.gromacs.org. Have fun!

5.1. Preface and Disclaimer 352

http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gromacs.org

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.2 Introduction

5.2.1 Computational Chemistry and Molecular Modeling

GROMACS is an engine to perform molecular dynamics simulations and energy minimization. These are two of
the many techniques that belong to the realm of computational chemistry and molecular modeling. Computational
chemistry is just a name to indicate the use of computational techniques in chemistry, ranging from quantum
mechanics of molecules to dynamics of large complex molecular aggregates. Molecular modeling indicates the
general process of describing complex chemical systems in terms of a realistic atomic model, with the goal being to
understand and predict macroscopic properties based on detailed knowledge on an atomic scale. Often, molecular
modeling is used to design new materials, for which the accurate prediction of physical properties of realistic
systems is required.

Macroscopic physical properties can be distinguished by

1. static equilibrium properties, such as the binding constant of an inhibitor to an enzyme, the average potential
energy of a system, or the radial distribution function of a liquid, and

2. dynamic or non-equilibrium properties, such as the viscosity of a liquid, diffusion processes in membranes,
the dynamics of phase changes, reaction kinetics, or the dynamics of defects in crystals.

The choice of technique depends on the question asked and on the feasibility of the method to yield reliable
results at the present state of the art. Ideally, the (relativistic) time-dependent Schrödinger equation describes the
properties of molecular systems with high accuracy, but anything more complex than the equilibrium state of a few
atoms cannot be handled at this ab initio level. Thus, approximations are necessary; the higher the complexity of a
system and the longer the time span of the processes of interest is, the more severe the required approximations are.
At a certain point (reached very much earlier than one would wish), the ab initio approach must be augmented
or replaced by empirical parameterization of the model used. Where simulations based on physical principles
of atomic interactions still fail due to the complexity of the system, molecular modeling is based entirely on a
similarity analysis of known structural and chemical data. The QSAR methods (Quantitative Structure-Activity
Relations) and many homology-based protein structure predictions belong to the latter category.

Macroscopic properties are always ensemble averages over a representative statistical ensemble (either equilibrium
or non-equilibrium) of molecular systems. For molecular modeling, this has two important consequences:

• The knowledge of a single structure, even if it is the structure of the global energy minimum, is not suf-
ficient. It is necessary to generate a representative ensemble at a given temperature, in order to compute
macroscopic properties. But this is not enough to compute thermodynamic equilibrium properties that are
based on free energies, such as phase equilibria, binding constants, solubilities, relative stability of molec-
ular conformations, etc. The computation of free energies and thermodynamic potentials requires special
extensions of molecular simulation techniques.

• While molecular simulations, in principle, provide atomic details of the structures and motions, such details
are often not relevant for the macroscopic properties of interest. This opens the way to simplify the descrip-
tion of interactions and average over irrelevant details. The science of statistical mechanics provides the
theoretical framework for such simplifications. There is a hierarchy of methods ranging from considering
groups of atoms as one unit, describing motion in a reduced number of collective coordinates, averaging
over solvent molecules with potentials of mean force combined with stochastic dynamics 9 (page 577),
to mesoscopic dynamics describing densities rather than atoms and fluxes as response to thermodynamic
gradients rather than velocities or accelerations as response to forces 10 (page 577).

For the generation of a representative equilibrium ensemble two methods are available:

1. Monte Carlo simulations and

2. Molecular Dynamics simulations.

For the generation of non-equilibrium ensembles and for the analysis of dynamic events, only the second method
is appropriate. While Monte Carlo simulations are more simple than MD (they do not require the computation of
forces), they do not yield significantly better statistics than MD in a given amount of computer time. Therefore,
MD is the more universal technique. If a starting configuration is very far from equilibrium, the forces may
be excessively large and the MD simulation may fail. In those cases, a robust energy minimization is required.
Another reason to perform an energy minimization is the removal of all kinetic energy from the system: if several

5.2. Introduction 353

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

“snapshots” from dynamic simulations must be compared, energy minimization reduces the thermal noise in the
structures and potential energies so that they can be compared better.

5.2.2 Molecular Dynamics Simulations

MD simulations solve Newton’s equations of motion for a system of 𝑁 interacting atoms:

𝑚𝑖
𝜕2r𝑖
𝜕𝑡2

= F𝑖, 𝑖 = 1 . . . 𝑁. (5.1)

The forces are the negative derivatives of a potential function 𝑉 (r1, r2, . . . , r𝑁):

F𝑖 = −𝜕𝑉
𝜕r𝑖

(5.2)

The equations are solved simultaneously in small time steps. The system is followed for some time, taking care
that the temperature and pressure remain at the required values, and the coordinates are written to an output file at
regular intervals. The coordinates as a function of time represent a trajectory of the system. After initial changes,
the system will usually reach an equilibrium state. By averaging over an equilibrium trajectory, many macroscopic
properties can be extracted from the output file.

It is useful at this point to consider the limitations of MD simulations. The user should be aware of those limitations
and always perform checks on known experimental properties to assess the accuracy of the simulation. We list the
approximations below.

The simulations are classical

• Using Newton’s equation of motion automatically implies the use of classical mechanics to describe the
motion of atoms. This is all right for most atoms at normal temperatures, but there are exceptions. Hydrogen
atoms are quite light and the motion of protons is sometimes of essential quantum mechanical character.
For example, a proton may tunnel through a potential barrier in the course of a transfer over a hydrogen
bond. Such processes cannot be properly treated by classical dynamics! Helium liquid at low temperature
is another example where classical mechanics breaks down. While helium may not deeply concern us,
the high frequency vibrations of covalent bonds should make us worry! The statistical mechanics of a
classical harmonic oscillator differs appreciably from that of a real quantum oscillator when the resonance
frequency 𝜈 approaches or exceeds 𝑘𝐵𝑇/ℎ. At room temperature the wavenumber 𝜎 = 1/𝜆 = 𝜈/𝑐 at which
ℎ𝜈 = 𝑘𝐵𝑇 is approximately 200 cm−1. Thus, all frequencies higher than, say, 100 cm−1 may misbehave in
classical simulations. This means that practically all bond and bond-angle vibrations are suspect, and even
hydrogen-bonded motions as translational or librational H-bond vibrations are beyond the classical limit
(see Table 5.1) What can we do?

Table 5.1: Typical vibrational frequencies (wavenumbers) in molecules
and hydrogen-bonded liquids. Compare 𝑘𝑇/ℎ = 200 cm−1 at 300 K.

type of bond type of vibration wavenumber cm −1

C-H, O-H, N-H stretch 3000–3500
C=C, C=O stretch 1700–2000
HOH bending 1600
C-C stretch 1400–1600
H2CX sciss, rock 1000–1500
CCC bending 800–1000
O-H· · ·O vibration 400–700
O-H· · ·O stretch 50–200

• Well, apart from real quantum-dynamical simulations, we can do one of two things:

(a) If we perform MD simulations using harmonic oscillators for bonds, we should make corrections to
the total internal energy 𝑈 = 𝐸𝑘𝑖𝑛 + 𝐸𝑝𝑜𝑡 and specific heat 𝐶𝑉 (and to entropy 𝑆 and free energy
𝐴 or 𝐺 if those are calculated). The corrections to the energy and specific heat of a one-dimensional
oscillator with frequency 𝜈 are: 11 (page 577)

𝑈𝑄𝑀 = 𝑈 𝑐𝑙 + 𝑘𝑇

(︂
1

2
𝑥− 1 +

𝑥

𝑒𝑥 − 1

)︂
(5.3)

5.2. Introduction 354

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

𝐶𝑄𝑀
𝑉 = 𝐶𝑐𝑙

𝑉 + 𝑘

(︂
𝑥2𝑒𝑥

(𝑒𝑥 − 1)2
− 1

)︂
(5.4)

where 𝑥 = ℎ𝜈/𝑘𝑇 . The classical oscillator absorbs too much energy (𝑘𝑇), while the high-frequency
quantum oscillator is in its ground state at the zero-point energy level of 1

2ℎ𝜈.

(b) We can treat the bonds (and bond angles) as constraints in the equations of motion. The rationale
behind this is that a quantum oscillator in its ground state resembles a constrained bond more closely
than a classical oscillator. A good practical reason for this choice is that the algorithm can use larger
time steps when the highest frequencies are removed. In practice the time step can be made four times
as large when bonds are constrained than when they are oscillators 12 (page 577). GROMACS has
this option for the bonds and bond angles. The flexibility of the latter is rather essential to allow for
the realistic motion and coverage of configurational space 13 (page 577).

Electrons are in the ground state
In MD simulations, we use a conservative force field that is a function of the positions of atoms only. This
means that the electronic motions are not considered: the electrons are supposed to adjust their dynamics
instantly when the atomic positions change (the Born-Oppenheimer approximation), and remain in their
ground state. This is really all right, almost always. But of course, electron transfer processes and elec-
tronically excited states can not be treated. Neither can chemical reactions be treated properly, but there are
other reasons to shy away from reactions for the time being.

Force fields are approximate
Force fields provide the forces. They are not really a part of the simulation method and their parameters can
be modified by the user as the need arises or knowledge improves. But the form of the forces that can be
used in a particular program is subject to limitations. The force field that is incorporated in GROMACS is
described in Chapter 4. In the present version the force field is pair-additive (apart from long-range Coulomb
forces), it cannot incorporate polarizabilities, and it does not contain fine-tuning of bonded interactions. This
urges the inclusion of some limitations in this list below. For the rest, it is quite useful and fairly reliable for
biologically-relevant macromolecules in aqueous solution!

The force field is pair-additive
This means that all non-bonded forces result from the sum of non-bonded pair interactions. Non pair-
additive interactions, the most important example of which is interaction through atomic polarizability, are
represented by effective pair potentials. Only average non pair-additive contributions are incorporated. This
also means that the pair interactions are not pure, i.e., they are not valid for isolated pairs or for situations
that differ appreciably from the test systems on which the models were parameterized. In fact, the effective
pair potentials are not that bad in practice. But the omission of polarizability also means that electrons in
atoms do not provide a dielectric constant as they should. For example, real liquid alkanes have a dielectric
constant of slightly more than 2, which reduce the long-range electrostatic interaction between (partial)
charges. Thus, the simulations will exaggerate the long-range Coulomb terms. Luckily, the next item
compensates this effect a bit.

Long-range interactions are cut off
GROMACS commonly uses a cut-off radius for the Lennard-Jones interactions and sometimes for the
Coulomb interactions as well. The “minimum-image convention” used by GROMACS requires that only
one image of each particle in the periodic boundary conditions is considered for a pair interaction, so the
cut-off radius cannot exceed half the box size. That is still pretty big for large systems, and trouble is only
expected for systems containing charged particles. But then truly bad things can happen, like accumulation
of charges at the cut-off boundary or very wrong energies! For such systems, you should consider using
one of the implemented long-range electrostatic algorithms, such as particle-mesh Ewald 14 (page 577), 15
(page 577).

Boundary conditions are unnatural
Since system size is small (even 100,000 particles is small), a cluster of particles will have a lot of unwanted
boundary with its environment (vacuum). We must avoid this condition if we wish to simulate a bulk system.
As such, we use periodic boundary conditions to avoid real phase boundaries. Since liquids are not crystals,
something unnatural remains. This item is mentioned last because it is the least of the evils. For large
systems, the errors are small, but for small systems with a lot of internal spatial correlation, the periodic
boundaries may enhance internal correlation. In that case, beware of, and test, the influence of system size.
This is especially important when using lattice sums for long-range electrostatics, since these are known to
sometimes introduce extra ordering.

5.2. Introduction 355

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.2.3 Energy Minimization and Search Methods

As mentioned in Computational Chemistry and Molecular Modeling (page 353), in many cases energy minimiza-
tion is required. GROMACS provides a number of methods for local energy minimization, as detailed in Energy
Minimization (page 393).

The potential energy function of a (macro)molecular system is a very complex landscape (or hypersurface) in
a large number of dimensions. It has one deepest point, the global minimum and a very large number of local
minima, where all derivatives of the potential energy function with respect to the coordinates are zero and all
second derivatives are non-negative. The matrix of second derivatives, which is called the Hessian matrix, has non-
negative eigenvalues; only the collective coordinates that correspond to translation and rotation (for an isolated
molecule) have zero eigenvalues. In between the local minima there are saddle points, where the Hessian matrix
has only one negative eigenvalue. These points are the mountain passes through which the system can migrate
from one local minimum to another.

Knowledge of all local minima, including the global one, and of all saddle points would enable us to describe
the relevant structures and conformations and their free energies, as well as the dynamics of structural transitions.
Unfortunately, the dimensionality of the configurational space and the number of local minima is so high that
it is impossible to sample the space at a sufficient number of points to obtain a complete survey. In particular,
no minimization method exists that guarantees the determination of the global minimum in any practical amount
of time. Impractical methods exist, some much faster than others 16 (page 577). However, given a starting
configuration, it is possible to find the nearest local minimum. “Nearest” in this context does not always imply
“nearest” in a geometrical sense (i.e., the least sum of square coordinate differences), but means the minimum that
can be reached by systematically moving down the steepest local gradient. Finding this nearest local minimum
is all that GROMACS can do for you, sorry! If you want to find other minima and hope to discover the global
minimum in the process, the best advice is to experiment with temperature-coupled MD: run your system at a
high temperature for a while and then quench it slowly down to the required temperature; do this repeatedly! If
something as a melting or glass transition temperature exists, it is wise to stay for some time slightly below that
temperature and cool down slowly according to some clever scheme, a process called simulated annealing. Since
no physical truth is required, you can use your imagination to speed up this process. One trick that often works is
to make hydrogen atoms heavier (mass 10 or so): although that will slow down the otherwise very rapid motions
of hydrogen atoms, it will hardly influence the slower motions in the system, while enabling you to increase the
time step by a factor of 3 or 4. You can also modify the potential energy function during the search procedure, e.g.
by removing barriers (remove dihedral angle functions or replace repulsive potentials by soft-core potentials 17
(page 577)), but always take care to restore the correct functions slowly. The best search method that allows rather
drastic structural changes is to allow excursions into four-dimensional space 18 (page 577), but this requires some
extra programming beyond the standard capabilities of GROMACS.

Three possible energy minimization methods are:

• Those that require only function evaluations. Examples are the simplex method and its variants. A step is
made on the basis of the results of previous evaluations. If derivative information is available, such methods
are inferior to those that use this information.

• Those that use derivative information. Since the partial derivatives of the potential energy with respect to all
coordinates are known in MD programs (these are equal to minus the forces) this class of methods is very
suitable as modification of MD programs.

• Those that use second derivative information as well. These methods are superior in their convergence prop-
erties near the minimum: a quadratic potential function is minimized in one step! The problem is that for
𝑁 particles a 3𝑁 × 3𝑁 matrix must be computed, stored, and inverted. Apart from the extra programming
to obtain second derivatives, for most systems of interest this is beyond the available capacity. There are
intermediate methods that build up the Hessian matrix on the fly, but they also suffer from excessive storage
requirements. So GROMACS will shy away from this class of methods.

The steepest descent method, available in GROMACS, is of the second class. It simply takes a step in the direction
of the negative gradient (hence in the direction of the force), without any consideration of the history built up in
previous steps. The step size is adjusted such that the search is fast, but the motion is always downhill. This is
a simple and sturdy, but somewhat stupid, method: its convergence can be quite slow, especially in the vicinity
of the local minimum! The faster-converging conjugate gradient method (see e.g. 19 (page 577)) uses gradient
information from previous steps. In general, steepest descents will bring you close to the nearest local minimum
very quickly, while conjugate gradients brings you very close to the local minimum, but performs worse far away

5.2. Introduction 356

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

from the minimum. GROMACS also supports the L-BFGS minimizer, which is mostly comparable to conjugate
gradient method, but in some cases converges faster.

5.2. Introduction 357

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.3 Definitions and Units

5.3.1 Notation

The following conventions for mathematical typesetting are used throughout this document:

Item Notation Example

Vector Bold italic r𝑖
Vector Length Italic 𝑟𝑖

We define the lowercase subscripts 𝑖, 𝑗, 𝑘 and 𝑙 to denote particles: r𝑖 is the position vector of particle 𝑖, and using
this notation:

r𝑖𝑗 = r𝑗 − r𝑖

𝑟𝑖𝑗 = |r𝑖𝑗 |
(5.5)

The force on particle 𝑖 is denoted by F𝑖 and

F𝑖𝑗 = force on 𝑖 exerted by 𝑗 (5.6)

5.3.2 MD units

GROMACS uses a consistent set of units that produce values in the vicinity of unity for most relevant molecular
quantities. Let us call them MD units. The basic units in this system are nm, ps, K, electron charge (e) and
atomic mass unit (u), see Table 5.2 The values used in GROMACS are taken from the CODATA Internationally
recommended 2010 values of fundamental physical constants (see NIST homepage).

Table 5.2: Basic units used in GROMACS

Quantity Symbol Unit

length r nm =10−9 𝑚
mass m u (unified atomic mass unit) = 1.660 538 921× 10−27 𝑘𝑔
time t ps =10−12 𝑠
charge q e = elementary charge = 1.602 176 565× 10−19 𝐶
temperature T K

Consistent with these units are a set of derived units, given in Table 5.3

Table 5.3: Derived units. Note that an additional conversion factor of
1028 a.m.u (≈ 16.6) is applied to get bar instead of internal MD units in
the energy and log files

Quantity Symbol Unit

energy 𝐸, 𝑉 kJ mol−1

Force F kJ mol−1 nm−1

pressure 𝑝 bar
velocity 𝑣 nm ps−1 = 1000 m s−1

dipole moment 𝜇 e nm

electric potential Φ kJ mol−1 e−1 = 0.010 364 269 19 Volt
electric field 𝐸 kJ mol−1 nm−1 e−1 = 1.036 426 919× 107 Vm−1

The electric conversion factor 𝑓 = 1
4𝜋𝜀𝑜

= 138.935 458 kJ mol−1nm e−2. It relates the mechanical quantities
to the electrical quantities as in

𝑉 = 𝑓
𝑞2

𝑟
or 𝐹 = 𝑓

𝑞2

𝑟2
(5.7)

5.3. Definitions and Units 358

http://nist.gov

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Electric potentials Φ and electric fields E are intermediate quantities in the calculation of energies and forces.
They do not occur inside GROMACS. If they are used in evaluations, there is a choice of equations and related
units. We strongly recommend following the usual practice of including the factor 𝑓 in expressions that evaluate
Φ and E:

Φ(r) = 𝑓
∑︁
𝑗

𝑞𝑗
|r− r𝑗 |

E(r) = 𝑓
∑︁
𝑗

𝑞𝑗
(r− r𝑗)

|r− r𝑗 |3
(5.8)

With these definitions, 𝑞Φ is an energy and 𝑞E is a force. The units are those given in Table 5.3 about 10 mV for
potential. Thus, the potential of an electronic charge at a distance of 1 nm equals 𝑓 ≈ 140 units ≈ 1.4 V. (exact
value: 1.439 964 5 V)

Note that these units are mutually consistent; changing any of the units is likely to produce inconsistencies and
is therefore strongly discouraged! In particular: if Å are used instead of nm, the unit of time changes to 0.1 ps.
If kcal mol−1 (= 4.184 kJ mol−1) is used instead of kJ mol−1 for energy, the unit of time becomes 0.488882 ps
and the unit of temperature changes to 4.184 K. But in both cases all electrical energies go wrong, because they
will still be computed in kJ mol−1, expecting nm as the unit of length. Although careful rescaling of charges may
still yield consistency, it is clear that such confusions must be rigidly avoided.

In terms of the MD units, the usual physical constants take on different values (see Table 5.4). All quantities are
per mol rather than per molecule. There is no distinction between Boltzmann’s constant 𝑘 and the gas constant 𝑅:
their value is 0.008 314 462 1kJ mol−1K−1.

Table 5.4: Some Physical Constants

Symbol Name Value

𝑁𝐴𝑉 Avogadro’s number 6.022 141 29× 1023 mol−1

𝑅 gas constant 8.314 462 1× 10−3 kJ mol−1 K−1

𝑘𝐵 Boltzmann’s constant idem
ℎ Planck’s constant 0.399 031 271 kJ mol−1 ps

ℏ Dirac’s constant 0.063 507 799 3 kJ mol−1 ps
𝑐 velocity of light 299 792.458 nm ps−1

5.3.3 Reduced units

When simulating Lennard-Jones (LJ) systems, it might be advantageous to use reduced units (i.e., setting 𝜖𝑖𝑖 =
𝜎𝑖𝑖 = 𝑚𝑖 = 𝑘𝐵 = 1 for one type of atoms). This is possible. When specifying the input in reduced units, the
output will also be in reduced units. The one exception is the temperature, which is expressed in 0.008 314 462 1
reduced units. This is a consequence of using Boltzmann’s constant in the evaluation of temperature in the code.
Thus not 𝑇 , but 𝑘𝐵𝑇 , is the reduced temperature. A GROMACS temperature 𝑇 = 1 means a reduced temperature
of 0.008 . . . units; if a reduced temperature of 1 is required, the GROMACS temperature should be 120.272 36.

In Table 5.5 quantities are given for LJ potentials:

𝑉𝐿𝐽 = 4𝜖

[︂(︁𝜎
𝑟

)︁12
−
(︁𝜎
𝑟

)︁6]︂
(5.9)

5.3. Definitions and Units 359

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Table 5.5: Reduced Lennard-Jones quantities

Quantity Symbol Relation to SI

Length r* r𝜎−1

Mass m* m M−1

Time t* t𝜎−1
√︀
𝜖/𝑀

Temperature T* k𝐵T 𝜖−1

Energy E* E𝜖−1

Force F* F𝜎 𝜖−1

Pressure P* P𝜎3𝜖−1

Velocity v* v
√︀
𝑀/𝜖

Density 𝜌* N𝜎3 𝑉 −1

5.3.4 Mixed or Double precision

GROMACS can be compiled in either mixed or double precision. Documentation of previous GROMACS versions
referred to single precision, but the implementation has made selective use of double precision for many years.
Using single precision for all variables would lead to a significant reduction in accuracy. Although in mixed
precision all state vectors, i.e. particle coordinates, velocities and forces, are stored in single precision, critical
variables are double precision. A typical example of the latter is the virial, which is a sum over all forces in the
system, which have varying signs. In addition, in many parts of the code we managed to avoid double precision
for arithmetic, by paying attention to summation order or reorganization of mathematical expressions. The default
configuration uses mixed precision, but it is easy to turn on double precision by adding the option -DGMX_-
DOUBLE=on to cmake. Double precision will be 20 to 100% slower than mixed precision depending on the
architecture you are running on. Double precision will use somewhat more memory and run input, energy and
full-precision trajectory files will be almost twice as large.

The energies in mixed precision are accurate up to the last decimal, the last one or two decimals of the forces are
non-significant. The virial is less accurate than the forces, since the virial is only one order of magnitude larger
than the size of each element in the sum over all atoms (sec. Virial and pressure (page 448)). In most cases this
is not really a problem, since the fluctuations in the virial can be two orders of magnitude larger than the average.
Using cut-offs for the Coulomb interactions cause large errors in the energies, forces, and virial. Even when using
a reaction-field or lattice sum method, the errors are larger than, or comparable to, the errors due to the partial use
of single precision. Since MD is chaotic, trajectories with very similar starting conditions will diverge rapidly, the
divergence is faster in mixed precision than in double precision.

For most simulations, mixed precision is accurate enough. In some cases double precision is required to get
reasonable results:

• normal mode analysis, for the conjugate gradient or l-bfgs minimization and the calculation and diagonal-
ization of the Hessian

• long-term energy conservation, especially for large systems

5.3. Definitions and Units 360

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.4 Algorithms

In this chapter we first give describe some general concepts used in GROMACS: periodic boundary conditions
(sec. Periodic boundary conditions (page 361)) and the group concept (sec. The group concept (page 364)). The
MD algorithm is described in sec. Molecular Dynamics (page 365): first a global form of the algorithm is given,
which is refined in subsequent subsections. The (simple) EM (Energy Minimization) algorithm is described in
sec. Energy Minimization (page 393). Some other algorithms for special purpose dynamics are described after
this.

A few issues are of general interest. In all cases the system must be defined, consisting of molecules. Molecules
again consist of particles with defined interaction functions. The detailed description of the topology of the
molecules and of the force field and the calculation of forces is given in chapter Interaction function and force
fields (page 405). In the present chapter we describe other aspects of the algorithm, such as pair list generation,
update of velocities and positions, coupling to external temperature and pressure, conservation of constraints. The
analysis of the data generated by an MD simulation is treated in chapter Analysis (page 551).

5.4.1 Periodic boundary conditions

j’ j’

i’ i’i’

i’

j’

i’ i’

y

x

y

x

j’ j’
i’

i’

i’i
j’

j’ j’j’
i’ii’

j’j’

j’

j
i’ i’i’

j’
i’ i’

j’

j’j’

j

Fig. 5.1: Periodic boundary conditions in two dimensions.

The classical way to minimize edge effects in a finite system is to apply periodic boundary conditions. The atoms
of the system to be simulated are put into a space-filling box, which is surrounded by translated copies of itself
(Fig. 5.1). Thus there are no boundaries of the system; the artifact caused by unwanted boundaries in an isolated
cluster is now replaced by the artifact of periodic conditions. If the system is crystalline, such boundary conditions
are desired (although motions are naturally restricted to periodic motions with wavelengths fitting into the box).
If one wishes to simulate non-periodic systems, such as liquids or solutions, the periodicity by itself causes errors.
The errors can be evaluated by comparing various system sizes; they are expected to be less severe than the errors
resulting from an unnatural boundary with vacuum.

There are several possible shapes for space-filling unit cells. Some, like the rhombic dodecahedron and the
truncated octahedron 20 (page 577) are closer to being a sphere than a cube is, and are therefore better suited to the
study of an approximately spherical macromolecule in solution, since fewer solvent molecules are required to fill
the box given a minimum distance between macromolecular images. At the same time, rhombic dodecahedra and
truncated octahedra are special cases of triclinic unit cells; the most general space-filling unit cells that comprise
all possible space-filling shapes 21 (page 577). For this reason, GROMACS is based on the triclinic unit cell.

5.4. Algorithms 361

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS uses periodic boundary conditions, combined with the minimum image convention: only one – the
nearest – image of each particle is considered for short-range non-bonded interaction terms. For long-range
electrostatic interactions this is not always accurate enough, and GROMACS therefore also incorporates lattice
sum methods such as Ewald Sum, PME and PPPM.

GROMACS supports triclinic boxes of any shape. The simulation box (unit cell) is defined by the 3 box vectors
a,b and c. The box vectors must satisfy the following conditions:

𝑎𝑦 = 𝑎𝑧 = 𝑏𝑧 = 0 (5.10)

𝑎𝑥 > 0, 𝑏𝑦 > 0, 𝑐𝑧 > 0 (5.11)

|𝑏𝑥| ≤
1

2
𝑎𝑥, |𝑐𝑥| ≤

1

2
𝑎𝑥, |𝑐𝑦| ≤

1

2
𝑏𝑦 (5.12)

Equations (5.10) can always be satisfied by rotating the box. Inequalities ((5.11)) and ((5.12)) can always be
satisfied by adding and subtracting box vectors.

Even when simulating using a triclinic box, GROMACS always keeps the particles in a brick-shaped volume for
efficiency, as illustrated in Fig. 5.1 for a 2-dimensional system. Therefore, from the output trajectory it might
seem that the simulation was done in a rectangular box. The program trjconv (page 281) can be used to convert
the trajectory to a different unit-cell representation.

It is also possible to simulate without periodic boundary conditions, but it is usually more efficient to simulate
an isolated cluster of molecules in a large periodic box, since fast grid searching can only be used in a periodic
system.

Fig. 5.2: A rhombic dodecahedron (arbitrary orientation).

Fig. 5.3: A truncated octahedron (arbitrary orientation).

5.4. Algorithms 362

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Some useful box types

Table 5.6: Overview over different box types

box type image
distance

box
volume

box vectors box vector angles
a b c ∠ bc ∠ ac ∠ ab

cubic 𝑑 𝑑3 𝑑 0 0 90∘ 90∘ 90∘

0 𝑑 0
0 0 𝑑

rhombic
dodecahedron
(xy-square)

𝑑 1
2

√
2 𝑑3

0.707 𝑑3
𝑑 0 1

2 𝑑 60∘ 60∘ 90∘

0 𝑑 1
2 𝑑

0 0 1
2

√
2 𝑑

rhombic
dodecahedron
(xy- hexagon)

𝑑 1
2

√
2 𝑑3

0.707 𝑑3
𝑑 1

2 𝑑
1
2 𝑑 60∘ 60∘ 60∘

0 1
2

√
3 𝑑 1

6

√
3 𝑑

0 0 1
3

√
6 𝑑

truncated
octahedron

𝑑 4
9

√
3 𝑑3

0.770 𝑑3
𝑑 1

3 𝑑 − 1
3 𝑑 70.53∘ 109.47∘ 70.53∘

0 2
3

√
2 𝑑 1

3

√
2 𝑑

0 0 1
3

√
6 𝑑

The three most useful box types for simulations of solvated systems are described in Table 5.6. The rhombic
dodecahedron (Fig. 5.2) is the smallest and most regular space-filling unit cell. Each of the 12 image cells is at the
same distance. The volume is 71% of the volume of a cube having the same image distance. This saves about 29%
of CPU-time when simulating a spherical or flexible molecule in solvent. There are two different orientations of a
rhombic dodecahedron that satisfy equations (5.10), (5.11) and (5.12). The program editconf (page 171) produces
the orientation which has a square intersection with the xy-plane. This orientation was chosen because the first
two box vectors coincide with the x and y-axis, which is easier to comprehend. The other orientation can be useful
for simulations of membrane proteins. In this case the cross-section with the xy-plane is a hexagon, which has
an area which is 14% smaller than the area of a square with the same image distance. The height of the box (𝑐𝑧)
should be changed to obtain an optimal spacing. This box shape not only saves CPU time, it also results in a more
uniform arrangement of the proteins.

Cut-off restrictions

The minimum image convention implies that the cut-off radius used to truncate non-bonded interactions may not
exceed half the shortest box vector:

𝑅𝑐 <
1

2
min(‖a‖, ‖b‖, ‖c‖), (5.13)

because otherwise more than one image would be within the cut-off distance of the force. When a macromolecule,
such as a protein, is studied in solution, this restriction alone is not sufficient: in principle, a single solvent molecule
should not be able to ‘see’ both sides of the macromolecule. This means that the length of each box vector must
exceed the length of the macromolecule in the direction of that edge plus two times the cut-off radius 𝑅𝑐. It is,
however, common to compromise in this respect, and make the solvent layer somewhat smaller in order to reduce
the computational cost. For efficiency reasons the cut-off with triclinic boxes is more restricted. For grid search
the extra restriction is weak:

𝑅𝑐 < min(𝑎𝑥, 𝑏𝑦, 𝑐𝑧) (5.14)

For simple search the extra restriction is stronger:

𝑅𝑐 <
1

2
min(𝑎𝑥, 𝑏𝑦, 𝑐𝑧) (5.15)

Each unit cell (cubic, rectangular or triclinic) is surrounded by 26 translated images. A particular image can
therefore always be identified by an index pointing to one of 27 translation vectors and constructed by applying
a translation with the indexed vector (see Compute forces (page 372)). Restriction (5.14) ensures that only 26
images need to be considered.

5.4. Algorithms 363

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.4.2 The group concept

The GROMACS MD and analysis programs use user-defined groups of atoms to perform certain actions on.
The maximum number of groups is 256, but each atom can only belong to six different groups, one each of the
following:

temperature-coupling group
The temperature coupling parameters (reference temperature, time constant, number of degrees of freedom,
see The leap-frog integrator (page 373)) can be defined for each T-coupling group separately. For example,
in a solvated macromolecule the solvent (that tends to generate more heating by force and integration errors)
can be coupled with a shorter time constant to a bath than is a macromolecule, or a surface can be kept cooler
than an adsorbing molecule. Many different T-coupling groups may be defined. See also center of mass
groups below.

freeze group
Atoms that belong to a freeze group are kept stationary in the dynamics. This is useful during equilibration,
e.g. to avoid badly placed solvent molecules giving unreasonable kicks to protein atoms, although the same
effect can also be obtained by putting a restraining potential on the atoms that must be protected. The freeze
option can be used, if desired, on just one or two coordinates of an atom, thereby freezing the atoms in
a plane or on a line. When an atom is partially frozen, constraints will still be able to move it, even in a
frozen direction. A fully frozen atom can not be moved by constraints. Many freeze groups can be defined.
Frozen coordinates are unaffected by pressure scaling; in some cases this can produce unwanted results,
particularly when constraints are also used (in this case you will get very large pressures). Accordingly,
it is recommended to avoid combining freeze groups with constraints and pressure coupling. For the sake
of equilibration it could suffice to start with freezing in a constant volume simulation, and afterward use
position restraints in conjunction with constant pressure.

accelerate group
On each atom in an “accelerate group” an acceleration a𝑔 is imposed. This is equivalent to a mass-weighted
external force. This feature makes it possible to drive the system into a non-equilibrium state to compute,
for example, transport properties.

energy-monitor group
Mutual interactions between all energy-monitor groups are compiled during the simulation. This is done
separately for Lennard-Jones and Coulomb terms. In principle up to 256 groups could be defined, but that
would lead to 256×256 items! Better use this concept sparingly.

All non-bonded interactions between pairs of energy-monitor groups can be excluded (see details in the
User Guide). Pairs of particles from excluded pairs of energy-monitor groups are not put into the pair list.
This can result in a significant speedup for simulations where interactions within or between parts of the
system are not required.

center of mass group
In GROMACS, the center of mass (COM) motion can be removed, for either the complete system or for
groups of atoms. The latter is useful, e.g. for systems where there is limited friction (e.g. gas systems) to
prevent center of mass motion to occur. It makes sense to use the same groups for temperature coupling and
center of mass motion removal.

Compressed position output group
In order to further reduce the size of the compressed trajectory file (xtc (page 496) or tng (page 492)), it is
possible to store only a subset of all particles. All x-compression groups that are specified are saved, the
rest are not. If no such groups are specified, than all atoms are saved to the compressed trajectory file.

The use of groups in GROMACS tools is described in sec. Using Groups (page 551).

5.4. Algorithms 364

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.4.3 Molecular Dynamics

THE GLOBAL MD ALGORITHM

1. Input initial conditions
Potential interaction 𝑉 as a function of atom positions
Positions r of all atoms in the system
Velocities v of all atoms in the system
⇓

repeat 2,3,4 for the required number of steps:

2. Compute forces
The force on any atom

F𝑖 = −𝜕𝑉
𝜕r𝑖

is computed by calculating the force between non-bonded atom pairs:
F𝑖 =

∑︀
𝑗 F𝑖𝑗

plus the forces due to bonded interactions (which may depend on 1, 2, 3, or 4 atoms), plus restraining and/or
external forces.
The potential and kinetic energies and the pressure tensor may be computed.
⇓
3. Update configuration
The movement of the atoms is simulated by numerically solving Newton’s equations of motion
d2r𝑖
d𝑡2

=
F𝑖

𝑚𝑖
or
dr𝑖
d𝑡

= v𝑖;
dv𝑖

d𝑡
=

F𝑖

𝑚𝑖

⇓
4. if required: Output step
write positions, velocities, energies, temperature, pressure, etc.

A global flow scheme for MD is given above. Each MD or EM run requires as input a set of initial coordinates and
– optionally – initial velocities of all particles involved. This chapter does not describe how these are obtained;
for the setup of an actual MD run check the User guide (page 28) in Sections System preparation (page 34) and
Getting started (page 30).

5.4. Algorithms 365

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Initial conditions

Topology and force field

The system topology, including a description of the force field, must be read in. Force fields and topologies are
described in chapter Interaction function and force fields (page 405) and top (page 492), respectively. All this
information is static; it is never modified during the run.

Coordinates and velocities

Velocity

Fig. 5.4: A Maxwell-Boltzmann velocity distribution, generated from random numbers.

Then, before a run starts, the box size and the coordinates and velocities of all particles are required. The box size
and shape is determined by three vectors (nine numbers) b1,b2,b3, which represent the three basis vectors of the
periodic box.

If the run starts at 𝑡 = 𝑡0, the coordinates at 𝑡 = 𝑡0 must be known. The leap-frog algorithm, the default algorithm
used to update the time step with ∆𝑡 (see The leap-frog integrator (page 373)), also requires that the velocities
at 𝑡 = 𝑡0 − 1

2∆𝑡 are known. If velocities are not available, the program can generate initial atomic velocities
𝑣𝑖, 𝑖 = 1 . . . 3𝑁 with a Maxwell-Boltzmann distribution (Fig. 5.4) at a given absolute temperature 𝑇 :

𝑝(𝑣𝑖) =

√︂
𝑚𝑖

2𝜋𝑘𝑇
exp

(︂
−𝑚𝑖𝑣

2
𝑖

2𝑘𝑇

)︂
(5.16)

where 𝑘 is Boltzmann’s constant (see chapter Definitions and Units (page 358)). To accomplish this, normally
distributed random numbers are generated by adding twelve random numbers 𝑅𝑘 in the range 0 ≤ 𝑅𝑘 < 1 and
subtracting 6.0 from their sum. The result is then multiplied by the standard deviation of the velocity distribution√︀
𝑘𝑇/𝑚𝑖. Since the resulting total energy will not correspond exactly to the required temperature 𝑇 , a correction

is made: first the center-of-mass motion is removed and then all velocities are scaled so that the total energy
corresponds exactly to 𝑇 (see (5.21)).

Center-of-mass motion

The center-of-mass velocity is normally set to zero at every step; there is (usually) no net external force acting
on the system and the center-of-mass velocity should remain constant. In practice, however, the update algorithm
introduces a very slow change in the center-of-mass velocity, and therefore in the total kinetic energy of the system
– especially when temperature coupling is used. If such changes are not quenched, an appreciable center-of-mass
motion can develop in long runs, and the temperature will be significantly misinterpreted. Something similar
may happen due to overall rotational motion, but only when an isolated cluster is simulated. In periodic systems
with filled boxes, the overall rotational motion is coupled to other degrees of freedom and does not cause such
problems.

5.4. Algorithms 366

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Neighbor searching

As mentioned in chapter Interaction function and force fields (page 405), internal forces are either generated
from fixed (static) lists, or from dynamic lists. The latter consist of non-bonded interactions between any pair
of particles. When calculating the non-bonded forces, it is convenient to have all particles in a rectangular box.
As shown in Fig. 5.1, it is possible to transform a triclinic box into a rectangular box. The output coordinates
are always in a rectangular box, even when a dodecahedron or triclinic box was used for the simulation. (5.10)
ensures that we can reset particles in a rectangular box by first shifting them with box vector c, then with b and
finally with a. Equations (5.12), (5.13) and (5.14) ensure that we can find the 14 nearest triclinic images within a
linear combination that does not involve multiples of box vectors.

Pair lists generation

The non-bonded pair forces need to be calculated only for those pairs 𝑖, 𝑗 for which the distance 𝑟𝑖𝑗 between 𝑖 and
the nearest image of 𝑗 is less than a given cut-off radius 𝑅𝑐. Some of the particle pairs that fulfill this criterion are
excluded, when their interaction is already fully accounted for by bonded interactions. But for most electrostatic
treatments, correction forces also need to be computed for such excluded atom pairs. GROMACS employs a
pair list that contains those particle pairs for which non-bonded forces must be calculated. The pair list contains
particles 𝑖, a displacement vector for particle 𝑖, and all particles 𝑗 that are within rlist of this particular image
of particle 𝑖. The list is updated every nstlist steps.

To make the pair list, all atom pairs that are within the pair-list cut-off distance need to be found and stored in a list.
Note that such a list generally does not store all neighbors for each atom, since each atom pair should appear only
once in the list. This searching, usually called neighbor search (NS) or pair search, involves periodic boundary
conditions and determining the image (see sec. Periodic boundary conditions (page 361)). The search algorithm
employed in GROMACS is 𝑂(𝑁).

As pair searching is an expensive operation, a generated pair list is retained for a certain number of integration
steps. A buffer is needed to account for relative displacements of atoms over the steps where a fixed pair list is
retained. GROMACS uses a buffered pair list by default. It also uses clusters of particles, but these are not static
as in the old charge group scheme. Rather, the clusters are defined spatially and consist of 4 or 8 particles, which
is convenient for stream computing, using e.g. SSE, AVX or CUDA on GPUs. At neighbor search steps, a pair
list is created with a Verlet buffer, i.e. the pair-list cut-off is larger than the interaction cut-off. In the non-bonded
kernels, interactions are only computed when a particle pair is within the cut-off distance at that particular time
step. This ensures that as particles move between pair search steps, forces between nearly all particles within
the cut-off distance are calculated. We say nearly all particles, because GROMACS uses a fixed pair-list update
frequency for efficiency. A particle-pair, whose distance was outside the cut-off, could possibly move enough
during this fixed number of steps that its distance is now within the cut-off. This small chance results in a small
energy drift, and the size of the chance depends on the temperature. When temperature coupling is used, the
buffer size can be determined automatically, given a certain tolerance on the energy drift. The default tolerance is
0.005 kJ/mol/ps per particle, but in practice the energy drift is usually an order of magnitude smaller. Note that
in single precision for normal atomistic simulations constraints cause a drift somewhere around 0.0001 kJ/mol/ps
per particle, so it does not make sense to go much lower than that.

The pair list is implemented in a very efficient fashion based on clusters of particles. The simplest example is a
cluster size of 4 particles. The pair list is then constructed based on cluster pairs. The cluster-pair search is much
faster searching based on particle pairs, because 4×4 = 16 particle pairs are put in the list at once. The non-bonded
force calculation kernel can then calculate many particle-pair interactions at once, which maps nicely to SIMD
or SIMT units on modern hardware, which can perform multiple floating operations at once. These non-bonded
kernels are much faster than the kernels used in the group scheme for most types of systems, particularly on newer
hardware. For further information on algorithmic and implementation details of the Verlet cut-off scheme and the
NxM kernels, as well as detailed performance analysis, please consult the following article: 182 (page 585).

Additionally, when the list buffer is determined automatically as described below, we also apply dynamic pair
list pruning. The pair list can be constructed infrequently, but that can lead to a lot of pairs in the list that are
outside the cut-off range for all or most of the life time of this pair list. Such pairs can be pruned out by applying
a cluster-pair kernel that only determines which clusters are in range. Because of the way the non-bonded data is
regularized in GROMACS, this kernel is an order of magnitude faster than the search and the interaction kernel.
On the GPU this pruning is overlapped with the integration on the CPU, so it is free in most cases. Therefore we

5.4. Algorithms 367

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

can prune every 4-10 integration steps with little overhead and significantly reduce the number of cluster pairs in
the interaction kernel. This procedure is applied automatically, unless the user set the pair-list buffer size manually.

Energy drift and pair list buffering

For a canonical (NVT) ensemble, the average energy error caused by diffusion of 𝑗 particles from outside the pair-
list cut-off 𝑟ℓ to inside the interaction cut-off 𝑟𝑐 over the lifetime of the list can be determined from the atomic
displacements and the shape of the potential at the cut-off. The displacement distribution along one dimension for
a freely moving particle with mass 𝑚 over time 𝑡 at temperature 𝑇 is a Gaussian 𝐺(𝑥) of zero mean and variance
𝜎2 = 𝑡2𝑘𝐵𝑇/𝑚. For the distance between two particles, the variance changes to 𝜎2 = 𝜎2

12 = 𝑡2𝑘𝐵𝑇 (1/𝑚1 +
1/𝑚2). Note that in practice particles usually interact with (bump into) other particles over time 𝑡 and therefore
the real displacement distribution is much narrower. Given a non-bonded interaction cut-off distance of 𝑟𝑐 and a
pair-list cut-off 𝑟ℓ = 𝑟𝑐 + 𝑟𝑏 for the Verlet buffer size 𝑟𝑏, we can then write the average energy error after time 𝑡
for all missing pair interactions between a single 𝑖 particle of type 1 surrounded by all 𝑗 particles that are of type
2 with number density 𝜌2, when the inter-particle distance changes from 𝑟0 to 𝑟𝑡, as:

⟨∆𝑉 ⟩ =
∫︁ 𝑟𝑐

0

∫︁ ∞

𝑟ℓ

4𝜋𝑟20𝜌2𝑉 (𝑟𝑡)𝐺

(︂
𝑟𝑡 − 𝑟0
𝜎

)︂
𝑑𝑟0 𝑑𝑟𝑡 (5.17)

To evaluate this analytically, we need to make some approximations. First we replace 𝑉 (𝑟𝑡) by a Taylor expansion
around 𝑟𝑐, then we can move the lower bound of the integral over 𝑟0 to −∞ which will simplify the result:

⟨∆𝑉 ⟩ ≈
∫︁ 𝑟𝑐

−∞

∫︁ ∞

𝑟ℓ

4𝜋𝑟20𝜌2

[︁
𝑉 (𝑟𝑐)+

𝑉 ′(𝑟𝑐)(𝑟𝑡 − 𝑟𝑐)+

𝑉 ′′(𝑟𝑐)
1

2
(𝑟𝑡 − 𝑟𝑐)

2+

𝑉 ′′′(𝑟𝑐)
1

6
(𝑟𝑡 − 𝑟𝑐)

3+

𝑂
(︀
(𝑟𝑡 − 𝑟𝑐)

4
)︀]︁
𝐺

(︂
𝑟𝑡 − 𝑟0
𝜎

)︂
𝑑𝑟0 𝑑𝑟𝑡

Replacing the factor 𝑟20 by (𝑟ℓ + 𝜎)2, which results in a slight overestimate, allows us to calculate the integrals
analytically:

⟨∆𝑉 ⟩≈ 4𝜋(𝑟ℓ + 𝜎)2𝜌2

∫︁ 𝑟𝑐

−∞

∫︁ ∞

𝑟ℓ

[︁
𝑉 (𝑟𝑐)+

𝑉 ′(𝑟𝑐)(𝑟𝑡 − 𝑟𝑐)+

𝑉 ′′(𝑟𝑐)
1

2
(𝑟𝑡 − 𝑟𝑐)

2+

𝑉 ′′′(𝑟𝑐)
1

6
(𝑟𝑡 − 𝑟𝑐)

3
]︁
𝐺

(︂
𝑟𝑡 − 𝑟0
𝜎

)︂
𝑑𝑟0 𝑑𝑟𝑡

= 4𝜋(𝑟ℓ + 𝜎)2𝜌2

{︂
𝑉 (𝑟𝑐)

[︁
𝜎𝐺
(︁𝑟𝑏
𝜎

)︁
− 𝑟𝑏𝐸

(︁𝑟𝑏
𝜎

)︁]︁
+

1

2
𝑉 ′(𝑟𝑐)

[︁
𝑟𝑏𝜎𝐺

(︁𝑟𝑏
𝜎

)︁
− (𝑟2𝑏 + 𝜎2)𝐸

(︁𝑟𝑏
𝜎

)︁]︁
+

1

6
𝑉 ′′(𝑟𝑐)

[︁
𝜎(𝑟2𝑏 + 2𝜎2)𝐺

(︁𝑟𝑏
𝜎

)︁
− 𝑟𝑏(𝑟

2
𝑏 + 3𝜎2)𝐸

(︁𝑟𝑏
𝜎

)︁]︁
+

1

24
𝑉 ′′′(𝑟𝑐)

[︂
𝑟𝑏𝜎(𝑟

2
𝑏 + 5𝜎2)𝐺

(︁𝑟𝑏
𝜎

)︁
− (𝑟4𝑏 + 6𝑟2𝑏𝜎

2 + 3𝜎4)𝐸
(︁𝑟𝑏
𝜎

)︁]︂}︂

5.4. Algorithms 368

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where𝐺(𝑥) is a Gaussian distribution with 0 mean and unit variance and𝐸(𝑥) = 1
2erfc(𝑥/

√
2). Note the potential

at the cut-off, 𝑉 (𝑟𝑐), is zero by definition. But the same formula can be used to estimate errors in the pressure and
then the force is used for 𝑉 in these formulas and this leading term will generally not be zero. We always want to
achieve small energy error, so 𝜎 will be small compared to both 𝑟𝑐 and 𝑟ℓ, thus the approximations in the equations
above are good, since the Gaussian distribution decays rapidly. The energy error needs to be averaged over all
particle pair types and weighted with the particle counts. In GROMACS we do not allow cancellation of error
between pair types, so we average the absolute values. To obtain the average energy error per unit time, it needs to
be divided by the neighbor-list life time 𝑡 = (nstlist−1)×dt. The function can not be inverted analytically, so
we use bisection to obtain the buffer size 𝑟𝑏 for a target drift. Again we note that in practice the error we usually
be much smaller than this estimate, as in the condensed phase particle displacements will be much smaller than
for freely moving particles, which is the assumption used here.

For inhomogeneous systems, using the global atom densities 𝜌 can lead to an underestimate of the energy drift.
To avoid that, an effective density is used. This is computed by putting all atoms on a grid where the cells are
approximately the size of the cut-off. The densities are then averaged over the cells weighted by the density of
each cell. This provides accurate estimates for inhomogeneous systems, e.g. the effective density for a molecule
or a droplet in an otherwise empty box does not depend on the size of the box.

When (bond) constraints are present, some particles will have fewer degrees of freedom. This will reduce the
energy errors. For simplicity, we only consider one constraint per particle, the heaviest particle in case a particle is
involved in multiple constraints. This simplification overestimates the displacement. The motion of a constrained
particle is a superposition of the 3D motion of the center of mass of both particles and a 2D rotation around the
center of mass. The displacement in an arbitrary direction of a particle with 2 degrees of freedom is not Gaussian,
but rather follows the complementary error function:

√
𝜋

2
√
2𝜎

erfc

(︂
|𝑟|√
2𝜎

)︂
(5.18)

where 𝜎2 is again 𝑡2𝑘𝐵𝑇/𝑚. This distribution can no longer be integrated analytically to obtain the energy error.
But we can generate a tight upper bound using a scaled and shifted Gaussian distribution (not shown). This
Gaussian distribution can then be used to calculate the energy error as described above. The rotation displacement
around the center of mass can not be more than the length of the arm. To take this into account, we scale 𝜎 in
(5.18) (details not presented here) to obtain an overestimate of the real displacement. This latter effect significantly
reduces the buffer size for longer neighborlist lifetimes in e.g. water, as constrained hydrogens are by far the fastest
particles, but they can not move further than 0.1 nm from the heavy atom they are connected to.

There is one important implementation detail that reduces the energy errors caused by the finite Verlet buffer list
size. The derivation above assumes a particle pair list. However, the GROMACS implementation uses a cluster
pair list for efficiency. The pair list consists of pairs of clusters of 4 particles in most cases, also called a 4 × 4
list, but the list can also be 4 × 8 (GPU CUDA kernels and AVX 256-bit single precision kernels) or 4 × 2 (SSE
double-precision kernels). This means that the pair list is effectively much larger than the corresponding 1 × 1
list. Thus slightly beyond the pair-list cut-off there will still be a large fraction of particle pairs present in the list.
This fraction can be determined in a simulation and accurately estimated under some reasonable assumptions. The
fraction decreases with increasing pair-list range, meaning that a smaller buffer can be used. For typical all-atom
simulations with a cut-off of 0.9 nm this fraction is around 0.9, which gives a reduction in the energy errors of a
factor of 10. This reduction is taken into account during the automatic Verlet buffer calculation and results in a
smaller buffer size.

In Fig. 5.5 one can see that for small buffer sizes the drift of the total energy is much smaller than the pair energy
error tolerance, due to cancellation of errors. For larger buffer size, the error estimate is a factor of 6 higher than
drift of the total energy, or alternatively the buffer estimate is 0.024 nm too large. This is because the protons do
not move freely over 18 fs, but rather vibrate.

The only approximation that can lead to an underestimate of the buffer size is that of homogeneous atom density.
This would be particularly problematic for systems with large amount of empty space in the unit cell. This issue is
largely mitigated by computing the atom density on a grid with cells of the size of the non-bonded cut-off distance
and weighting the density by the atom count in each cell. Thus empty space does not affect the effective atom
density. This effective atom density is computed for the starting configuration passed to mdrun (page 215). Thus
there is only an issue with e.g. phase transitions that start from a gas and end up in a liquid.

5.4. Algorithms 369

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0 0.02 0.04 0.06 0.08 0.1
Verlet buffer (nm)

10−6

10−5

10−4

10−3

10−2

dr
ift

 p
er

 a
to

m
 (k

J/
m

ol
/p

s) estimate 1x1

estimate 4x4

double precision

mixed precision

Fig. 5.5: Energy drift per atom for an SPC/E water system at 300K with a time step of 2 fs and a pair-list update
period of 10 steps (pair-list life time: 18 fs). PME was used with ewald-rtol set to 10−5; this parameter affects
the shape of the potential at the cut-off. Error estimates due to finite Verlet buffer size are shown for a 1× 1 atom
pair list and 4× 4 atom pair list without and with (dashed line) cancellation of positive and negative errors. Real
energy drift is shown for simulations using double- and mixed-precision settings. Rounding errors in the SETTLE
constraint algorithm from the use of single precision causes the drift to become negative at large buffer size. Note
that at zero buffer size, the real drift is small because positive (H-H) and negative (O-H) energy errors cancel.

Cut-off artifacts and switched interactions

By default, the pair potentials are shifted to be zero at the cut-off, which makes the potential the integral of the
force. However, there can still be energy drift when the forces are non-zero at the cut-off. This effect is extremely
small and often not noticeable, as other integration errors (e.g. from constraints) may dominate. To completely
avoid cut-off artifacts, the non-bonded forces can be switched exactly to zero at some distance smaller than the
neighbor list cut-off (there are several ways to do this in GROMACS, see sec. Modified non-bonded interactions
(page 408)). One then has a buffer with the size equal to the neighbor list cut-off less the longest interaction
cut-off.

Pressure deviations due to cut-off artifacts

The pressure can be affected more than the energy by missing interactions close to the cut-off, as the force gener-
ally has a discontinuity at the cut-off. For Lennard-Jones forces this leads to a consistent increase in pressure as
the age of the pair list increases because all missing dispersion interactions have the same sign. The electrostatic
forces are much larger at the cut-off, but here the errors tend to cancel out due to (local) electroneutrality. We have
not observed errors larger than 0.1 bar due to missing electrostatic interactions in water with PME electrostatics.
In practice the Lennard-Jones errors are small when electrostatics interactions are present, as there will be a suffi-
cient buffer to keep the electrostatic energy drift below the tolerance. The only case where there can be significant
errors in the pressure is when there are no electrostatic interactions at all or the Ewald relative tolerance parameter
is very small, leading to no, or a very small, pair-list buffer. The most common case is coarse-grained systems.
In the log file from mdrun (page 215) one can find an (over)estimate of the error in the average pressure due to
missing Lennard-Jones interactions. The estimate uses (5.18) where we plug in the Lennard-Jones force for 𝑉 .
The resulting force error is multiplied by the cut-off distance 𝑟𝑐 and divided by the effective box volume to get the
(over)estimate for the error in the pressure. The effective box volume ignores empty space to get a better, higher,
estimate of the local error in the pressure error in inhomogeneous systems.

When automatically setting the Verlet list life time and buffer, a tolerance on the error in the average pressure due
to missing Lennard-Jones interactions can be provided. This uses the estimation formulas described above and
puts an upper bound on the error of the pressure averaged over the lifetime of the pair list. The default value for

5.4. Algorithms 370

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

this tolerance is 0.5 bar. For liquid water this corresponds to a maximum relative devatiation of the density of
2 · 10−5.

Simple search

Due to (5.10) and (5.15), the vector r𝑖𝑗 connecting images within the cut-off 𝑅𝑐 can be found by constructing:

r′′′ = r𝑗 − r𝑖

r′′ = r′′′ − c * round(𝑟′′′𝑧 /𝑐𝑧)
r′ = r′′ − b * round(𝑟′′𝑦/𝑏𝑦)
r𝑖𝑗 = r′ − a * round(𝑟′𝑥/𝑎𝑥)

(5.19)

When distances between two particles in a triclinic box are needed that do not obey (5.10), many shifts of combi-
nations of box vectors need to be considered to find the nearest image.

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0
1 1 1 1 1 1
1 1 1 1 1 1

0 0 0
0 0 0
1 1 1
1 1 1

j

i

i’

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

Fig. 5.6: Grid search in two dimensions. The arrows are the box vectors.

Grid search

The grid search is schematically depicted in Fig. 5.6. All particles are put on the NS grid, with the smallest
spacing ≥ 𝑅𝑐/2 in each of the directions. In the direction of each box vector, a particle 𝑖 has three images. For
each direction the image may be -1,0 or 1, corresponding to a translation over -1, 0 or +1 box vector. We do
not search the surrounding NS grid cells for neighbors of 𝑖 and then calculate the image, but rather construct the
images first and then search neighbors corresponding to that image of 𝑖. As Fig. 5.6 shows, some grid cells may
be searched more than once for different images of 𝑖. This is not a problem, since, due to the minimum image
convention, at most one image will “see” the 𝑗-particle. For every particle, fewer than 125 (53) neighboring cells
are searched. Therefore, the algorithm scales linearly with the number of particles. Although the prefactor is
large, the scaling behavior makes the algorithm far superior over the standard 𝑂(𝑁2) algorithm when there are
more than a few hundred particles. The grid search is equally fast for rectangular and triclinic boxes. Thus for
most protein and peptide simulations the rhombic dodecahedron will be the preferred box shape.

5.4. Algorithms 371

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Charge groups

Charge groups were originally introduced to reduce cut-off artifacts of Coulomb interactions. This concept has
been superseded by exact atomistic cut-off treatments. For historical reasons charge groups are still defined in the
atoms section for each moleculetype in the topology, but they are no longer used.

Compute forces

Potential energy

When forces are computed, the potential energy of each interaction term is computed as well. The total potential
energy is summed for various contributions, such as Lennard-Jones, Coulomb, and bonded terms. It is also pos-
sible to compute these contributions for energy-monitor groups of atoms that are separately defined (see sec. The
group concept (page 364)).

Kinetic energy and temperature

The temperature is given by the total kinetic energy of the 𝑁 -particle system:

𝐸𝑘𝑖𝑛 =
1

2

𝑁∑︁
𝑖=1

𝑚𝑖𝑣
2
𝑖 (5.20)

From this the absolute temperature 𝑇 can be computed using:

1

2
𝑁df𝑘𝑇 = 𝐸kin (5.21)

where 𝑘 is Boltzmann’s constant and 𝑁𝑑𝑓 is the number of degrees of freedom which can be computed from:

𝑁df = 3𝑁 −𝑁𝑐 −𝑁com (5.22)

Here 𝑁𝑐 is the number of constraints imposed on the system. When performing molecular dynamics 𝑁com = 3
additional degrees of freedom must be removed, because the three center-of-mass velocities are constants of the
motion, which are usually set to zero. When simulating in vacuo, the rotation around the center of mass can also
be removed, in this case 𝑁com = 6. When more than one temperature-coupling group is used, the number of
degrees of freedom for group 𝑖 is:

𝑁 𝑖
df = (3𝑁 𝑖 −𝑁 𝑖

𝑐)
3𝑁 −𝑁𝑐 −𝑁com

3𝑁 −𝑁𝑐
(5.23)

The kinetic energy can also be written as a tensor, which is necessary for pressure calculation in a triclinic system,
or systems where shear forces are imposed:

Ekin =
1

2

𝑁∑︁
𝑖

𝑚𝑖v𝑖 ⊗ v𝑖 (5.24)

Pressure and virial

The pressure tensor P is calculated from the difference between kinetic energy 𝐸kin and the virial Ξ:

P =
2

𝑉
(Ekin −Ξ) (5.25)

where 𝑉 is the volume of the computational box. The scalar pressure 𝑃 , which can be used for pressure coupling
in the case of isotropic systems, is computed as:

𝑃 = trace(P)/3

5.4. Algorithms 372

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The virial Ξ tensor is defined as:

Ξ = −1

2

∑︁
𝑖<𝑗

r𝑖𝑗 ⊗ F𝑖𝑗 (5.26)

The GROMACS implementation of the virial computation is described in sec. Virial and pressure (page 448)

The leap-frog integrator

1 20 t

x v x

Fig. 5.7: The Leap-Frog integration method. The algorithm is called Leap-Frog because r and v are leaping like
frogs over each other’s backs.

The default MD integrator in GROMACS is the so-called leap-frog algorithm 22 (page 578) for the integration
of the equations of motion. When extremely accurate integration with temperature and/or pressure coupling is
required, the velocity Verlet integrators are also present and may be preferable (see The velocity Verlet integrator
(page 373)). The leap-frog algorithm uses positions r at time 𝑡 and velocities v at time 𝑡 − 1

2∆𝑡; it updates
positions and velocities using the forces F(𝑡) determined by the positions at time 𝑡 using these relations:

v(𝑡+
1

2
∆𝑡) = v(𝑡− 1

2
∆𝑡) +

∆𝑡

𝑚
F(𝑡)

r(𝑡+∆𝑡) = r(𝑡) + ∆𝑡v(𝑡+
1

2
∆𝑡)

(5.27)

The algorithm is visualized in Fig. 5.7. It produces trajectories that are identical to the Verlet 23 (page 578)
algorithm, whose position-update relation is

r(𝑡+∆𝑡) = 2r(𝑡)− r(𝑡−∆𝑡) +
1

𝑚
F(𝑡)∆𝑡2 +𝑂(∆𝑡4) (5.28)

The algorithm is of third order in r and is time-reversible. See ref. 24 (page 578) for the merits of this algorithm
and comparison with other time integration algorithms.

The equations of motion are modified for temperature coupling and pressure coupling, and extended to include
the conservation of constraints, all of which are described below.

The velocity Verlet integrator

The velocity Verlet algorithm 25 (page 578) is also implemented in GROMACS, though it is not yet fully integrated
with all sets of options. In velocity Verlet, positions r and velocities v at time 𝑡 are used to integrate the equations
of motion; velocities at the previous half step are not required.

v(𝑡+
1

2
∆𝑡) = v(𝑡) +

∆𝑡

2𝑚
F(𝑡)

r(𝑡+∆𝑡) = r(𝑡) + ∆𝑡v(𝑡+
1

2
∆𝑡)

v(𝑡+∆𝑡) = v(𝑡+
1

2
∆𝑡) +

∆𝑡

2𝑚
F(𝑡+∆𝑡)

(5.29)

or, equivalently,

r(𝑡+∆𝑡) = r(𝑡) + ∆𝑡v +
∆𝑡2

2𝑚
F(𝑡)

v(𝑡+∆𝑡) = v(𝑡) +
∆𝑡

2𝑚
[F(𝑡) + F(𝑡+∆𝑡)]

(5.30)

5.4. Algorithms 373

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

With no temperature or pressure coupling, and with corresponding starting points, leap-frog and velocity Verlet
will generate identical trajectories, as can easily be verified by hand from the equations above. Given a single
starting file with the same starting point x(0) and v(0), leap-frog and velocity Verlet will not give identical
trajectories, as leap-frog will interpret the velocities as corresponding to 𝑡 = − 1

2∆𝑡, while velocity Verlet will
interpret them as corresponding to the timepoint 𝑡 = 0.

Understanding reversible integrators: The Trotter decomposition

To further understand the relationship between velocity Verlet and leap-frog integration, we introduce the re-
versible Trotter formulation of dynamics, which is also useful to understanding implementations of thermostats
and barostats in GROMACS.

A system of coupled, first-order differential equations can be evolved from time 𝑡 = 0 to time 𝑡 by applying the
evolution operator

Γ(𝑡) = exp(𝑖𝐿𝑡)Γ(0)

𝑖𝐿 = Γ̇ · ∇Γ,

where 𝐿 is the Liouville operator, and Γ is the multidimensional vector of independent variables (positions and
velocities). A short-time approximation to the true operator, accurate at time ∆𝑡 = 𝑡/𝑃 , is applied 𝑃 times in
succession to evolve the system as

Γ(𝑡) =

𝑃∏︁
𝑖=1

exp(𝑖𝐿∆𝑡)Γ(0) (5.31)

For NVE dynamics, the Liouville operator is

𝑖𝐿 =

𝑁∑︁
𝑖=1

v𝑖 · ∇r𝑖 +

𝑁∑︁
𝑖=1

1

𝑚𝑖
F(𝑟𝑖) · ∇v𝑖

. (5.32)

This can be split into two additive operators

𝑖𝐿1 =

𝑁∑︁
𝑖=1

1

𝑚𝑖
F(𝑟𝑖) · ∇v𝑖

𝑖𝐿2 =

𝑁∑︁
𝑖=1

v𝑖 · ∇r𝑖

Then a short-time, symmetric, and thus reversible approximation of the true dynamics will be

exp(𝑖𝐿∆𝑡) = exp(𝑖𝐿2
1

2
∆𝑡) exp(𝑖𝐿1∆𝑡) exp(𝑖𝐿2

1

2
∆𝑡) +𝒪(∆𝑡3). (5.33)

This corresponds to velocity Verlet integration. The first exponential term over 1
2∆𝑡 corresponds to a velocity

half-step, the second exponential term over ∆𝑡 corresponds to a full velocity step, and the last exponential term
over 1

2∆𝑡 is the final velocity half step. For future times 𝑡 = 𝑛∆𝑡, this becomes

exp(𝑖𝐿𝑛∆𝑡) ≈
(︂
exp(𝑖𝐿2

1

2
∆𝑡) exp(𝑖𝐿1∆𝑡) exp(𝑖𝐿2

1

2
∆𝑡)

)︂𝑛

≈ exp(𝑖𝐿2
1

2
∆𝑡)

(︂
exp(𝑖𝐿1∆𝑡) exp(𝑖𝐿2∆𝑡)

)︂𝑛−1

exp(𝑖𝐿1∆𝑡) exp(𝑖𝐿2
1

2
∆𝑡)

This formalism allows us to easily see the difference between the different flavors of Verlet integrators. The leap-
frog integrator can be seen as starting with (5.33) with the exp (𝑖𝐿1∆𝑡) term, instead of the half-step velocity
term, yielding

exp(𝑖𝐿𝑛∆𝑡) = exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿2∆𝑡) +𝒪(∆𝑡3). (5.34)

5.4. Algorithms 374

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Here, the full step in velocity is between 𝑡− 1
2∆𝑡 and 𝑡+ 1

2∆𝑡, since it is a combination of the velocity half steps
in velocity Verlet. For future times 𝑡 = 𝑛∆𝑡, this becomes

exp(𝑖𝐿𝑛∆𝑡) ≈
(︂
exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿2∆𝑡)

)︂𝑛

. (5.35)

Although at first this does not appear symmetric, as long as the full velocity step is between 𝑡− 1
2∆𝑡 and 𝑡+ 1

2∆𝑡,
then this is simply a way of starting velocity Verlet at a different place in the cycle.

Even though the trajectory and thus potential energies are identical between leap-frog and velocity Verlet, the
kinetic energy and temperature will not necessarily be the same. Standard velocity Verlet uses the velocities at the
𝑡 to calculate the kinetic energy and thus the temperature only at time 𝑡; the kinetic energy is then a sum over all
particles

𝐾𝐸full(𝑡) =
∑︁
𝑖

(︂
1

2𝑚𝑖
v𝑖(𝑡)

)︂2

=
∑︁
𝑖

1

2𝑚𝑖

(︂
1

2
v𝑖(𝑡−

1

2
∆𝑡) +

1

2
v𝑖(𝑡+

1

2
∆𝑡)

)︂2

,

with the square on the outside of the average. Standard leap-frog calculates the kinetic energy at time 𝑡 based on
the average kinetic energies at the timesteps 𝑡+ 1

2∆𝑡 and 𝑡− 1
2∆𝑡, or the sum over all particles

𝐾𝐸average(𝑡) =
∑︁
𝑖

1

2𝑚𝑖

(︂
1

2
v𝑖(𝑡−

1

2
∆𝑡)2 +

1

2
v𝑖(𝑡+

1

2
∆𝑡)2

)︂
, (5.36)

where the square is inside the average.

A non-standard variant of velocity Verlet which averages the kinetic energies 𝐾𝐸(𝑡 + 1
2∆𝑡) and 𝐾𝐸(𝑡 −

1
2∆𝑡), exactly like leap-frog, is also now implemented in GROMACS (as mdp (page 488) file option
integrator=md-vv-avek (page 43)). Without temperature and pressure coupling, velocity Verlet with half-
step-averaged kinetic energies and leap-frog will be identical up to numerical precision. For temperature- and
pressure-control schemes, however, velocity Verlet with half-step-averaged kinetic energies and leap-frog will be
different, as will be discussed in the section in thermostats and barostats.

The half-step-averaged kinetic energy and temperature are slightly more accurate for a given step size; the dif-
ference in average kinetic energies using the half-step-averaged kinetic energies (integrator=md (page 43)
and integrator=md-vv-avek (page 43)) will be closer to the kinetic energy obtained in the limit of small
step size than will the full-step kinetic energy (using integrator=md-vv (page 43)). For NVE simulations,
this difference is usually not significant, since the positions and velocities of the particles are still identical; it
makes a difference in the way the temperature of the simulations are interpreted, but not in the trajectories that
are produced. Although the kinetic energy is more accurate with the half-step-averaged method, meaning that it
changes less as the timestep gets large, it is also more noisy. The RMS deviation of the total energy of the system
(sum of kinetic plus potential) in the half-step-averaged kinetic energy case will be higher (about twice as high in
most cases) than the full-step kinetic energy. The drift will still be the same, however, as again, the trajectories are
identical.

For NVT simulations, however, there will be a difference, as discussed in the section on temperature control, since
the velocities of the particles are adjusted such that kinetic energies of the simulations, which can be calculated
either way, reach the distribution corresponding to the set temperature. In this case, the three methods will not
give identical results.

Because the velocity and position are both defined at the same time 𝑡 the velocity Verlet integrator can be used
for some methods, especially rigorously correct pressure control methods, that are not actually possible with leap-
frog. The integration itself takes negligibly more time than leap-frog, but twice as many communication calls
are currently required. In most cases, and especially for large systems where communication speed is important
for parallelization and differences between thermodynamic ensembles vanish in the 1/𝑁 limit, and when only
NVT ensembles are required, leap-frog will likely be the preferred integrator. For pressure control simulations
where the fine details of the thermodynamics are important, only velocity Verlet allows the true ensemble to be
calculated. In either case, simulation with double precision may be required to get fine details of thermodynamics
correct.

5.4. Algorithms 375

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Multiple time-stepping

The leap-frog integrator in GROMACS supports a configurable multiple time-stepping scheme. This can be used
to improve performance by computing slowly varying forces less frequently. The RESPA scheme 191 (page 585)
is used, which is based on a TROTTER decomposition and is therefore reversible and symplectic.

In order to allow tuning this for each system, the integrator makes it possible to specify different types of bonded
and non-bonded interactions for multiple-time step integration. To avoid integration errors, it is still imperative
that the integration interval used for each force component is short enough, and there is no universal formula that
allows the algorithm to detect this. Since the slowly-varying forces are often of smaller magnitude, using time
steps that are too large might not result in simulations crashing, so it is recommended to be conservative and
only gradually increase intervals while ensuring you get proper sampling and avoid energy drifts. As an initial
guidance, many of the most common biomolecular force fields appear to run into stability problems when the
period of integrating Lennard-Jones forces is 4 fs or longer, so for now we only recommend computing long-
range electrostatics (PME mesh contribution) less frequently than every step when using a base time step of 2
fs. Another, rather different, scenario is to use a base time step of 0.5 fs with non-constrained harmonic bonds,
and compute other interactions every second or fourth step. Despite these caveats, we encourage users to test the
functionality, assess stability and energy drifts, and either discuss your experience in the GROMACS forums or
suggest improvements to the documentation so we can improve this guidance in the future.

For using larger time steps for all interactions, and integration, angle vibrations involving hydrogen atoms can be
removed using virtual interaction sites (see sec. Removing fastest degrees of freedom (page 528)), which brings
the shortest time step up to PME mesh update frequency of a multiple time stepping scheme. This results in a near
doubling of the simulation performance.

Temperature coupling

While direct use of molecular dynamics gives rise to the NVE (constant number, constant volume, constant energy
ensemble), most quantities that we wish to calculate are actually from a constant temperature (NVT) ensemble,
also called the canonical ensemble. GROMACS can use the weak-coupling scheme of Berendsen 26 (page 578),
stochastic randomization through the Andersen thermostat 27 (page 578), the extended ensemble Nosé-Hoover
scheme 28 (page 578), 29 (page 578), or a velocity-rescaling scheme 30 (page 578) to simulate constant tempera-
ture, with advantages of each of the schemes laid out below.

There are several other reasons why it might be necessary to control the temperature of the system (drift during
equilibration, drift as a result of force truncation and integration errors, heating due to external or frictional forces),
but this is not entirely correct to do from a thermodynamic standpoint, and in some cases only masks the symp-
toms (increase in temperature of the system) rather than the underlying problem (deviations from correct physics
in the dynamics). For larger systems, errors in ensemble averages and structural properties incurred by using tem-
perature control to remove slow drifts in temperature appear to be negligible, but no completely comprehensive
comparisons have been carried out, and some caution must be taking in interpreting the results.

When using temperature and/or pressure coupling the total energy is no longer conserved. Instead there is a
conserved energy quantity the formula of which will depend on the combination or temperature and pressure
coupling algorithm used. For all coupling algorithms, except for Andersen temperature coupling and Parrinello-
Rahman pressure coupling combined with shear stress, the conserved energy quantity is computed and stored in
the energy and log file. Note that this quantity will not be conserved when external forces are applied to the
system, such as pulling on group with a changing distance or an electric field. Furthermore, how well the energy
is conserved depends on the accuracy of all algorithms involved in the simulation. Usually the algorithms that
cause most drift are constraints and the pair-list buffer, depending on the parameters used.

5.4. Algorithms 376

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Berendsen temperature coupling

The Berendsen algorithm mimics weak coupling with first-order kinetics to an external heat bath with given
temperature 𝑇0. See ref. 31 (page 578) for a comparison with the Nosé-Hoover scheme. The effect of this
algorithm is that a deviation of the system temperature from 𝑇0 is slowly corrected according to:

d𝑇
d𝑡

=
𝑇0 − 𝑇

𝜏
(5.37)

which means that a temperature deviation decays exponentially with a time constant 𝜏 . This method of coupling
has the advantage that the strength of the coupling can be varied and adapted to the user requirement: for equili-
bration purposes the coupling time can be taken quite short (e.g. 0.01 ps), but for reliable equilibrium runs it can
be taken much longer (e.g. 0.5 ps) in which case it hardly influences the conservative dynamics.

The Berendsen thermostat suppresses the fluctuations of the kinetic energy. This means that one does not generate
a proper canonical ensemble, so rigorously, the sampling will be incorrect. This error scales with 1/𝑁 , so for very
large systems most ensemble averages will not be affected significantly, except for the distribution of the kinetic
energy itself. However, fluctuation properties, such as the heat capacity, will be affected. A similar thermostat
which does produce a correct ensemble is the velocity rescaling thermostat 30 (page 578) described below, so while
the Berendsen thermostat is supported for historical reasons, including the ability to reproduce old simulations,
we strongly recommend against using it for new simulations.

The heat flow into or out of the system is affected by scaling the velocities of each particle every step, or every
𝑛TC steps, with a time-dependent factor 𝜆, given by:

𝜆 =

[︂
1 +

𝑛TC∆𝑡

𝜏𝑇

{︂
𝑇0

𝑇 (𝑡− 1
2∆𝑡)

− 1

}︂]︂1/2
(5.38)

The parameter 𝜏𝑇 is close, but not exactly equal, to the time constant 𝜏 of the temperature coupling ((5.37)):

𝜏 = 2𝐶𝑉 𝜏𝑇 /𝑁𝑑𝑓𝑘 (5.39)

where 𝐶𝑉 is the total heat capacity of the system, 𝑘 is Boltzmann’s constant, and 𝑁𝑑𝑓 is the total number of
degrees of freedom. The reason that 𝜏 ̸= 𝜏𝑇 is that the kinetic energy change caused by scaling the velocities
is partly redistributed between kinetic and potential energy and hence the change in temperature is less than the
scaling energy. In practice, the ratio 𝜏/𝜏𝑇 ranges from 1 (gas) to 2 (harmonic solid) to 3 (water). When we use
the term temperature coupling time constant, we mean the parameter 𝜏𝑇 . Note that in practice the scaling factor
𝜆 is limited to the range of 0.8 <= 𝜆 <= 1.25, to avoid scaling by very large numbers which may crash the
simulation. In normal use, 𝜆 will always be much closer to 1.0.

The thermostat modifies the kinetic energy at each scaling step by:

∆𝐸𝑘 = (𝜆− 1)2𝐸𝑘 (5.40)

The sum of these changes over the run needs to subtracted from the total energy to obtain the conserved energy
quantity.

Velocity-rescaling temperature coupling

The velocity-rescaling thermostat 30 (page 578) is essentially a Berendsen thermostat (see above) with an addi-
tional stochastic term that ensures a correct kinetic energy distribution by modifying it according to

d𝐾 = (𝐾0 −𝐾)
d𝑡
𝜏𝑇

+ 2

√︃
𝐾𝐾0

𝑁𝑓

d𝑊
√
𝜏𝑇
, (5.41)

where 𝐾 is the kinetic energy, 𝑁𝑓 the number of degrees of freedom and d𝑊 a Wiener process. There are no
additional parameters, except for a random seed. This thermostat produces a correct canonical ensemble and still
has the advantage of the Berendsen thermostat: first order decay of temperature deviations and no oscillations.

5.4. Algorithms 377

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Andersen thermostat

One simple way to maintain a thermostatted ensemble is to take an 𝑁𝑉 𝐸 integrator and periodically re-select
the velocities of the particles from a Maxwell-Boltzmann distribution 27 (page 578). This can either be done by
randomizing all the velocities simultaneously (massive collision) every 𝜏𝑇 /∆𝑡 steps (andersen-massive), or
by randomizing every particle with some small probability every timestep (andersen), equal to ∆𝑡/𝜏 , where in
both cases ∆𝑡 is the timestep and 𝜏𝑇 is a characteristic coupling time scale. Because of the way constraints operate,
all particles in the same constraint group must be randomized simultaneously. Because of parallelization issues,
the andersen version cannot currently (5.0) be used in systems with constraints. andersen-massive can
be used regardless of constraints. This thermostat is also currently only possible with velocity Verlet algorithms,
because it operates directly on the velocities at each timestep.

This algorithm completely avoids some of the ergodicity issues of other thermostatting algorithms, as energy
cannot flow back and forth between energetically decoupled components of the system as in velocity scaling
motions. However, it can slow down the kinetics of system by randomizing correlated motions of the system,
including slowing sampling when 𝜏𝑇 is at moderate levels (less than 10 ps). This algorithm should therefore
generally not be used when examining kinetics or transport properties of the system 32 (page 578).

Nosé-Hoover temperature coupling

The Berendsen weak-coupling algorithm is extremely efficient for relaxing a system to the target temperature, but
once the system has reached equilibrium it might be more important to probe a correct canonical ensemble. This
is unfortunately not the case for the weak-coupling scheme.

To enable canonical ensemble simulations, GROMACS also supports the extended-ensemble approach first pro-
posed by Nosé 28 (page 578) and later modified by Hoover 29 (page 578). The system Hamiltonian is extended by
introducing a thermal reservoir and a friction term in the equations of motion. The friction force is proportional to
the product of each particle’s velocity and a friction parameter, 𝜉. This friction parameter (or heat bath variable)
is a fully dynamic quantity with its own momentum (𝑝𝜉) and equation of motion; the time derivative is calculated
from the difference between the current kinetic energy and the reference temperature.

In this formulation, the particles’ equations of motion in the global MD scheme (page 365) are replaced by:

d2r𝑖
d𝑡2

=
F𝑖

𝑚𝑖
− 𝑝𝜉
𝑄

dr𝑖
d𝑡
, (5.42)

where the equation of motion for the heat bath parameter 𝜉 is:

d𝑝𝜉
d𝑡

= (𝑇 − 𝑇0)𝑁𝑓𝑘. (5.43)

The reference temperature is denoted 𝑇0, while 𝑇 is the current instantaneous temperature of the system,𝑁𝑓 is the
total number of degrees of freedom and 𝑘 is Boltzmann’s constant (see chapter Definitions and Units (page 358)).
The strength of the coupling is determined by the constant 𝑄 (usually called the mass parameter of the reservoir)
in combination with the reference temperature.1

The conserved quantity for the Nosé-Hoover equations of motion is not the total energy, but rather

𝐻 =

𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖
+ 𝑈 (r1, r2, . . . , r𝑁) +

𝑝2𝜉
2𝑄

+𝑁𝑓𝑘𝑇𝜉, (5.44)

In our opinion, the mass parameter is a somewhat awkward way of describing coupling strength, especially due
to its dependence on reference temperature (and some implementations even include the number of degrees of
freedom in your system when defining 𝑄). To maintain the coupling strength, one would have to change 𝑄 in
proportion to the change in reference temperature. For this reason, we prefer to let the GROMACS user work
with the period 𝜏𝑇 of the oscillations of kinetic energy between the system and the reservoir instead. It is directly
related to 𝑄 and 𝑇0 via:

𝑄 =
𝜏2𝑇𝑁𝑓𝑘𝑇0

4𝜋2
. (5.45)

1 Note that some derivations, an alternative notation 𝜉alt = 𝑣𝜉 = 𝑝𝜉/𝑄 is used.

5.4. Algorithms 378

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

This provides a much more intuitive way of selecting the Nosé-Hoover coupling strength (similar to the weak-
coupling relaxation), and in addition 𝜏𝑇 is independent of system size and reference temperature.

It is, however, important to keep the difference between the weak-coupling scheme and the Nosé-Hoover algorithm
in mind: Using weak coupling you get a strongly damped exponential relaxation, while the Nosé-Hoover approach
produces an oscillatory relaxation. The actual time it takes to relax with Nosé-Hoover coupling is several times
larger than the period of the oscillations that you select. These oscillations (in contrast to exponential relaxation)
also means that the time constant normally should be 4–5 times larger than the relaxation time used with weak
coupling, but your mileage may vary.

Nosé-Hoover dynamics in simple systems such as collections of harmonic oscillators, can be nonergodic, meaning
that only a subsection of phase space is ever sampled, even if the simulations were to run for infinitely long. For
this reason, the Nosé-Hoover chain approach was developed, where each of the Nosé-Hoover thermostats has
its own Nosé-Hoover thermostat controlling its temperature. In the limit of an infinite chain of thermostats, the
dynamics are guaranteed to be ergodic. Using just a few chains can greatly improve the ergodicity, but recent
research has shown that the system will still be nonergodic, and it is still not entirely clear what the practical effect
of this is 33 (page 578). Currently, the default number of chains is 10, but this can be controlled by the user. In
the case of chains, the equations are modified in the following way to include a chain of thermostatting particles
34 (page 578):

d2r𝑖
d𝑡2

=
F𝑖

𝑚𝑖
− 𝑝𝜉1
𝑄1

dr𝑖
d𝑡

d𝑝𝜉1
d𝑡

= 𝑁𝑓𝑘 (𝑇 − 𝑇0)− 𝑝𝜉1
𝑝𝜉2
𝑄2

d𝑝𝜉𝑖=2...𝑀−1

d𝑡
=

(︃
𝑝2𝜉𝑖−1

𝑄𝑖−1
− 𝑘𝑇0

)︃
− 𝑝𝜉𝑖

𝑝𝜉𝑖+1

𝑄𝑖+1

d𝑝𝜉𝑀
d𝑡

=

(︃
𝑝2𝜉𝑁−1

𝑄𝑁−1
− 𝑘𝑇0

)︃
The conserved quantity for Nosé-Hoover chains is

𝐻 =

𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖
+ 𝑈 (r1, r2, . . . , r𝑁) +

𝑀∑︁
𝑘=1

𝑝2𝜉𝑘
2𝑄𝑘

+𝑁𝑓𝑘𝑇𝜉1 + 𝑘𝑇

𝑀∑︁
𝑘=2

𝜉𝑘 (5.46)

The values and velocities of the Nosé-Hoover thermostat variables are generally not included in the output, as they
take up a fair amount of space and are generally not important for analysis of simulations, but by setting an mdp
(page 488) option the values of all the positions and velocities of all Nosé-Hoover particles in the chain are written
to the edr (page 485) file. Leap-frog simulations currently can only have Nosé-Hoover chain lengths of 1, but this
will likely be updated in a later version.

As described in the integrator section, for temperature coupling, the temperature that the algorithm attempts to
match to the reference temperature is calculated differently in velocity Verlet and leap-frog dynamics. Velocity
Verlet (md-vv) uses the full-step kinetic energy, while leap-frog and md-vv-avek use the half-step-averaged kinetic
energy.

We can examine the Trotter decomposition again to better understand the differences between these constant-
temperature integrators. In the case of Nosé-Hoover dynamics (for simplicity, using a chain with 𝑁 = 1, with
more details in Ref. 35 (page 578)), we split the Liouville operator as

𝑖𝐿 = 𝑖𝐿1 + 𝑖𝐿2 + 𝑖𝐿NHC, (5.47)

where

𝑖𝐿1 =

𝑁∑︁
𝑖=1

[︂
p𝑖

𝑚𝑖

]︂
· 𝜕

𝜕r𝑖

𝑖𝐿2 =

𝑁∑︁
𝑖=1

F𝑖 ·
𝜕

𝜕p𝑖

𝑖𝐿NHC =

𝑁∑︁
𝑖=1

−𝑝𝜉
𝑄
v𝑖 · ∇v𝑖

+
𝑝𝜉
𝑄

𝜕

𝜕𝜉
+𝑁𝑓𝑘 (𝑇 − 𝑇0)

𝜕

𝜕𝑝𝜉

5.4. Algorithms 379

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

For standard velocity Verlet with Nosé-Hoover temperature control, this becomes

exp(𝑖𝐿∆𝑡) = exp (𝑖𝐿NHC∆𝑡/2) exp (𝑖𝐿2∆𝑡/2)

exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿2∆𝑡/2) exp (𝑖𝐿NHC∆𝑡/2) +𝒪(∆𝑡3).

For half-step-averaged temperature control using md-vv-avek, this decomposition will not work, since we do not
have the full step temperature until after the second velocity step. However, we can construct an alternate decom-
position that is still reversible, by switching the place of the NHC and velocity portions of the decomposition:

exp(𝑖𝐿∆𝑡) = exp (𝑖𝐿2∆𝑡/2) exp (𝑖𝐿NHC∆𝑡/2) exp (𝑖𝐿1∆𝑡)

exp (𝑖𝐿NHC∆𝑡/2) exp (𝑖𝐿2∆𝑡/2) +𝒪(∆𝑡3)

This formalism allows us to easily see the difference between the different flavors of velocity Verlet integrator.
The leap-frog integrator can be seen as starting with (5.48) just before the exp (𝑖𝐿1∆𝑡) term, yielding:

exp(𝑖𝐿∆𝑡) = exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿NHC∆𝑡/2)

exp (𝑖𝐿2∆𝑡) exp (𝑖𝐿NHC∆𝑡/2) +𝒪(∆𝑡3)

and then using some algebra tricks to solve for some quantities are required before they are actually calculated 36
(page 578).

Group temperature coupling

In GROMACS temperature coupling can be performed on groups of atoms, typically a protein and solvent. The
reason such algorithms were introduced is that energy exchange between different components is not perfect, due
to different effects including cut-offs etc. If now the whole system is coupled to one heat bath, water (which expe-
riences the largest cut-off noise) will tend to heat up and the protein will cool down. Typically 100 K differences
can be obtained. With the use of proper electrostatic methods (PME) these difference are much smaller but still
not negligible. The parameters for temperature coupling in groups are given in the mdp (page 488) file. Recent
investigation has shown that small temperature differences between protein and water may actually be an artifact
of the way temperature is calculated when there are finite timesteps, and very large differences in temperature are
likely a sign of something else seriously going wrong with the system, and should be investigated carefully 37
(page 578).

One special case should be mentioned: it is possible to temperature-couple only part of the system, leaving other
parts without temperature coupling. This is done by specifying −1 for the time constant 𝜏𝑇 for the group that
should not be thermostatted. If only part of the system is thermostatted, the system will still eventually converge
to an NVT system. In fact, one suggestion for minimizing errors in the temperature caused by discretized timesteps
is that if constraints on the water are used, then only the water degrees of freedom should be thermostatted, not
protein degrees of freedom, as the higher frequency modes in the protein can cause larger deviations from the true
temperature, the temperature obtained with small timesteps 37 (page 578).

Pressure coupling

In the same spirit as the temperature coupling, the system can also be coupled to a pressure bath. GROMACS
supports both the Berendsen algorithm 26 (page 578) that scales coordinates and box vectors every step (we
strongly recommend not to use it), a new stochastic cell rescaling algorithm, the extended-ensemble Parrinello-
Rahman approach 38 (page 578), 39 (page 578), and for the velocity Verlet variants, the Martyna-Tuckerman-
Tobias-Klein (MTTK) implementation of pressure control 35 (page 578). Parrinello-Rahman and Berendsen can
be combined with any of the temperature coupling methods above. MTTK can only be used with Nosé-Hoover
temperature control. From version 5.1 onwards, it can only used when the system does not have constraints.

5.4. Algorithms 380

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Berendsen pressure coupling

The Berendsen algorithm rescales the coordinates and box vectors every step, or every 𝑛PC steps, with a matrix
𝜇, which has the effect of a first-order kinetic relaxation of the pressure towards a given reference pressure P0

according to

dP
d𝑡

=
P0 −P

𝜏𝑝
. (5.48)

The scaling matrix 𝜇 is given by

𝜇𝑖𝑗 = 𝛿𝑖𝑗 −
𝑛PC∆𝑡

3 𝜏𝑝
𝛽𝑖𝑗{𝑃0𝑖𝑗 − 𝑃𝑖𝑗(𝑡)}. (5.49)

Here, 𝛽 is the isothermal compressibility of the system. In most cases this will be a diagonal matrix, with equal
elements on the diagonal, the value of which is generally not known. It suffices to take a rough estimate because
the value of 𝛽 only influences the non-critical time constant of the pressure relaxation without affecting the average
pressure itself. For water at 1 atm and 300 K 𝛽 = 4.6 × 10−10 Pa−1 = 4.6 × 10−5 bar−1, which is 7.6 × 10−4

MD units (see chapter Definitions and Units (page 358)). Most other liquids have similar values. When scaling
completely anisotropically, the system has to be rotated in order to obey (5.10). This rotation is approximated in
first order in the scaling, which is usually less than 10−4. The actual scaling matrix 𝜇′ is

𝜇′ =

⎛⎝ 𝜇𝑥𝑥 𝜇𝑥𝑦 + 𝜇𝑦𝑥 𝜇𝑥𝑧 + 𝜇𝑧𝑥

0 𝜇𝑦𝑦 𝜇𝑦𝑧 + 𝜇𝑧𝑦

0 0 𝜇𝑧𝑧

⎞⎠ . (5.50)

The velocities are neither scaled nor rotated. Since the equations of motion are modified by pressure coupling,
the conserved energy quantity also needs to be modified. For first order pressure coupling, the work the barostat
applies to the system every step needs to be subtracted from the total energy to obtain the conserved energy
quantity:

−
∑︁
𝑖,𝑗

(𝜇𝑖𝑗 − 𝛿𝑖𝑗)𝑃𝑖𝑗𝑉 =
∑︁
𝑖,𝑗

2(𝜇𝑖𝑗 − 𝛿𝑖𝑗)Ξ𝑖𝑗 (5.51)

where 𝛿𝑖𝑗 is the Kronecker delta and Ξ is the virial. Note that the factor 2 originates from the factor 1
2 in the virial

definition ((5.26)).

In GROMACS, the Berendsen scaling can also be done isotropically, which means that instead of P a diagonal
matrix with elements of size trace(P)/3 is used. For systems with interfaces, semi-isotropic scaling can be
useful. In this case, the 𝑥/𝑦-directions are scaled isotropically and the 𝑧 direction is scaled independently. The
compressibility in the 𝑥/𝑦 or 𝑧-direction can be set to zero, to scale only in the other direction(s).

If you allow full anisotropic deformations and use constraints you might have to scale more slowly or decrease
your timestep to avoid errors from the constraint algorithms.

It is important to note that although the Berendsen pressure control algorithm yields a simulation with the correct
average pressure, it does not yield the exact NPT ensemble, and does not compute the correct fluctuations in
pressure or volume. We strongly advise against using it for new simulations. The only useful role it has had
recently is to ensure fast relaxation without oscillations, e.g. at the start of a simulation for from equilibrium, but
this is now provided by the stochastic cell rescaling, which should be used instead. For full anisotropic simulations
you need to use the Parrinello-Rahman barostat (for now). This does have the same oscillation problems as many
other correct-ensemble barostats, so if you cannot get your initial system stable you might need to use Berendsen
briefly - but the warnings/errors you get are a reminder it should not be used for production runs.

5.4. Algorithms 381

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Stochastic cell rescaling

The stochastic cell rescaling algorithm is a variant of the Berendsen algorithm that allows correct fluctuations to
be sampled. Similarly to the Berendsen algorithm, it rescales the coordinates and box vectors every step, or every
𝑛PC steps with the effect of a first-order kinetic relaxation of the pressure towards a given reference pressure 𝑃0.
At variance with the Berendsen algorithm, the rescaling matrix is calculated including a stochastic term that makes
volume fluctuations correct.

The isotropic version can be easily written in term of the strain 𝜖 = log(𝑉/𝑉0) that is evolved according to the
following equation of motion

d𝜖 = − 𝛽

𝜏𝑝
(𝑃0 − 𝑃)d𝑡+

√︃
2𝑘𝐵𝑇𝛽

𝑉 𝜏𝑝
d𝑊 (5.52)

Here, 𝛽 is the isothermal compressibility of the system. It suffices to take a rough estimate because the value of 𝛽
only influences the non-critical time constant of the pressure relaxation without affecting the volume distribution
itself. For water at 1 atm and 300 K 𝛽 = 4.6× 10−10 Pa−1 = 4.6× 10−5 bar−1, which is 7.6× 10−4 MD units
(see chapter Definitions and Units (page 358)). Most other liquids have similar values.

Another difference with respect to the Berendsen algorithm is that velocities are scaled with a factor that is the
reciprocal of the scaling factor for positions.

A semi-isotropic implementation is also provided. By defining the variables 𝜖𝑥𝑦 = log(𝐴/𝐴0) and 𝜖𝑧 =
log(𝐿/𝐿0), where 𝐴 and 𝐿 are the area of the simulation box in the 𝑥𝑦 plane and its height, respectively, the
following equations can be obtained:

d𝜖𝑥𝑦 = − 2𝛽

3𝜏𝑝
(𝑃0 −

𝛾

𝐿
− 𝑃𝑥𝑥 + 𝑃𝑦𝑦

2
)d𝑡+

√︃
4𝑘𝐵𝑇𝛽

3𝑉 𝜏𝑝
d𝑊𝑥𝑦 (5.53)

d𝜖𝑧 = − 𝛽

3𝜏𝑝
(𝑃0 − 𝑃𝑧𝑧)d𝑡+

√︃
2𝑘𝐵𝑇𝛽

3𝑉 𝜏𝑝
d𝑊𝑧 (5.54)

Here 𝛾 is the external surface tension and 𝑃𝑥𝑥, 𝑃𝑦𝑦 , and 𝑃𝑧𝑧 the components of the internal pressure.

More detailed explanations can be found in the original reference 184 (page 585).

Parrinello-Rahman pressure coupling

GROMACS also supports constant-pressure simulations using the Parrinello-Rahman approach 38 (page 578), 39
(page 578), which is similar to the Nosé-Hoover temperature coupling, and in theory gives the true NPT ensemble.
With the Parrinello-Rahman barostat, the box vectors as represented by the matrix b obey the matrix equation of
motion2

db2

d𝑡2
= 𝑉W−1b′−1 (P−P𝑟𝑒𝑓) . (5.55)

The volume of the box is denoted 𝑉 , and W is a matrix parameter that determines the strength of the coupling
(see below). The matrices P and P𝑟𝑒𝑓 are the current and reference pressures, respectively. The prime notation
denotes transposition of the matrix.

The equations of motion for the particles are also changed, just as for the Nosé-Hoover coupling. In most cases
you would combine the Parrinello-Rahman barostat with the Nosé-Hoover thermostat, but to keep it simple we
only show the Parrinello-Rahman modification here. The modified Hamiltonian, which will be conserved, is:

𝐸pot + 𝐸kin +
∑︁
𝑖

𝑃𝑖𝑖𝑉 +
∑︁
𝑖,𝑗

1

2
𝑊𝑖𝑗

(︂
d𝑏𝑖𝑗
d𝑡

)︂2

(5.56)

2 The box matrix representation in corresponds to the transpose of the box matrix representation in the paper by Nosé and Klein. Because
of this, some of our equations will look slightly different.

5.4. Algorithms 382

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The equations of motion for the atoms obtained from the Hamiltonian are:

d2r𝑖
d𝑡2

=
F𝑖

𝑚𝑖
−M

dr𝑖
d𝑡
,

M = b−1

[︂
b

db′

d𝑡
+

db
d𝑡

b′
]︂
b′−1.

(5.57)

This extra term has the appearance of a friction, but it should be noted that it is fictitious, and rather an effect of
the Parrinello-Rahman equations of motion being defined with all particle coordinates represented relative to the
box vectors, while GROMACS uses normal Cartesian coordinates for positions, velocities and forces. It is worth
noting that the kinetic energy too should formally be calculated based on velocities relative to the box vectors.
This can have an effect e.g. for external constant stress, but for now we only support coupling to constant external
pressures, and for any normal simulation the velocities of box vectors should be extremely small compared to
particle velocities. Gang Liu has done some work on deriving this for Cartesian coordinates 40 (page 578) but it
is not implemented in GROMACS.

The (inverse) mass parameter matrix W−1 determines the strength of the coupling, and how the box can be
deformed. The box restriction (5.10) will be fulfilled automatically if the corresponding elements of W−1 are
zero. Since the coupling strength also depends on the size of your box, we prefer to calculate it automatically
in GROMACS. You only have to provide the approximate isothermal compressibilities 𝛽 and the pressure time
constant 𝜏𝑝 in the input file (𝐿 is the largest box matrix element):(︀

W−1
)︀
𝑖𝑗
=

4𝜋2𝛽𝑖𝑗
3𝜏2𝑝𝐿

. (5.58)

Just as for the Nosé-Hoover thermostat, you should realize that the Parrinello-Rahman time constant is not equiv-
alent to the relaxation time used in the Berendsen pressure coupling algorithm. In most cases you will need to use
a 4–5 times larger time constant with Parrinello-Rahman coupling. If your pressure is very far from equilibrium,
the Parrinello-Rahman coupling may result in very large box oscillations that could even crash your run. In that
case you would have to increase the time constant, or (better) use the weak-coupling or stochastic cell rescaling
schemes to reach the target pressure, and then switch to Parrinello-Rahman coupling once the system is in equi-
librium. Additionally, using the leap-frog algorithm, the pressure at time 𝑡 is not available until after the time step
has completed, and so the pressure from the previous step must be used, which makes the algorithm not directly
reversible, and may not be appropriate for high-precision thermodynamic calculations.

Surface-tension coupling

When a periodic system consists of more than one phase, separated by surfaces which are parallel to the 𝑥𝑦-plane,
the surface tension and the 𝑧-component of the pressure can be coupled to a pressure bath. Presently, this only
works with the Berendsen pressure coupling algorithm in GROMACS. The average surface tension 𝛾(𝑡) can be
calculated from the difference between the normal and the lateral pressure

𝛾(𝑡) =
1

𝑛

∫︁ 𝐿𝑧

0

{︂
𝑃𝑧𝑧(𝑧, 𝑡)−

𝑃𝑥𝑥(𝑧, 𝑡) + 𝑃𝑦𝑦(𝑧, 𝑡)

2

}︂
d𝑧

=
𝐿𝑧

𝑛

{︂
𝑃𝑧𝑧(𝑡)−

𝑃𝑥𝑥(𝑡) + 𝑃𝑦𝑦(𝑡)

2

}︂
,

(5.59)

where 𝐿𝑧 is the height of the box and 𝑛 is the number of surfaces. The pressure in the z-direction is corrected by
scaling the height of the box with 𝜇𝑧𝑧

∆𝑃𝑧𝑧 =
∆𝑡

𝜏𝑝
{𝑃0𝑧𝑧 − 𝑃𝑧𝑧(𝑡)} (5.60)

𝜇𝑧𝑧 = 1 + 𝛽𝑧𝑧∆𝑃𝑧𝑧 (5.61)

This is similar to normal pressure coupling, except that the factor of 1/3 is missing. The pressure correction in
the 𝑧-direction is then used to get the correct convergence for the surface tension to the reference value 𝛾0. The
correction factor for the box length in the 𝑥/𝑦-direction is

𝜇𝑥/𝑦 = 1 +
∆𝑡

2 𝜏𝑝
𝛽𝑥/𝑦

(︂
𝑛𝛾0
𝜇𝑧𝑧𝐿𝑧

−
{︂
𝑃𝑧𝑧(𝑡) + ∆𝑃𝑧𝑧 −

𝑃𝑥𝑥(𝑡) + 𝑃𝑦𝑦(𝑡)

2

}︂)︂
(5.62)

5.4. Algorithms 383

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The value of 𝛽𝑧𝑧 is more critical than with normal pressure coupling. Normally an incorrect compressibility will
just scale 𝜏𝑝, but with surface tension coupling it affects the convergence of the surface tension. When 𝛽𝑧𝑧 is set to
zero (constant box height), ∆𝑃𝑧𝑧 is also set to zero, which is necessary for obtaining the correct surface tension.

MTTK pressure control algorithms

As mentioned in the previous section, one weakness of leap-frog integration is in constant pressure simulations,
since the pressure requires a calculation of both the virial and the kinetic energy at the full time step; for leap-frog,
this information is not available until after the full timestep. Velocity Verlet does allow the calculation, at the cost
of an extra round of global communication, and can compute, mod any integration errors, the true NPT ensemble.

The full equations, combining both pressure coupling and temperature coupling, are taken from Martyna et al.
35 (page 578) and Tuckerman 41 (page 578) and are referred to here as MTTK equations (Martyna-Tuckerman-
Tobias-Klein). We introduce for convenience 𝜖 = (1/3) ln(𝑉/𝑉0), where 𝑉0 is a reference volume. The momen-
tum of 𝜖 is 𝑣𝜖 = 𝑝𝜖/𝑊 = �̇� = �̇� /3𝑉 , and define 𝛼 = 1 + 3/𝑁𝑑𝑜𝑓 (see Ref 41 (page 578))

The isobaric equations are

ṙ𝑖 =
p𝑖

𝑚𝑖
+
𝑝𝜖
𝑊

r𝑖

ṗ𝑖

𝑚𝑖
=

1

𝑚𝑖
F𝑖 − 𝛼

𝑝𝜖
𝑊

p𝑖

𝑚𝑖

�̇� =
𝑝𝜖
𝑊

𝑝𝜖
𝑊

=
3𝑉

𝑊
(𝑃int − 𝑃) + (𝛼− 1)

(︃
𝑁∑︁

𝑛=1

p2
𝑖

𝑚𝑖

)︃
,

where

𝑃int = 𝑃kin − 𝑃vir =
1

3𝑉

[︃
𝑁∑︁
𝑖=1

(︂
p2
𝑖

2𝑚𝑖
− r𝑖 · F𝑖

)︂]︃
. (5.63)

The terms including 𝛼 are required to make phase space incompressible 41 (page 578). The 𝜖 acceleration term
can be rewritten as

𝑝𝜖
𝑊

=
3𝑉

𝑊
(𝛼𝑃kin − 𝑃vir − 𝑃) (5.64)

In terms of velocities, these equations become

ṙ𝑖 = v𝑖 + 𝑣𝜖r𝑖

v̇𝑖 =
1

𝑚𝑖
F𝑖 − 𝛼𝑣𝜖v𝑖

�̇� = 𝑣𝜖

𝑣𝜖 =
3𝑉

𝑊
(𝑃int − 𝑃) + (𝛼− 1)

(︃
𝑁∑︁

𝑛=1

1

2
𝑚𝑖v

2
𝑖

)︃

𝑃int = 𝑃kin − 𝑃vir =
1

3𝑉

[︃
𝑁∑︁
𝑖=1

(︂
1

2
𝑚𝑖v

2
𝑖 − r𝑖 · F𝑖

)︂]︃

For these equations, the conserved quantity is

𝐻 =

𝑁∑︁
𝑖=1

p2
𝑖

2𝑚𝑖
+ 𝑈 (r1, r2, . . . , r𝑁) +

𝑝𝜖
2𝑊

+ 𝑃𝑉 (5.65)

The next step is to add temperature control. Adding Nosé-Hoover chains, including to the barostat degree of free-
dom, where we use 𝜂 for the barostat Nosé-Hoover variables, and 𝑄′ for the coupling constants of the thermostats

5.4. Algorithms 384

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

of the barostats, we get

ṙ𝑖 =
p𝑖

𝑚𝑖
+
𝑝𝜖
𝑊

r𝑖

ṗ𝑖

𝑚𝑖
=

1

𝑚𝑖
F𝑖 − 𝛼

𝑝𝜖
𝑊

p𝑖

𝑚𝑖
− 𝑝𝜉1
𝑄1

p𝑖

𝑚𝑖

�̇� =
𝑝𝜖
𝑊

𝑝𝜖
𝑊

=
3𝑉

𝑊
(𝛼𝑃kin − 𝑃vir − 𝑃)− 𝑝𝜂1

𝑄′
1

𝑝𝜖

𝜉𝑘 =
𝑝𝜉𝑘
𝑄𝑘

�̇�𝑘 =
𝑝𝜂𝑘

𝑄′
𝑘

�̇�𝜉𝑘 = 𝐺𝑘 −
𝑝𝜉𝑘+1

𝑄𝑘+1
𝑘 = 1, . . . ,𝑀 − 1

�̇�𝜂𝑘
= 𝐺′

𝑘 −
𝑝𝜂𝑘+1

𝑄′
𝑘+1

𝑘 = 1, . . . ,𝑀 − 1

�̇�𝜉𝑀 = 𝐺𝑀

�̇�𝜂𝑀
= 𝐺′

𝑀 ,

where

𝑃int = 𝑃kin − 𝑃vir =
1

3𝑉

[︃
𝑁∑︁
𝑖=1

(︂
p2
𝑖

2𝑚𝑖
− r𝑖 · F𝑖

)︂]︃

𝐺1 =

𝑁∑︁
𝑖=1

p2
𝑖

𝑚𝑖
−𝑁𝑓𝑘𝑇

𝐺𝑘 =
𝑝2𝜉𝑘−1

2𝑄𝑘−1
− 𝑘𝑇 𝑘 = 2, . . . ,𝑀

𝐺′
1 =

𝑝𝜖
2

2𝑊
− 𝑘𝑇

𝐺′
𝑘 =

𝑝2𝜂𝑘−1

2𝑄′
𝑘−1

− 𝑘𝑇 𝑘 = 2, . . . ,𝑀

The conserved quantity is now

𝐻 =

𝑁∑︁
𝑖=1

p𝑖

2𝑚𝑖
+ 𝑈 (r1, r2, . . . , r𝑁) +

𝑝2𝜖
2𝑊

+ 𝑃𝑉+

𝑀∑︁
𝑘=1

𝑝2𝜉𝑘
2𝑄𝑘

+

𝑀∑︁
𝑘=1

𝑝2𝜂𝑘

2𝑄′
𝑘

+𝑁𝑓𝑘𝑇𝜉1 + 𝑘𝑇

𝑀∑︁
𝑖=2

𝜉𝑘 + 𝑘𝑇

𝑀∑︁
𝑘=1

𝜂𝑘

Returning to the Trotter decomposition formalism, for pressure control and temperature control 35 (page 578) we
get:

𝑖𝐿 = 𝑖𝐿1 + 𝑖𝐿2 + 𝑖𝐿𝜖,1 + 𝑖𝐿𝜖,2 + 𝑖𝐿NHC−baro + 𝑖𝐿NHC (5.66)

where “NHC-baro” corresponds to the Nosè-Hoover chain of the barostat, and NHC corresponds to the NHC of
the particles,

𝑖𝐿1 =

𝑁∑︁
𝑖=1

[︂
p𝑖

𝑚𝑖
+
𝑝𝜖
𝑊

r𝑖

]︂
· 𝜕

𝜕r𝑖

𝑖𝐿2 =

𝑁∑︁
𝑖=1

F𝑖 − 𝛼
𝑝𝜖
𝑊

p𝑖 ·
𝜕

𝜕p𝑖

𝑖𝐿𝜖,1 =
𝑝𝜖
𝑊

𝜕

𝜕𝜖

𝑖𝐿𝜖,2 = 𝐺𝜖
𝜕

𝜕𝑝𝜖

(5.67)

5.4. Algorithms 385

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

and where

𝐺𝜖 = 3𝑉 (𝛼𝑃kin − 𝑃vir − 𝑃) (5.68)

Using the Trotter decomposition, we get

exp(𝑖𝐿∆𝑡) = exp (𝑖𝐿NHC−baro∆𝑡/2) exp (𝑖𝐿NHC∆𝑡/2)

exp (𝑖𝐿𝜖,2∆𝑡/2) exp (𝑖𝐿2∆𝑡/2)

exp (𝑖𝐿𝜖,1∆𝑡) exp (𝑖𝐿1∆𝑡)

exp (𝑖𝐿2∆𝑡/2) exp (𝑖𝐿𝜖,2∆𝑡/2)

exp (𝑖𝐿NHC∆𝑡/2) exp (𝑖𝐿NHC−baro∆𝑡/2) +𝒪(∆𝑡3)

The action of exp (𝑖𝐿1∆𝑡) comes from the solution of the differential equation ṙ𝑖 = v𝑖 + 𝑣𝜖r𝑖 with v𝑖 = p𝑖/𝑚𝑖

and 𝑣𝜖 constant with initial condition r𝑖(0), evaluate at 𝑡 = ∆𝑡. This yields the evolution

r𝑖(∆𝑡) = r𝑖(0)𝑒
𝑣𝜖Δ𝑡 +∆𝑡v𝑖(0)𝑒

𝑣𝜖Δ𝑡/2 sinh (𝑣𝜖∆𝑡/2)

𝑣𝜖∆𝑡/2
. (5.69)

The action of exp (𝑖𝐿2∆𝑡/2) comes from the solution of the differential equation v̇𝑖 =
F𝑖

𝑚𝑖
− 𝛼𝑣𝜖v𝑖, yielding

v𝑖(∆𝑡/2) = v𝑖(0)𝑒
−𝛼𝑣𝜖Δ𝑡/2 +

∆𝑡

2𝑚𝑖
F𝑖(0)𝑒

−𝛼𝑣𝜖Δ𝑡/4 sinh (𝛼𝑣𝜖∆𝑡/4)

𝛼𝑣𝜖∆𝑡/4
. (5.70)

md-vv-avek uses the full step kinetic energies for determining the pressure with the pressure control, but the half-
step-averaged kinetic energy for the temperatures, which can be written as a Trotter decomposition as

exp(𝑖𝐿∆𝑡) = exp (𝑖𝐿NHC−baro∆𝑡/2) exp (𝑖𝐿𝜖,2∆𝑡/2) exp (𝑖𝐿2∆𝑡/2)

exp (𝑖𝐿NHC∆𝑡/2) exp (𝑖𝐿𝜖,1∆𝑡) exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿NHC∆𝑡/2)

exp (𝑖𝐿2∆𝑡/2) exp (𝑖𝐿𝜖,2∆𝑡/2) exp (𝑖𝐿NHC−baro∆𝑡/2) +𝒪(∆𝑡3)

With constraints, the equations become significantly more complicated, in that each of these equations need to
be solved iteratively for the constraint forces. Before GROMACS 5.1, these iterative constraints were solved as
described in 42 (page 578). From GROMACS 5.1 onward, MTTK with constraints has been removed because of
numerical stability issues with the iterations.

Infrequent evaluation of temperature and pressure coupling

Temperature and pressure control require global communication to compute the kinetic energy and virial, which
can become costly if performed every step for large systems. We can rearrange the Trotter decomposition to give
alternate symplectic, reversible integrator with the coupling steps every 𝑛 steps instead of every steps. These
new integrators will diverge if the coupling time step is too large, as the auxiliary variable integrations will not
converge. However, in most cases, long coupling times are more appropriate, as they disturb the dynamics less 35
(page 578).

Standard velocity Verlet with Nosé-Hoover temperature control has a Trotter expansion

exp(𝑖𝐿∆𝑡) ≈ exp (𝑖𝐿NHC∆𝑡/2) exp (𝑖𝐿2∆𝑡/2)

exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿2∆𝑡/2) exp (𝑖𝐿NHC∆𝑡/2) .

If the Nosé-Hoover chain is sufficiently slow with respect to the motions of the system, we can write an alternate
integrator over 𝑛 steps for velocity Verlet as

exp(𝑖𝐿∆𝑡) ≈ (exp (𝑖𝐿NHC(𝑛∆𝑡/2)) [exp (𝑖𝐿2∆𝑡/2)

exp (𝑖𝐿1∆𝑡) exp (𝑖𝐿2∆𝑡/2)]
𝑛
exp (𝑖𝐿NHC(𝑛∆𝑡/2)) .

For pressure control, this becomes

exp(𝑖𝐿∆𝑡) ≈ exp (𝑖𝐿NHC−baro(𝑛∆𝑡/2)) exp (𝑖𝐿NHC(𝑛∆𝑡/2))

exp (𝑖𝐿𝜖,2(𝑛∆𝑡/2)) [exp (𝑖𝐿2∆𝑡/2)

exp (𝑖𝐿𝜖,1∆𝑡) exp (𝑖𝐿1∆𝑡)

exp (𝑖𝐿2∆𝑡/2)]
𝑛
exp (𝑖𝐿𝜖,2(𝑛∆𝑡/2))

exp (𝑖𝐿NHC(𝑛∆𝑡/2)) exp (𝑖𝐿NHC−baro(𝑛∆𝑡/2)) ,

where the box volume integration occurs every step, but the auxiliary variable integrations happen every 𝑛 steps.

5.4. Algorithms 386

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The complete update algorithm

THE UPDATE ALGORITHM

Given: Positions r of all atoms at time 𝑡 Velocities v of all atoms at time 𝑡− 1
2∆𝑡 Accelerations F/𝑚

on all atoms at time 𝑡. (Forces are computed disregarding any constraints) Total kinetic energy and
virial at 𝑡−∆𝑡 ⇓

1. Compute the scaling factors 𝜆 and 𝜇 according to (5.38) and (5.49) ⇓

2. Update and scale velocities: v′ = 𝜆(v + a∆𝑡) ⇓

3. Compute new unconstrained coordinates: r′ = r+ v′∆𝑡 ⇓

4. Apply constraint algorithm to coordinates: constrain(r
′ → r′′; r) ⇓

5. Correct velocities for constraints: v = (r′′ − r)/∆𝑡 ⇓

6. Scale coordinates and box: r = 𝜇r′′;b = 𝜇b

The complete algorithm for the update of velocities and coordinates is given using leap-frog in the outline above
(page 387) The SHAKE algorithm of step 4 is explained below.

GROMACS has a provision to freeze (prevent motion of) selected particles, which must be defined as a freeze
group. This is implemented using a freeze factor f𝑔 , which is a vector, and differs for each freeze group (see
sec. The group concept (page 364)). This vector contains only zero (freeze) or one (do not freeze). When we take
this freeze factor and the external acceleration aℎ into account the update algorithm for the velocities becomes

v(𝑡+
∆𝑡

2
) = f𝑔 * 𝜆 *

[︂
v(𝑡− ∆𝑡

2
) +

F(𝑡)

𝑚
∆𝑡+ aℎ∆𝑡

]︂
, (5.71)

where 𝑔 and ℎ are group indices which differ per atom.

Output step

The most important output of the MD run is the trajectory file, which contains particle coordinates and (optionally)
velocities at regular intervals. The trajectory file contains frames that could include positions, velocities and/or
forces, as well as information about the dimensions of the simulation volume, integration step, integration time,
etc. The interpretation of the time varies with the integrator chosen, as described above. For Velocity Verlet
integrators, velocities labeled at time 𝑡 are for that time. For other integrators (e.g. leap-frog, stochastic dynamics),
the velocities labeled at time 𝑡 are for time 𝑡− 1

2∆𝑡.

Since the trajectory files are lengthy, one should not save every step! To retain all information it suffices to
write a frame every 15 steps, since at least 30 steps are made per period of the highest frequency in the system,
and Shannon’s sampling theorem states that two samples per period of the highest frequency in a band-limited
signal contain all available information. But that still gives very long files! So, if the highest frequencies are not
of interest, 10 or 20 samples per ps may suffice. Be aware of the distortion of high-frequency motions by the
stroboscopic effect, called aliasing: higher frequencies are mirrored with respect to the sampling frequency and
appear as lower frequencies. When the simulated system is very large and/or the simulation times very long, it is
often sufficient to write in intervals ranging from 10 ps to 1 ns, depending on what the trajectory will be used for.

GROMACS can also write reduced-precision coordinates for a subset of the simulation system to a special com-
pressed trajectory file format. All the other tools can read and write this format. See the User Guide for details on
how to set up your mdp (page 488) file to have mdrun (page 215) use this feature.

5.4. Algorithms 387

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.4.4 Shell molecular dynamics

GROMACS can simulate polarizability using the shell model of Dick and Overhauser 43 (page 578). In such
models a shell particle representing the electronic degrees of freedom is attached to a nucleus by a spring. The po-
tential energy is minimized with respect to the shell position at every step of the simulation (see below). Successful
applications of shell models in GROMACS have been published for 𝑁2 44 (page 579) and water 45 (page 579).

Optimization of the shell positions

The force F𝑆 on a shell particle 𝑆 can be decomposed into two components

F𝑆 = F𝑏𝑜𝑛𝑑 + F𝑛𝑏 (5.72)

where F𝑏𝑜𝑛𝑑 denotes the component representing the polarization energy, usually represented by a harmonic
potential and F𝑛𝑏 is the sum of Coulomb and van der Waals interactions. If we assume that F𝑛𝑏 is almost constant
we can analytically derive the optimal position of the shell, i.e. where F𝑆 = 0. If we have the shell S connected
to atom A we have

F𝑏𝑜𝑛𝑑 = 𝑘𝑏 (x𝑆 − x𝐴) . (5.73)

In an iterative solver, we have positions x𝑆(𝑛) where 𝑛 is the iteration count. We now have at iteration 𝑛

F𝑛𝑏 = F𝑆 − 𝑘𝑏 (x𝑆(𝑛)− x𝐴) (5.74)

and the optimal position for the shells 𝑥𝑆(𝑛+ 1) thus follows from

F𝑆 − 𝑘𝑏 (x𝑆(𝑛)− x𝐴) + 𝑘𝑏 (x𝑆(𝑛+ 1)− x𝐴) = 0 (5.75)

if we write

∆x𝑆 = x𝑆(𝑛+ 1)− x𝑆(𝑛) (5.76)

we finally obtain

∆x𝑆 = F𝑆/𝑘𝑏 (5.77)

which then yields the algorithm to compute the next trial in the optimization of shell positions

x𝑆(𝑛+ 1) = x𝑆(𝑛) + F𝑆/𝑘𝑏. (5.78)

5.4.5 Constraint algorithms

Constraints can be imposed in GROMACS using LINCS (default) or the traditional SHAKE method.

SHAKE

The SHAKE 46 (page 579) algorithm changes a set of unconstrained coordinates r
′

to a set of coordinates r′′ that
fulfill a list of distance constraints, using a set r reference, as

SHAKE(r
′
→ r′′; r) (5.79)

This action is consistent with solving a set of Lagrange multipliers in the constrained equations of motion. SHAKE
needs a relative tolerance; it will continue until all constraints are satisfied within that relative tolerance. An error
message is given if SHAKE cannot reset the coordinates because the deviation is too large, or if a given number
of iterations is surpassed.

Assume the equations of motion must fulfill 𝐾 holonomic constraints, expressed as

𝜎𝑘(r1 . . . r𝑁) = 0; 𝑘 = 1 . . .𝐾. (5.80)

5.4. Algorithms 388

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

For example, (r1 − r2)
2 − 𝑏2 = 0. Then the forces are defined as

− 𝜕

𝜕r𝑖

(︃
𝑉 +

𝐾∑︁
𝑘=1

𝜆𝑘𝜎𝑘

)︃
, (5.81)

where 𝜆𝑘 are Lagrange multipliers which must be solved to fulfill the constraint equations. The second part of this
sum determines the constraint forces G𝑖, defined by

G𝑖 = −
𝐾∑︁

𝑘=1

𝜆𝑘
𝜕𝜎𝑘
𝜕r𝑖

(5.82)

The displacement due to the constraint forces in the leap-frog or Verlet algorithm is equal to (G𝑖/𝑚𝑖)(∆𝑡)
2.

Solving the Lagrange multipliers (and hence the displacements) requires the solution of a set of coupled equations
of the second degree. These are solved iteratively by SHAKE. SETTLE (page 389)

SETTLE

For the special case of rigid water molecules, that often make up more than 80% of the simulation system we have
implemented the SETTLE algorithm 47 (page 579) (sec. Constraint algorithms (page 460)). The implementation
of SETTLE in GROMACS is a slight modification of the original algorithm, in that it completely avoids the
calculation of the center of mass of the water molecule. Apart from saving a few operations, the main gain of this
is a reduction in rounding errors. For large coordinates, the floating pointing precision of constrained distances
is reduced, which leads to an energy drift which usually depends quadratically on the coordinate. For SETTLE
this dependence is now linear, which enables accurate integration of systems in single precision up to 1000 nm in
size. But note that the drift due to SHAKE and LINCS still has a quadratic dependence, which limits the size of
systems with normal constraints in single precision to 100 to 200 nm.

For velocity Verlet, an additional round of constraining must be done, to constrain the velocities of the second
velocity half step, removing any component of the velocity parallel to the bond vector. This step is called RATTLE,
and is covered in more detail in the original Andersen paper 48 (page 579).

LINCS

The LINCS algorithm

LINCS is an algorithm that resets bonds to their correct lengths after an unconstrained update 49 (page 579).
The method is non-iterative, as it always uses two steps. Although LINCS is based on matrices, no matrix-
matrix multiplications are needed. The method is more stable and faster than SHAKE, but it can only be used
with bond constraints and isolated angle constraints, such as the proton angle in OH. Because of its stability,
LINCS is especially useful for Brownian dynamics. LINCS has two parameters, which are explained in the
subsection parameters. The parallel version of LINCS, P-LINCS, is described in subsection Constraints in parallel
(page 401).

The LINCS formulas

We consider a system of 𝑁 particles, with positions given by a 3𝑁 vector r(𝑡). For molecular dynamics the
equations of motion are given by Newton’s Law

d2r

d𝑡2
= M−1F, (5.83)

where F is the 3𝑁 force vector and M is a 3𝑁 × 3𝑁 diagonal matrix, containing the masses of the particles. The
system is constrained by 𝐾 time-independent constraint equations

𝑔𝑖(r) = |r𝑖1 − r𝑖2 | − 𝑑𝑖 = 0 𝑖 = 1, . . . ,𝐾. (5.84)

5.4. Algorithms 389

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

In a numerical integration scheme, LINCS is applied after an unconstrained update, just like SHAKE. The algo-
rithm works in two steps (see figure Fig. 5.8). In the first step, the projections of the new bonds on the old bonds
are set to zero. In the second step, a correction is applied for the lengthening of the bonds due to rotation. The
numerics for the first step and the second step are very similar. A complete derivation of the algorithm can be
found in 49 (page 579). Only a short description of the first step is given here.

0
0
0

1
1
1

0 0
0 0
1 1
1 1

0
0
1
1

0 0
0 0
0 0

1 1
1 1
1 1

0
0
0

1
1
1

0
0
1
1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

unconstrained
update

correction for
rotational

lengthening

projecting out
forces working

along the bonds

θ

d
l d

pd

Fig. 5.8: The three position updates needed for one time step. The dashed line is the old bond of length 𝑑, the
solid lines are the new bonds. 𝑙 = 𝑑 cos 𝜃 and 𝑝 = (2𝑑2 − 𝑙2)

1
2 .

A new notation is introduced for the gradient matrix of the constraint equations which appears on the right hand
side of this equation:

𝐵ℎ𝑖 =
𝜕𝑔ℎ
𝜕𝑟𝑖

(5.85)

Notice that B is a 𝐾×3𝑁 matrix, it contains the directions of the constraints. The following equation shows how
the new constrained coordinates r𝑛+1 are related to the unconstrained coordinates r𝑢𝑛𝑐𝑛+1 by

r𝑛+1 = (I−T𝑛B𝑛)r
𝑢𝑛𝑐
𝑛+1 +T𝑛d =

r𝑢𝑛𝑐𝑛+1 −M−1B𝑛(B𝑛M
−1B𝑇

𝑛)
−1(B𝑛r

𝑢𝑛𝑐
𝑛+1 − d)

(5.86)

where

T = M−1B𝑇 (BM−1B𝑇)−1 (5.87)

The derivation of this equation from (5.83) and (5.84) can be found in 49 (page 579).

This first step does not set the real bond lengths to the prescribed lengths, but the projection of the new bonds onto
the old directions of the bonds. To correct for the rotation of bond 𝑖, the projection of the bond, 𝑝𝑖, on the old
direction is set to

𝑝𝑖 =
√︁
2𝑑2𝑖 − 𝑙2𝑖 , (5.88)

where 𝑙𝑖 is the bond length after the first projection. The corrected positions are

r*𝑛+1 = (I−T𝑛B𝑛)r𝑛+1 +T𝑛p. (5.89)

This correction for rotational effects is actually an iterative process, but during MD only one iteration is applied.
The relative constraint deviation after this procedure will be less than 0.0001 for every constraint. In energy
minimization, this might not be accurate enough, so the number of iterations is equal to the order of the expansion
(see below).

Half of the CPU time goes to inverting the constraint coupling matrix B𝑛M
−1B𝑇

𝑛 , which has to be done every
time step. This 𝐾 ×𝐾 matrix has 1/𝑚𝑖1 + 1/𝑚𝑖2 on the diagonal. The off-diagonal elements are only non-zero
when two bonds are connected, then the element is cos𝜑/𝑚𝑐, where 𝑚𝑐 is the mass of the atom connecting the
two bonds and 𝜑 is the angle between the bonds.

5.4. Algorithms 390

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The matrix T is inverted through a power expansion. A 𝐾×𝐾 matrix S is introduced which is the inverse square
root of the diagonal of B𝑛M

−1B𝑇
𝑛 . This matrix is used to convert the diagonal elements of the coupling matrix

to one:

(B𝑛M
−1B𝑇

𝑛)
−1 = SS−1(B𝑛M

−1B𝑇
𝑛)

−1S−1S

= S(SB𝑛M
−1B𝑇

𝑛S)
−1S = S(I−A𝑛)

−1S
(5.90)

The matrix A𝑛 is symmetric and sparse and has zeros on the diagonal. Thus a simple trick can be used to calculate
the inverse:

(I−A𝑛)
−1 = I+A𝑛 +A2

𝑛 +A3
𝑛 + . . . (5.91)

This inversion method is only valid if the absolute values of all the eigenvalues of A𝑛 are smaller than one.
In molecules with only bond constraints, the connectivity is so low that this will always be true, even if ring
structures are present. Problems can arise in angle-constrained molecules. By constraining angles with additional
distance constraints, multiple small ring structures are introduced. This gives a high connectivity, leading to large
eigenvalues. Therefore LINCS should NOT be used with coupled angle-constraints.

For molecules with all bonds constrained the eigenvalues of 𝐴 are around 0.4. This means that with each addi-
tional order in the expansion (5.91) the deviations decrease by a factor 0.4. But for relatively isolated triangles of
constraints the largest eigenvalue is around 0.7. Such triangles can occur when removing hydrogen angle vibra-
tions with an additional angle constraint in alcohol groups or when constraining water molecules with LINCS, for
instance with flexible constraints. The constraints in such triangles converge twice as slow as the other constraints.
Therefore, starting with GROMACS 4, additional terms are added to the expansion for such triangles

(I−A𝑛)
−1 ≈ I+A𝑛 + . . .+A𝑁𝑖

𝑛 +
(︁
A*

𝑛 + . . .+A*
𝑛
𝑁𝑖

)︁
A𝑁𝑖

𝑛 (5.92)

where 𝑁𝑖 is the normal order of the expansion and A* only contains the elements of A that couple constraints
within rigid triangles, all other elements are zero. In this manner, the accuracy of angle constraints comes close
to that of the other constraints, while the series of matrix vector multiplications required for determining the
expansion only needs to be extended for a few constraint couplings. This procedure is described in the P-LINCS
paper 50 (page 579).

The LINCS Parameters

The accuracy of LINCS depends on the number of matrices used in the expansion (5.91). For MD calculations a
fourth order expansion is enough. For Brownian dynamics with large time steps an eighth order expansion may
be necessary. The order is a parameter in the mdp (page 488) file. The implementation of LINCS is done in such a
way that the algorithm will never crash. Even when it is impossible to to reset the constraints LINCS will generate
a conformation which fulfills the constraints as well as possible. However, LINCS will generate a warning when
in one step a bond rotates over more than a predefined angle. This angle is set by the user in the mdp (page 488)
file.

5.4.6 Simulated Annealing

The well known simulated annealing (SA) protocol is supported in GROMACS, and you can even couple multiple
groups of atoms separately with an arbitrary number of reference temperatures that change during the simula-
tion. The annealing is implemented by simply changing the current reference temperature for each group in the
temperature coupling, so the actual relaxation and coupling properties depends on the type of thermostat you use
and how hard you are coupling it. Since we are changing the reference temperature it is important to remember
that the system will NOT instantaneously reach this value - you need to allow for the inherent relaxation time in
the coupling algorithm too. If you are changing the annealing reference temperature faster than the temperature
relaxation you will probably end up with a crash when the difference becomes too large.

The annealing protocol is specified as a series of corresponding times and reference temperatures for each group,
and you can also choose whether you only want a single sequence (after which the temperature will be coupled
to the last reference value), or if the annealing should be periodic and restart at the first reference point once
the sequence is completed. You can mix and match both types of annealing and non-annealed groups in your
simulation.

5.4. Algorithms 391

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.4.7 Stochastic Dynamics

Stochastic or velocity Langevin dynamics adds a friction and a noise term to Newton’s equations of motion, as

𝑚𝑖
d2r𝑖
d𝑡2

= −𝑚𝑖𝛾𝑖
dr𝑖
d𝑡

+ F𝑖(r) +
∘
r𝑖, (5.93)

where 𝛾𝑖 is the friction constant [1/ps] and
∘
r𝑖(𝑡) is a noise process with ⟨∘𝑟𝑖(𝑡)

∘
𝑟𝑗(𝑡 + 𝑠)⟩ = 2𝑚𝑖𝛾𝑖𝑘𝐵𝑇𝛿(𝑠)𝛿𝑖𝑗 .

When 1/𝛾𝑖 is large compared to the time scales present in the system, one could see stochastic dynamics as
molecular dynamics with stochastic temperature-coupling. But any processes that take longer than 1/𝛾𝑖, e.g.
hydrodynamics, will be dampened. Since each degree of freedom is coupled independently to a heat bath, equi-
libration of fast modes occurs rapidly. For simulating a system in vacuum there is the additional advantage that
there is no accumulation of errors for the overall translational and rotational degrees of freedom. When 1/𝛾𝑖 is
small compared to the time scales present in the system, the dynamics will be completely different from MD, but
the sampling is still correct.

In GROMACS there is one simple and efficient implementation. Its accuracy is equivalent to the normal MD
leap-frog and Velocity Verlet integrator. It is nearly identical to the common way of discretizing the Langevin
equation, but the friction and velocity term are applied in an impulse fashion 51 (page 579). It can be described
as:

v′ = v(𝑡− 1

2
∆𝑡) +

1

𝑚
F(𝑡)∆𝑡

∆v = −𝛼v′(𝑡+
1

2
∆𝑡) +

√︂
𝑘𝐵𝑇

𝑚
𝛼(2− 𝛼) r𝐺𝑖

r(𝑡+∆𝑡) = r(𝑡) +

(︂
v′ +

1

2
∆v

)︂
∆𝑡

(5.94)

v(𝑡+
1

2
∆𝑡) = v′ +∆v

𝛼 = 1− 𝑒−𝛾Δ𝑡
(5.95)

where r𝐺𝑖 is Gaussian distributed noise with 𝜇 = 0, 𝜎 = 1. The velocity is first updated a full time step without
friction and noise to get v′, identical to the normal update in leap-frog. The friction and noise are then applied
as an impulse at step 𝑡 + ∆𝑡. The advantage of this scheme is that the velocity-dependent terms act at the full
time step, which makes the correct integration of forces that depend on both coordinates and velocities, such
as constraints and dissipative particle dynamics (DPD, not implemented yet), straightforward. With constraints,
the coordinate update (5.95) is split into a normal leap-frog update and a ∆v. After both of these updates the
constraints are applied to coordinates and velocities.

SD can be chosen as an integrator by integrator=sd (page 43). The simulations are performed using the
mdrun (page 215) program. When using SD as a thermostat, an appropriate value for 𝛾 is e.g. 0.5 ps−1, since this
results in a friction that is lower than the internal friction of water, while it still provides efficient thermostatting.

5.4.8 Brownian Dynamics

In the limit of high friction, stochastic dynamics reduces to Brownian dynamics, also called position Langevin
dynamics. This applies to over-damped systems, i.e. systems in which the inertia effects are negligible. The
equation is

dr𝑖
d𝑡

=
1

𝛾𝑖
F𝑖(r) +

∘
r𝑖 (5.96)

where 𝛾𝑖 is the friction coefficient [amu/ps] and
∘
r𝑖(𝑡) is a noise process with ⟨∘𝑟𝑖(𝑡)

∘
𝑟𝑗(𝑡+ 𝑠)⟩ = 2𝛿(𝑠)𝛿𝑖𝑗𝑘𝐵𝑇/𝛾𝑖.

In GROMACS the equations are integrated with a simple, explicit scheme

r𝑖(𝑡+∆𝑡) = r𝑖(𝑡) +
∆𝑡

𝛾𝑖
F𝑖(r(𝑡)) +

√︃
2𝑘𝐵𝑇

∆𝑡

𝛾𝑖
r𝐺𝑖, (5.97)

5.4. Algorithms 392

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where r𝐺𝑖 is Gaussian distributed noise with 𝜇 = 0, 𝜎 = 1. The friction coefficients 𝛾𝑖 can be chosen the
same for all particles or as 𝛾𝑖 = 𝑚𝑖 𝛾𝑖, where the friction constants 𝛾𝑖 can be different for different groups of
atoms. Because the system is assumed to be over-damped, large timesteps can be used. LINCS should be used
for the constraints since SHAKE will not converge for large atomic displacements. BD can be activated by using
integrator=bd (page 43) and the simulations are run using the mdrun (page 215) program.

In BD there are no velocities, so there is also no kinetic energy. Still gmx mdrun (page 215) will report a kinetic
energy and temperature based on atom displacements per step ∆𝑥. This can be used to judge the quality of the
integration. A too high temperature is an indication that the time step chosen is too large. The formula for the
kinetic energy term reported is:

1

2

∑︁
𝑖

𝛾𝑖∆𝑥
2
𝑖

2∆𝑡
(5.98)

5.4.9 Energy Minimization

Energy minimization in GROMACS can be done using steepest descent, conjugate gradients, or l-bfgs (limited-
memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian minimizer. . . we prefer the abbreviation). Whether
to use EM, and which algorithm to use, is specified via the integrator (page 43) setting of the mdrun
(page 215) program.

Steepest Descent

Although steepest descent is certainly not the most efficient algorithm for searching, it is robust and easy to
implement.

We define the vector r as the vector of all 3𝑁 coordinates. Initially a maximum displacement ℎ0 (e.g. 0.01 nm)
must be given.

First the forces F and potential energy are calculated. New positions are calculated by

r𝑛+1 = r𝑛 +
F𝑛

max(|F𝑛|)
ℎ𝑛, (5.99)

where ℎ𝑛 is the maximum displacement and F𝑛 is the force, or the negative gradient of the potential 𝑉 . The
notation max(|F𝑛|) means the largest scalar force on any atom. The forces and energy are again computed for the
new positions

If (𝑉𝑛+1 < 𝑉𝑛) the new positions are accepted and ℎ𝑛+1 = 1.2ℎ𝑛.
If (𝑉𝑛+1 ≥ 𝑉𝑛) the new positions are rejected and ℎ𝑛 = 0.2ℎ𝑛.

The algorithm stops when either a user-specified number of force evaluations has been performed (e.g. 100), or
when the maximum of the absolute values of the force (gradient) components is smaller than a specified value 𝜖.
Since force truncation produces some noise in the energy evaluation, the stopping criterion should not be made
too tight to avoid endless iterations. A reasonable value for 𝜖 can be estimated from the root mean square force 𝑓
a harmonic oscillator would exhibit at a temperature 𝑇 . This value is

𝑓 = 2𝜋𝜈
√
2𝑚𝑘𝑇 , (5.100)

where 𝜈 is the oscillator frequency, 𝑚 the (reduced) mass, and 𝑘 Boltzmann’s constant. For a weak oscillator with
a wave number of 100 cm−1 and a mass of 10 atomic units, at a temperature of 1 K, 𝑓 = 7.7 kJ mol−1 nm−1. A
value for 𝜖 between 1 and 10 is acceptable.

5.4. Algorithms 393

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Conjugate Gradient

Conjugate gradient is slower than steepest descent in the early stages of the minimization, but becomes more
efficient closer to the energy minimum. The parameters and stop criterion are the same as for steepest descent. In
GROMACS conjugate gradient can not be used with constraints, including the SETTLE algorithm for water 47
(page 579), as this has not been implemented. If water is present it must be of a flexible model, which can be
specified in the mdp (page 488) file by define = -DFLEXIBLE.

This is not really a restriction, since the accuracy of conjugate gradient is only required for minimization prior to
a normal-mode analysis, which cannot be performed with constraints. For most other purposes steepest descent is
efficient enough.

L-BFGS

The original BFGS algorithm works by successively creating better approximations of the inverse Hessian matrix,
and moving the system to the currently estimated minimum. The memory requirements for this are proportional
to the square of the number of particles, so it is not practical for large systems like biomolecules. Instead, we
use the L-BFGS algorithm of Nocedal 52 (page 579), 53 (page 579), which approximates the inverse Hessian
by a fixed number of corrections from previous steps. This sliding-window technique is almost as efficient as the
original method, but the memory requirements are much lower - proportional to the number of particles multiplied
with the correction steps. In practice we have found it to converge faster than conjugate gradients, but due to the
correction steps it is not yet parallelized. It is also noteworthy that switched or shifted interactions usually improve
the convergence, since sharp cut-offs mean the potential function at the current coordinates is slightly different
from the previous steps used to build the inverse Hessian approximation.

5.4.10 Normal-Mode Analysis

Normal-mode analysis 54 (page 579)56 (page 579) can be performed using GROMACS, by diagonalization of the
mass-weighted Hessian 𝐻:

𝑅𝑇𝑀−1/2𝐻𝑀−1/2𝑅 = diag(𝜆1, . . . , 𝜆3𝑁)

𝜆𝑖 = (2𝜋𝜔𝑖)
2

(5.101)

where 𝑀 contains the atomic masses, 𝑅 is a matrix that contains the eigenvectors as columns, 𝜆𝑖 are the eigen-
values and 𝜔𝑖 are the corresponding frequencies.

First the Hessian matrix, which is a 3𝑁 × 3𝑁 matrix where 𝑁 is the number of atoms, needs to be calculated:

𝐻𝑖𝑗 =
𝜕2𝑉

𝜕𝑥𝑖𝜕𝑥𝑗
(5.102)

where 𝑥𝑖 and 𝑥𝑗 denote the atomic x, y or z coordinates. In practice, this equation is not used, but the Hessian is
calculated numerically from the force as:

𝐻𝑖𝑗 = −𝑓𝑖(x+ ℎe𝑗)− 𝑓𝑖(x− ℎe𝑗)

2ℎ

𝑓𝑖 = − 𝜕𝑉

𝜕𝑥𝑖

(5.103)

where e𝑗 is the unit vector in direction 𝑗. It should be noted that for a usual normal-mode calculation, it is
necessary to completely minimize the energy prior to computation of the Hessian. The tolerance required depends
on the type of system, but a rough indication is 0.001 kJ mol−1. Minimization should be done with conjugate
gradients or L-BFGS in double precision.

A number of GROMACS programs are involved in these calculations. First, the energy should be minimized using
mdrun (page 215). Then, mdrun (page 215) computes the Hessian. Note that for generating the run input file, one
should use the minimized conformation from the full precision trajectory file, as the structure file is not accurate
enough. gmx nmeig (page 224) does the diagonalization and the sorting of the normal modes according to their
frequencies. Both mdrun (page 215) and gmx nmeig (page 224) should be run in double precision. The normal

5.4. Algorithms 394

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

modes can be analyzed with the program gmx anaeig (page 122). Ensembles of structures at any temperature
and for any subset of normal modes can be generated with gmx nmens (page 226). An overview of normal-mode
analysis and the related principal component analysis (see sec. Covariance analysis (page 563)) can be found in 57
(page 579).

5.4.11 Free energy calculations

Slow-growth methods

Free energy calculations can be performed in GROMACS using a number of methods, including “slow-growth.”
An example problem might be calculating the difference in free energy of binding of an inhibitor I to an enzyme
E and to a mutated enzyme E′. It is not feasible with computer simulations to perform a docking calculation for
such a large complex, or even releasing the inhibitor from the enzyme in a reasonable amount of computer time
with reasonable accuracy. However, if we consider the free energy cycle in Fig. 5.9 A we can write:

∆𝐺1 −∆𝐺2 = ∆𝐺3 −∆𝐺4 (5.104)

If we are interested in the left-hand term we can equally well compute the right-hand term.

I

E’E

I

E E’

G1Δ ΔG2

ΔG4

ΔG3

A
Fig. 5.9: Free energy cycles. A: to calculate ∆𝐺12, the free energy difference between the binding of inhibitor I
to enzymes E respectively E′.

G1Δ ΔG2

ΔG3

I I’

E

I

E

I’

ΔG4

B
Fig. 5.10: Free energy cycles. B: to calculate ∆𝐺12, the free energy difference for binding of inhibitors I respec-
tively I′ to enzyme E.

5.4. Algorithms 395

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

If we want to compute the difference in free energy of binding of two inhibitors I and I′ to an enzyme E (Fig.
5.10) we can again use (5.104) to compute the desired property.

Free energy differences between two molecular species can be calculated in GROMACS using the “slow-growth”
method. Such free energy differences between different molecular species are physically meaningless, but they
can be used to obtain meaningful quantities employing a thermodynamic cycle. The method requires a simulation
during which the Hamiltonian of the system changes slowly from that describing one system (A) to that describing
the other system (B). The change must be so slow that the system remains in equilibrium during the process; if
that requirement is fulfilled, the change is reversible and a slow-growth simulation from B to A will yield the same
results (but with a different sign) as a slow-growth simulation from A to B. This is a useful check, but the user
should be aware of the danger that equality of forward and backward growth results does not guarantee correctness
of the results.

The required modification of the Hamiltonian 𝐻 is realized by making 𝐻 a function of a coupling parameter
𝜆 : 𝐻 = 𝐻(𝑝, 𝑞;𝜆) in such a way that 𝜆 = 0 describes system A and 𝜆 = 1 describes system B:

𝐻(𝑝, 𝑞; 0) = 𝐻A(𝑝, 𝑞); 𝐻(𝑝, 𝑞; 1) = 𝐻B(𝑝, 𝑞). (5.105)

In GROMACS, the functional form of the 𝜆-dependence is different for the various force-field contributions and
is described in section sec. Free energy interactions (page 432).

The Helmholtz free energy 𝐴 is related to the partition function 𝑄 of an 𝑁,𝑉, 𝑇 ensemble, which is assumed to
be the equilibrium ensemble generated by a MD simulation at constant volume and temperature. The generally
more useful Gibbs free energy 𝐺 is related to the partition function ∆ of an 𝑁, 𝑝, 𝑇 ensemble, which is assumed
to be the equilibrium ensemble generated by a MD simulation at constant pressure and temperature:

𝐴(𝜆) = −𝑘𝐵𝑇 ln𝑄

𝑄 = 𝑐

∫︁ ∫︁
exp[−𝛽𝐻(𝑝, 𝑞;𝜆)] 𝑑𝑝 𝑑𝑞

𝐺(𝜆) = −𝑘𝐵𝑇 ln∆

∆ = 𝑐

∫︁ ∫︁ ∫︁
exp[−𝛽𝐻(𝑝, 𝑞;𝜆)− 𝛽𝑝𝑉] 𝑑𝑝 𝑑𝑞 𝑑𝑉

𝐺 = 𝐴+ 𝑝𝑉,

(5.106)

where 𝛽 = 1/(𝑘𝐵𝑇) and 𝑐 = (𝑁 !ℎ3𝑁)−1. These integrals over phase space cannot be evaluated from a simula-
tion, but it is possible to evaluate the derivative with respect to 𝜆 as an ensemble average:

𝑑𝐴

𝑑𝜆
=

∫︀∫︀
(𝜕𝐻/𝜕𝜆) exp[−𝛽𝐻(𝑝, 𝑞;𝜆)] 𝑑𝑝 𝑑𝑞∫︀∫︀

exp[−𝛽𝐻(𝑝, 𝑞;𝜆)] 𝑑𝑝 𝑑𝑞
=

⟨
𝜕𝐻

𝜕𝜆

⟩
𝑁𝑉 𝑇 ;𝜆

, (5.107)

with a similar relation for 𝑑𝐺/𝑑𝜆 in the 𝑁, 𝑝, 𝑇 ensemble. The difference in free energy between A and B can be
found by integrating the derivative over 𝜆:

𝐴B(𝑉, 𝑇)−𝐴A(𝑉, 𝑇) =

∫︁ 1

0

⟨
𝜕𝐻

𝜕𝜆

⟩
𝑁𝑉 𝑇 ;𝜆

𝑑𝜆 (5.108)

𝐺B(𝑝, 𝑇)−𝐺A(𝑝, 𝑇) =

∫︁ 1

0

⟨
𝜕𝐻

𝜕𝜆

⟩
𝑁𝑝𝑇 ;𝜆

𝑑𝜆. (5.109)

If one wishes to evaluate 𝐺B(𝑝, 𝑇) − 𝐺A(𝑝, 𝑇), the natural choice is a constant-pressure simulation. However,
this quantity can also be obtained from a slow-growth simulation at constant volume, starting with system A at
pressure 𝑝 and volume 𝑉 and ending with system B at pressure 𝑝𝐵 , by applying the following small (but, in
principle, exact) correction:

𝐺B(𝑝)−𝐺A(𝑝) = 𝐴B(𝑉)−𝐴A(𝑉)−
∫︁ 𝑝B

𝑝

[𝑉 B(𝑝′)− 𝑉] 𝑑𝑝′ (5.110)

Here we omitted the constant 𝑇 from the notation. This correction is roughly equal to − 1
2 (𝑝

B − 𝑝)∆𝑉 =
(∆𝑉)2/(2𝜅𝑉), where ∆𝑉 is the volume change at 𝑝 and 𝜅 is the isothermal compressibility. This is usually
small; for example, the growth of a water molecule from nothing in a bath of 1000 water molecules at constant

5.4. Algorithms 396

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

volume would produce an additional pressure of as much as 22 bar, but a correction to the Helmholtz free energy
of just -1 kJ mol−1. In Cartesian coordinates, the kinetic energy term in the Hamiltonian depends only on the
momenta, and can be separately integrated and, in fact, removed from the equations. When masses do not change,
there is no contribution from the kinetic energy at all; otherwise the integrated contribution to the free energy is
− 3

2𝑘𝐵𝑇 ln(𝑚B/𝑚A). Note that this is only true in the absence of constraints.

Thermodynamic integration

GROMACS offers the possibility to integrate (5.108) or eq. (5.109) in one simulation over the full range from A
to B. However, if the change is large and insufficient sampling can be expected, the user may prefer to determine
the value of ⟨𝑑𝐺/𝑑𝜆⟩ accurately at a number of well-chosen intermediate values of 𝜆. This can easily be done
by setting the stepsize delta_lambda to zero. Each simulation can be equilibrated first, and a proper error
estimate can be made for each value of 𝑑𝐺/𝑑𝜆 from the fluctuation of 𝜕𝐻/𝜕𝜆. The total free energy change is
then determined afterward by an appropriate numerical integration procedure.

GROMACS now also supports the use of Bennett’s Acceptance Ratio 58 (page 579) for calculating values of ∆G
for transformations from state A to state B using the program gmx bar (page 131). The same data can also be used
to calculate free energies using MBAR 59 (page 579), though the analysis currently requires external tools from
the external pymbar package.

The 𝜆-dependence for the force-field contributions is described in detail in section sec. Free energy interactions
(page 432).

5.4.12 Replica exchange

Replica exchange molecular dynamics (REMD) is a method that can be used to speed up the sampling of any type
of simulation, especially if conformations are separated by relatively high energy barriers. It involves simulating
multiple replicas of the same system at different temperatures and randomly exchanging the complete state of two
replicas at regular intervals with the probability:

𝑃 (1 ↔ 2) = min

(︂
1, exp

[︂(︂
1

𝑘𝐵𝑇1
− 1

𝑘𝐵𝑇2

)︂
(𝑈1 − 𝑈2)

]︂)︂
(5.111)

where 𝑇1 and 𝑇2 are the reference temperatures and 𝑈1 and 𝑈2 are the instantaneous potential energies of replicas
1 and 2 respectively. After exchange the velocities are scaled by (𝑇1/𝑇2)

±0.5 and a neighbor search is performed
the next step. This combines the fast sampling and frequent barrier-crossing of the highest temperature with correct
Boltzmann sampling at all the different temperatures 60 (page 579), 61 (page 579). We only attempt exchanges for
neighboring temperatures as the probability decreases very rapidly with the temperature difference. One should
not attempt exchanges for all possible pairs in one step. If, for instance, replicas 1 and 2 would exchange, the
chance of exchange for replicas 2 and 3 not only depends on the energies of replicas 2 and 3, but also on the
energy of replica 1. In GROMACS this is solved by attempting exchange for all odd pairs on odd attempts and
for all even pairs on even attempts. If we have four replicas: 0, 1, 2 and 3, ordered in temperature and we attempt
exchange every 1000 steps, pairs 0-1 and 2-3 will be tried at steps 1000, 3000 etc. and pair 1-2 at steps 2000, 4000
etc.

How should one choose the temperatures? The energy difference can be written as:

𝑈1 − 𝑈2 = 𝑁𝑑𝑓
𝑐

2
𝑘𝐵(𝑇1 − 𝑇2) (5.112)

where 𝑁𝑑𝑓 is the total number of degrees of freedom of one replica and 𝑐 is 1 for harmonic potentials and around
2 for protein/water systems. If 𝑇2 = (1 + 𝜖)𝑇1 the probability becomes:

𝑃 (1 ↔ 2) = exp

(︂
− 𝜖2𝑐𝑁𝑑𝑓

2(1 + 𝜖)

)︂
≈ exp

(︁
−𝜖2 𝑐

2
𝑁𝑑𝑓

)︁
(5.113)

Thus for a probability of 𝑒−2 ≈ 0.135 one obtains 𝜖 ≈ 2/
√︀
𝑐𝑁𝑑𝑓 . With all bonds constrained one has 𝑁𝑑𝑓 ≈

2𝑁𝑎𝑡𝑜𝑚𝑠 and thus for 𝑐 = 2 one should choose 𝜖 as 1/
√
𝑁𝑎𝑡𝑜𝑚𝑠. However there is one problem when using

pressure coupling. The density at higher temperatures will decrease, leading to higher energy 62 (page 579),

5.4. Algorithms 397

https://SimTK.org/home/pymbar

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

which should be taken into account. Using a so-called REMD calculator, you can type in the temperature range
and the number of atoms. The tool then proposes a set of temperatures.

An extension to the REMD for the isobaric-isothermal ensemble was proposed by Okabe et al. 63 (page 579). In
this work the exchange probability is modified to:

𝑃 (1 ↔ 2) = min

(︂
1, exp

[︂(︂
1

𝑘𝐵𝑇1
− 1

𝑘𝐵𝑇2

)︂
(𝑈1 − 𝑈2) +

(︂
𝑃1

𝑘𝐵𝑇1
− 𝑃2

𝑘𝐵𝑇2

)︂
(𝑉1 − 𝑉2)

]︂)︂
(5.114)

where 𝑃1 and 𝑃2 are the respective reference pressures and 𝑉1 and 𝑉2 are the respective instantaneous volumes in
the simulations. In most cases the differences in volume are so small that the second term is negligible. It only
plays a role when the difference between 𝑃1 and 𝑃2 is large or in phase transitions.

Hamiltonian replica exchange is also supported in GROMACS. In Hamiltonian replica exchange, each replica has
a different Hamiltonian, defined by the free energy pathway specified for the simulation. The exchange probability
to maintain the correct ensemble probabilities is:

𝑃 (1 ↔ 2) = min

(︂
1, exp

[︂
1

𝑘𝐵𝑇
(𝑈1(𝑥1)− 𝑈1(𝑥2) + 𝑈2(𝑥2)− 𝑈2(𝑥1))

]︂)︂
(5.115)

The separate Hamiltonians are defined by the free energy functionality of GROMACS, with swaps made between
the different values of 𝜆 defined in the mdp file.

Hamiltonian and temperature replica exchange can also be performed simultaneously 64 (page 579), using the
acceptance criteria:

𝑃 (1 ↔ 2) = min

(︂
1, exp

[︂
𝑈1(𝑥1)− 𝑈1(𝑥2)

𝑘𝐵𝑇1
+
𝑈2(𝑥2)− 𝑈2(𝑥1)

𝑘𝐵𝑇2

]︂)︂
(5.116)

Gibbs sampling replica exchange has also been implemented in GROMACS 64 (page 579). In Gibbs sampling
replica exchange, all possible pairs are tested for exchange, allowing swaps between replicas that are not neighbors.

Gibbs sampling replica exchange requires no additional potential energy calculations. However there is an addi-
tional communication cost in Gibbs sampling replica exchange, as for some permutations, more than one round
of swaps must take place. In some cases, this extra communication cost might affect the efficiency.

All replica exchange variants are set using mdp (page 488) options and performed using the mdrun (page 215)
program. It will only work when MPI is installed, due to the inherent parallelism in the algorithm. For efficiency
each replica can run on a separate rank. See the manual page of mdrun (page 215) on how to use these multinode
features.

5.4.13 Essential Dynamics sampling

The results from Essential Dynamics (see sec. Covariance analysis (page 563)) of a protein can be used to guide
MD simulations. The idea is that from an initial MD simulation (or from other sources) a definition of the
collective fluctuations with largest amplitude is obtained. The position along one or more of these collective
modes can be constrained in a (second) MD simulation in a number of ways for several purposes. For example,
the position along a certain mode may be kept fixed to monitor the average force (free-energy gradient) on that
coordinate in that position. Another application is to enhance sampling efficiency with respect to usual MD 65
(page 579), 66 (page 579). In this case, the system is encouraged to sample its available configuration space more
systematically than in a diffusion-like path that proteins usually take.

Another possibility to enhance sampling is flooding. Here a flooding potential is added to certain (collective)
degrees of freedom to expel the system out of a region of phase space 67 (page 580).

The procedure for essential dynamics sampling or flooding is as follows. First, the eigenvectors and eigenvalues
need to be determined using covariance analysis (gmx covar (page 148)) or normal-mode analysis (gmx nmeig
(page 224)). Then, this information is fed into make_edi (page 209), which has many options for selecting vectors
and setting parameters, see gmx make_edi -h. The generated edi (page 485) input file is then passed to mdrun
(page 215).

5.4. Algorithms 398

https://virtualchemistry.org/remd-temperature-generator/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.4.14 Expanded Ensemble

In an expanded ensemble simulation 68 (page 580), both the coordinates and the thermodynamic ensemble are
treated as configuration variables that can be sampled over. The probability of any given state can be written as:

𝑃 (�⃗�, 𝑘) ∝ exp (−𝛽𝑘𝑈𝑘 + 𝑔𝑘) , (5.117)

where 𝛽𝑘 = 1
𝑘𝐵𝑇𝑘

is the 𝛽 corresponding to the 𝑘th thermodynamic state, and 𝑔𝑘 is a user-specified weight
factor corresponding to the 𝑘th state. This space is therefore a mixed, generalized, or expanded ensemble which
samples from multiple thermodynamic ensembles simultaneously. 𝑔𝑘 is chosen to give a specific weighting of
each subensemble in the expanded ensemble, and can either be fixed, or determined by an iterative procedure. The
set of 𝑔𝑘 is frequently chosen to give each thermodynamic ensemble equal probability, in which case 𝑔𝑘 is equal
to the free energy in non-dimensional units, but they can be set to arbitrary values as desired. Several different
algorithms can be used to equilibrate these weights, described in the mdp option listings.

In GROMACS, this space is sampled by alternating sampling in the 𝑘 and �⃗� directions. Sampling in the �⃗� direction
is done by standard molecular dynamics sampling; sampling between the different thermodynamics states is done
by Monte Carlo, with several different Monte Carlo moves supported. The 𝑘 states can be defined by different
temperatures, or choices of the free energy 𝜆 variable, or both. Expanded ensemble simulations thus represent
a serialization of the replica exchange formalism, allowing a single simulation to explore many thermodynamic
states.

5.4.15 Parallelization

The CPU time required for a simulation can be reduced by running the simulation in parallel over more than one
core. Ideally, one would want to have linear scaling: running on 𝑁 cores makes the simulation 𝑁 times faster. In
practice this can only be achieved for a small number of cores. The scaling will depend a lot on the algorithms
used. Also, different algorithms can have different restrictions on the interaction ranges between atoms.

5.4.16 Domain decomposition

Since most interactions in molecular simulations are local, domain decomposition is a natural way to decompose
the system. In domain decomposition, a spatial domain is assigned to each rank, which will then integrate the
equations of motion for the particles that currently reside in its local domain. With domain decomposition, there
are two choices that have to be made: the division of the unit cell into domains and the assignment of the forces to
domains. Most molecular simulation packages use the half-shell method for assigning the forces. But there are two
methods that always require less communication: the eighth shell 69 (page 580) and the midpoint 70 (page 580)
method. GROMACS currently uses the eighth shell method, but for certain systems or hardware architectures it
might be advantageous to use the midpoint method. Therefore, we might implement the midpoint method in the
future. Most of the details of the domain decomposition can be found in the GROMACS 4 paper 5 (page 577).

Coordinate and force communication

In the most general case of a triclinic unit cell, the space in divided with a 1-, 2-, or 3-D grid in parallelepipeds that
we call domain decomposition cells. Each cell is assigned to a particle-particle rank. The system is partitioned
over the ranks at the beginning of each MD step in which neighbor searching is performed. The minimum unit of
partitioning can be an atom, or a charge group with the (deprecated) group cut-off scheme or an update group. An
update group is a group of atoms that has dependencies during update, which occurs when using constraints and/or
virtual sites. Thus different update groups can be updated independently. Currently update groups can only be
used with at most two sequential constraints, which is the case when only constraining bonds involving hydrogen
atoms. The advantages of update groups are that no communication is required in the update and that this allows
updating part of the system while computing forces for other parts. Atom groups are assigned to the cell where
their center of geometry resides. Before the forces can be calculated, the coordinates from some neighboring cells
need to be communicated, and after the forces are calculated, the forces need to be communicated in the other
direction. The communication and force assignment is based on zones that can cover one or multiple cells. An
example of a zone setup is shown in Fig. 5.11.

5.4. Algorithms 399

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

7

3
0

4
cr

1
65

Fig. 5.11: A non-staggered domain decomposition grid of 3×2×2 cells. Coordinates in zones 1 to 7 are commu-
nicated to the corner cell that has its home particles in zone 0. 𝑟𝑐 is the cut-off radius.

The coordinates are communicated by moving data along the “negative” direction in 𝑥, 𝑦 or 𝑧 to the next neighbor.
This can be done in one or multiple pulses. In Fig. 5.11 two pulses in 𝑥 are required, then one in 𝑦 and then one in
𝑧. The forces are communicated by reversing this procedure. See the GROMACS 4 paper 5 (page 577) for details
on determining which non-bonded and bonded forces should be calculated on which rank.

Dynamic load balancing

When different ranks have a different computational load (load imbalance), all ranks will have to wait for the one
that takes the most time. One would like to avoid such a situation. Load imbalance can occur due to four reasons:

• inhomogeneous particle distribution

• inhomogeneous interaction cost distribution (charged/uncharged, water/non-water due to GROMACS water
innerloops)

• statistical fluctuation (only with small particle numbers)

• differences in communication time, due to network topology and/or other jobs on the machine interfering
with our communication

So we need a dynamic load balancing algorithm where the volume of each domain decomposition cell can be
adjusted independently. To achieve this, the 2- or 3-D domain decomposition grids need to be staggered. Fig. 5.12
shows the most general case in 2-D. Due to the staggering, one might require two distance checks for deciding if
an update group needs to be communicated: a non-bonded distance and a bonded distance check.

By default, mdrun (page 215) automatically turns on the dynamic load balancing during a simulation when the
total performance loss due to the force calculation imbalance is 2% or more. Note that the reported force load
imbalance numbers might be higher, since the force calculation is only part of work that needs to be done during
an integration step. The load imbalance is reported in the log file at log output steps and when the -v option is
used also on screen. The average load imbalance and the total performance loss due to load imbalance are reported
at the end of the log file.

There is one important parameter for the dynamic load balancing, which is the minimum allowed scaling. By
default, each dimension of the domain decomposition cell can scale down by at least a factor of 0.8. For 3-D
domain decomposition this allows cells to change their volume by about a factor of 0.5, which should allow for
compensation of a load imbalance of 100%. The minimum allowed scaling can be changed with the -dds option
of mdrun (page 215).

The load imbalance is measured by timing a single region of the MD step on each MPI rank. This region can
not include MPI communication, as timing of MPI calls does not allow separating wait due to imbalance from
actual communication. The domain volumes are then scaled, with under-relaxation, inversely proportional with

5.4. Algorithms 400

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1

0 0
0 0
0 0
0 0
0 0
0 0

1 1
1 1
1 1
1 1
1 1
1 1

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

1 1
2

d
0

3 2

3’

rc

rb
2’

Fig. 5.12: The zones to communicate to the rank of zone 0, see the text for details. 𝑟𝑐 and 𝑟𝑏 are the non-bonded
and bonded cut-off radii respectively, 𝑑 is an example of a distance between following, staggered boundaries of
cells.

the measured time. This procedure will decrease the load imbalance when the change in load in the measured
region correlates with the change in domain volume and the load outside the measured region does not depend
strongly on the domain volume. In CPU-only simulations, the load is measured between the coordinate and the
force communication. In simulations with non-bonded work on GPUs, we overlap communication and work
on the CPU with calculation on the GPU. Therefore we measure from the last communication before the force
calculation to when the CPU or GPU is finished, whichever is last. When not using PME ranks, we subtract the
time in PME from the CPU time, as this includes MPI calls and the PME load is independent of domain size.
This generally works well, unless the non-bonded load is low and there is imbalance in the bonded interactions.
Then two issues can arise. Dynamic load balancing can increase the imbalance in update and constraints and with
PME the coordinate and force redistribution time can go up significantly. Although dynamic load balancing can
significantly improve performance in cases where there is imbalance in the bonded interactions on the CPU, there
are many situations in which some domains continue decreasing in size and the load imbalance increases and/or
PME coordinate and force redistribution cost increases significantly. As of version 2016.1, mdrun (page 215)
disables the dynamic load balancing when measurement indicates that it deteriorates performance. This means
that in most cases the user will get good performance with the default, automated dynamic load balancing setting.

Constraints in parallel

Since with domain decomposition parts of molecules can reside on different ranks, bond constraints can cross
cell boundaries. This will not happen in GROMACS when update groups are used, which happens when only
bonds involving hydrogens are constrained. Then atoms connected by constraints are assigned to the same do-
main. But without update groups a parallel constraint algorithm is required. GROMACS uses the P-LINCS algo-
rithm 50 (page 579), which is the parallel version of the LINCS algorithm 49 (page 579) (see The LINCS algorithm
(page 389)). The P-LINCS procedure is illustrated in Fig. 5.13. When molecules cross the cell boundaries, atoms
in such molecules up to (lincs_order + 1) bonds away are communicated over the cell boundaries. Then,
the normal LINCS algorithm can be applied to the local bonds plus the communicated ones. After this proce-
dure, the local bonds are correctly constrained, even though the extra communicated ones are not. One coordinate
communication step is required for the initial LINCS step and one for each iteration. Forces do not need to be
communicated.

5.4. Algorithms 401

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fig. 5.13: Example of the parallel setup of P-LINCS with one molecule split over three domain decomposition
cells, using a matrix expansion order of 3. The top part shows which atom coordinates need to be communicated
to which cells. The bottom parts show the local constraints (solid) and the non-local constraints (dashed) for each
of the three cells.

Interaction ranges

Domain decomposition takes advantage of the locality of interactions. This means that there will be limitations
on the range of interactions. By default, mdrun (page 215) tries to find the optimal balance between interaction
range and efficiency. But it can happen that a simulation stops with an error message about missing interactions,
or that a simulation might run slightly faster with shorter interaction ranges. A list of interaction ranges and their
default values is given in Table 5.7

Table 5.7: The interaction ranges with domain decomposition.

interaction range option default

non-bonded 𝑟𝑐=max(𝑟list,𝑟VdW,𝑟Coul) mdp (page 488) file
two-body bonded max(𝑟mb,𝑟𝑐) mdrun (page 215) -rdd starting conf. + 10%
multi-body bonded 𝑟mb mdrun (page 215) -rdd starting conf. + 10%
constraints 𝑟con mdrun (page 215) -rcon est. from bond lengths
virtual sites 𝑟con mdrun (page 215) -rcon 0

In most cases the defaults of mdrun (page 215) should not cause the simulation to stop with an error message
of missing interactions. The range for the bonded interactions is determined from the distance between bonded
update groups in the starting configuration, with 10% added for headroom. For the constraints, the value of 𝑟con is
determined by taking the maximum distance that (lincs_order + 1) bonds can cover when they all connect
at angles of 120 degrees. The actual constraint communication is not limited by 𝑟con, but by the minimum cell
size 𝐿𝐶 , which has the following lower limit:

𝐿𝐶 ≥ max(𝑟mb, 𝑟con) (5.118)

Without dynamic load balancing the system is actually allowed to scale beyond this limit when pressure scaling is
used. Note that for triclinic boxes, 𝐿𝐶 is not simply the box diagonal component divided by the number of cells
in that direction, rather it is the shortest distance between the triclinic cells borders. For rhombic dodecahedra this
is a factor of

√︀
3/2 shorter along 𝑥 and 𝑦.

When 𝑟mb > 𝑟𝑐, mdrun (page 215) employs a smart algorithm to reduce the communication. Simply communicat-
ing all update groups within 𝑟mb would increase the amount of communication enormously. Therefore only update

5.4. Algorithms 402

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

groups that are connected by bonded interactions to update groups which are not locally present are communi-
cated. This leads to little extra communication, but also to a slightly increased cost for the domain decomposition
setup. In some cases, e.g. coarse-grained simulations with a very short cut-off, one might want to set 𝑟mb by hand
to reduce this cost.

Multiple-Program, Multiple-Data PME parallelization

Electrostatics interactions are long-range, therefore special algorithms are used to avoid summation over many
atom pairs. In GROMACS this is usually PME (sec. PME (page 445)). Since with PME all particles interact with
each other, global communication is required. This will usually be the limiting factor for scaling with domain
decomposition. To reduce the effect of this problem, we have come up with a Multiple-Program, Multiple-Data
approach 5 (page 577). Here, some ranks are selected to do only the PME mesh calculation, while the other ranks,
called particle-particle (PP) ranks, do all the rest of the work. For rectangular boxes the optimal PP to PME rank
ratio is usually 3:1, for rhombic dodecahedra usually 2:1. When the number of PME ranks is reduced by a factor
of 4, the number of communication calls is reduced by about a factor of 16. Or put differently, we can now scale
to 4 times more ranks. In addition, for modern 4 or 8 core machines in a network, the effective network bandwidth
for PME is quadrupled, since only a quarter of the cores will be using the network connection on each machine
during the PME calculations.

6 PP ranks 2 PME ranks8 PP/PME ranks

Fig. 5.14: Example of 8 ranks without (left) and with (right) MPMD. The PME communication (red arrows) is
much higher on the left than on the right. For MPMD additional PP - PME coordinate and force communication
(blue arrows) is required, but the total communication complexity is lower.

mdrun (page 215) will by default interleave the PP and PME ranks. If the ranks are not number consecutively
inside the machines, one might want to use mdrun (page 215) -ddorder pp_pme. For machines with a real
3-D torus and proper communication software that assigns the ranks accordingly one should use mdrun (page 215)
-ddorder cartesian.

To optimize the performance one should usually set up the cut-offs and the PME grid such that the PME load
is 25 to 33% of the total calculation load. grompp (page 190) will print an estimate for this load at the end and
also mdrun (page 215) calculates the same estimate to determine the optimal number of PME ranks to use. For
high parallelization it might be worthwhile to optimize the PME load with the mdp (page 488) settings and/or the
number of PME ranks with the -npme option of mdrun (page 215). For changing the electrostatics settings it is
useful to know the accuracy of the electrostatics remains nearly constant when the Coulomb cut-off and the PME
grid spacing are scaled by the same factor. Note that it is usually better to overestimate than to underestimate the
number of PME ranks, since the number of PME ranks is smaller than the number of PP ranks, which leads to less
total waiting time.

The PME domain decomposition can be 1-D or 2-D along the 𝑥 and/or 𝑦 axis. 2-D decomposition is also known as
pencil decomposition because of the shape of the domains at high parallelization. 1-D decomposition along the 𝑦
axis can only be used when the PP decomposition has only 1 domain along 𝑥. 2-D PME decomposition has to have
the number of domains along 𝑥 equal to the number of the PP decomposition. mdrun (page 215) automatically
chooses 1-D or 2-D PME decomposition (when possible with the total given number of ranks), based on the
minimum amount of communication for the coordinate redistribution in PME plus the communication for the grid
overlap and transposes. To avoid superfluous communication of coordinates and forces between the PP and PME
ranks, the number of DD cells in the 𝑥 direction should ideally be the same or a multiple of the number of PME
ranks. By default, mdrun (page 215) takes care of this issue.

5.4. Algorithms 403

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Domain decomposition flow chart

In Fig. 5.15 a flow chart is shown for domain decomposition with all possible communication for different algo-
rithms. For simpler simulations, the same flow chart applies, without the algorithms and communication for the
algorithms that are not used.

Start

Real space (particle) node PME node

Y

Y

Y

Y

N

N

N

N

Communicate coordinates to
construct virtual sites

Construct virtual sites

Neighborsearch step?

Neighborsearch step?

Neighborsearch step?

Domain
decomposition

Send charges to peer
PME processor

Send x and box to
peer PME processor

Communicate x with real
space neighbor processors

(local)
neighborsearching

Evaluate potential/forces

Communicate f with real
space neighbor processors

Spread real space forces on
virtual sites

Receive forces/energy/virial
from peer PME processor

Spread PME forces on
virtual sites

Integrate coordinates

Constrain bond lengths
(parallel LINCS)

Sum energies of all real
space processors

More steps? More steps?

Stop

Receive charges fro
peer real space

processors

Receive x and box from
peer real space processors

All local coordiantes
received?

Communicate some atoms
to neighbor PME proc's

Spread charges on grid

Communicate grid overlap
with PME neighbor proc's

parallel 3D FFT

Solve PME (convolution)

parallel inverse 3D FFT

Communicate grid overlap
with PME neighbor proc's

Interpolate forces from grid

Communicate some forces
to neighbor PME proc's

Send forces/energy/virial to
peer real space processors

Fig. 5.15: Flow chart showing the algorithms and communication (arrows) for a standard MD simulation with
virtual sites, constraints and separate PME-mesh ranks.

5.4. Algorithms 404

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.5 Interaction function and force fields

To accommodate the potential functions used in some popular force fields (see Interaction function and force
fields (page 405)), GROMACS offers a choice of functions, both for non-bonded interaction and for dihedral
interactions. They are described in the appropriate subsections.

The potential functions can be subdivided into three parts

1. Non-bonded: Lennard-Jones or Buckingham, and Coulomb or modified Coulomb. The non-bonded inter-
actions are computed on the basis of a neighbor list (a list of non-bonded atoms within a certain radius), in
which exclusions are already removed.

2. Bonded: covalent bond-stretching, angle-bending, improper dihedrals, and proper dihedrals. These are
computed on the basis of fixed lists.

3. Restraints: position restraints, angle restraints, distance restraints, orientation restraints and dihedral re-
straints, all based on fixed lists.

4. Applied Forces: externally applied forces, see chapter Special Topics (page 498).

5.5.1 Non-bonded interactions

Non-bonded interactions in GROMACS are pair-additive:

𝑉 (r1, . . . r𝑁) =
∑︁
𝑖<𝑗

𝑉𝑖𝑗(r𝑖𝑗); (5.119)

F𝑖 = −
∑︁
𝑗

𝑑𝑉𝑖𝑗(𝑟𝑖𝑗)

𝑑𝑟𝑖𝑗

r𝑖𝑗
𝑟𝑖𝑗

(5.120)

Since the potential only depends on the scalar distance, interactions will be centro-symmetric, i.e. the vectorial
partial force on particle 𝑖 from the pairwise interaction 𝑉𝑖𝑗(𝑟𝑖𝑗) has the opposite direction of the partial force on
particle 𝑗. For efficiency reasons, interactions are calculated by loops over interactions and updating both partial
forces rather than summing one complete nonbonded force at a time. The non-bonded interactions contain a
repulsion term, a dispersion term, and a Coulomb term. The repulsion and dispersion term are combined in either
the Lennard-Jones (or 6-12 interaction), or the Buckingham (or exp-6 potential). In addition, (partially) charged
atoms act through the Coulomb term.

The Lennard-Jones interaction

The Lennard-Jones potential 𝑉𝐿𝐽 between two atoms equals:

𝑉𝐿𝐽(𝑟𝑖𝑗) =
𝐶

(12)
𝑖𝑗

𝑟𝑖𝑗12
−
𝐶

(6)
𝑖𝑗

𝑟𝑖𝑗6
(5.121)

See also Fig. 5.16 The parameters 𝐶(12)
𝑖𝑗 and 𝐶(6)

𝑖𝑗 depend on pairs of atom types; consequently they are taken
from a matrix of LJ-parameters. In the Verlet cut-off scheme, the potential is shifted by a constant such that it is
zero at the cut-off distance.

The force derived from this potential is:

F𝑖(r𝑖𝑗) = −

(︃
12

𝐶
(12)
𝑖𝑗

𝑟𝑖𝑗13
− 6

𝐶
(6)
𝑖𝑗

𝑟𝑖𝑗7

)︃
r𝑖𝑗
𝑟𝑖𝑗

(5.122)

The LJ potential may also be written in the following form:

𝑉𝐿𝐽(r𝑖𝑗) = 4𝜖𝑖𝑗

(︃(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂12

−
(︂
𝜎𝑖𝑗
𝑟𝑖𝑗

)︂6
)︃

(5.123)

5.5. Interaction function and force fields 405

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0.4 0.5 0.6 0.7 0.8
r (nm)

–0.2

0.0

0.2

0.4

V
(k

J
m

ol
e–1

)

Fig. 5.16: The Lennard-Jones interaction.

In constructing the parameter matrix for the non-bonded LJ-parameters, two types of combination rules can be
used within GROMACS, only geometric averages (type 1 in the input section of the force-field file):

𝐶
(6)
𝑖𝑗 =

(︁
𝐶

(6)
𝑖𝑖 𝐶

(6)
𝑗𝑗

)︁1/2
𝐶

(12)
𝑖𝑗 =

(︁
𝐶

(12)
𝑖𝑖 𝐶

(12)
𝑗𝑗

)︁1/2 (5.124)

or, alternatively the Lorentz-Berthelot rules can be used. An arithmetic average is used to calculate 𝜎𝑖𝑗 , while a
geometric average is used to calculate 𝜖𝑖𝑗 (type 2):

𝜎𝑖𝑗 = 1
2 (𝜎𝑖𝑖 + 𝜎𝑗𝑗)

𝜖𝑖𝑗 = (𝜖𝑖𝑖 𝜖𝑗𝑗)
1/2 (5.125)

finally an geometric average for both parameters can be used (type 3):

𝜎𝑖𝑗 = (𝜎𝑖𝑖 𝜎𝑗𝑗)
1/2

𝜖𝑖𝑗 = (𝜖𝑖𝑖 𝜖𝑗𝑗)
1/2 (5.126)

This last rule is used by the OPLS force field.

Buckingham potential

The Buckingham potential has a more flexible and realistic repulsion term than the Lennard-Jones interaction, but
is also more expensive to compute. The potential form is:

𝑉𝑏ℎ(𝑟𝑖𝑗) = 𝐴𝑖𝑗 exp(−𝐵𝑖𝑗𝑟𝑖𝑗)−
𝐶𝑖𝑗

𝑟𝑖𝑗6
(5.127)

See also Fig. 5.17. The force derived from this is:

F𝑖(𝑟𝑖𝑗) =

[︂
𝐴𝑖𝑗𝐵𝑖𝑗 exp(−𝐵𝑖𝑗𝑟𝑖𝑗)− 6

𝐶𝑖𝑗

𝑟𝑖𝑗7

]︂
r𝑖𝑗
𝑟𝑖𝑗

(5.128)

5.5. Interaction function and force fields 406

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0.2 0.3 0.4 0.5 0.6 0.7 0.8
r (nm)

–0.5

0.0

0.5

1.0

1.5

V
(k

J
m

ol
e–1

)

Fig. 5.17: The Buckingham interaction.

Coulomb interaction

The Coulomb interaction between two charge particles is given by:

𝑉𝑐(𝑟𝑖𝑗) = 𝑓
𝑞𝑖𝑞𝑗
𝜀𝑟𝑟𝑖𝑗

(5.129)

See also Fig. 5.18, where 𝑓 = 1
4𝜋𝜀0

= 138.935 458 (see chapter Definitions and Units (page 358))

0.0 0.2 0.4 0.6 0.8 1.0
r (nm)

0

500

1000

1500

V
(k

J
m

ol
−1

)

Coulomb
With RF
RF − C

Fig. 5.18: The Coulomb interaction (for particles with equal signed charge) with and without reaction field. In the
latter case 𝜀𝑟 was 1, 𝜀𝑟𝑓 was 78, and 𝑟𝑐 was 0.9 nm. The dot-dashed line is the same as the dashed line, except for
a constant.

The force derived from this potential is:

F𝑖(r𝑖𝑗) = −𝑓 𝑞𝑖𝑞𝑗
𝜀𝑟𝑟𝑖𝑗2

r𝑖𝑗
𝑟𝑖𝑗

(5.130)

A plain Coulomb interaction should only be used without cut-off or when all pairs fall within the cut-off, since
there is an abrupt, large change in the force at the cut-off. In case you do want to use a cut-off, the potential can
be shifted by a constant to make the potential the integral of the force. With the group cut-off scheme, this shift is
only applied to non-excluded pairs. With the Verlet cut-off scheme, the shift is also applied to excluded pairs and
self interactions, which makes the potential equivalent to a reaction field with 𝜀𝑟𝑓 = 1 (see below).

In GROMACS the relative dielectric constant 𝜀𝑟 may be set in the in the input for grompp (page 190).

5.5. Interaction function and force fields 407

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Coulomb interaction with reaction field

The Coulomb interaction can be modified for homogeneous systems by assuming a constant dielectric environment
beyond the cut-off 𝑟𝑐 with a dielectric constant of 𝜀𝑟𝑓 . The interaction then reads:

𝑉𝑐𝑟𝑓 = 𝑓
𝑞𝑖𝑞𝑗
𝜀𝑟𝑟𝑖𝑗

[︂
1 +

𝜀𝑟𝑓 − 𝜀𝑟
2𝜀𝑟𝑓 + 𝜀𝑟

𝑟𝑖𝑗
3

𝑟3𝑐

]︂
− 𝑓

𝑞𝑖𝑞𝑗
𝜀𝑟𝑟𝑐

3𝜀𝑟𝑓
2𝜀𝑟𝑓 + 𝜀𝑟

(5.131)

in which the constant expression on the right makes the potential zero at the cut-off 𝑟𝑐. For charged cut-off spheres
this corresponds to neutralization with a homogeneous background charge. We can rewrite (5.131) for simplicity
as

𝑉𝑐𝑟𝑓 = 𝑓
𝑞𝑖𝑞𝑗
𝜀𝑟

[︂
1

𝑟𝑖𝑗
+ 𝑘𝑟𝑓 𝑟𝑖𝑗

2 − 𝑐𝑟𝑓

]︂
(5.132)

with

𝑘𝑟𝑓 =
1

𝑟3𝑐

𝜀𝑟𝑓 − 𝜀𝑟
(2𝜀𝑟𝑓 + 𝜀𝑟)

(5.133)

𝑐𝑟𝑓 =
1

𝑟𝑐
+ 𝑘𝑟𝑓 𝑟

2
𝑐 =

1

𝑟𝑐

3𝜀𝑟𝑓
(2𝜀𝑟𝑓 + 𝜀𝑟)

(5.134)

For large 𝜀𝑟𝑓 the 𝑘𝑟𝑓 goes to 𝑟−3
𝑐 /2, while for 𝜀𝑟𝑓 = 𝜀𝑟 the correction vanishes. In Fig. 5.18 the modified

interaction is plotted, and it is clear that the derivative with respect to 𝑟𝑖𝑗 (= -force) goes to zero at the cut-off
distance. The force derived from this potential reads:

F𝑖(r𝑖𝑗) = −𝑓 𝑞𝑖𝑞𝑗
𝜀𝑟

[︂
1

𝑟𝑖𝑗2
− 2𝑘𝑟𝑓𝑟𝑖𝑗

]︂
r𝑖𝑗
𝑟𝑖𝑗

(5.135)

The reaction-field correction should also be applied to all excluded atoms pairs, including self interactions, in
which case the normal Coulomb term in (5.131) and (5.135) is absent. For the self interactions the constant is
halved, leading to this constant potential term:

𝑉𝑠𝑒𝑙𝑓 = −𝑓 𝑞2𝑖
2𝜀𝑟𝑟𝑐

3𝜀𝑟𝑓
2𝜀𝑟𝑓 + 𝜀𝑟

Modified non-bonded interactions

All physical forces are conservative, meaning that it is possible to assign a numerical value for the potential at any
point (which thus does not depend on the path taken), and the force is the negative gradient of this potential. Based
on the definitions of the potentials above, this derivative (i.e., the force) is always zero at infinite separation, and in
the context of pair potentials this means the potential for each pair contribution must be the integral of the force out
from infinity back to the current interaction distance. While it is perfectly valid to have an arbitrary constant factor
in the potential, a natural choice is to define the pair interaction to be zero at infinite separation when particles
are not really interacting. However, when these definitions using infinite-range potentials are combined with a
cutoff for pair interactions we violate their consistency, and the force would no longer be conservative - which in
particular means the total energy will no longer be conserved. One way to circumvent this is to instead modify the
non-bonded interaction potentials such that they only have finite range, after which the cutoff can be applied. This
can either be done as a switching function that changes the shape of the potential and force over a small range,
or by shifting the entire potential by a constant factor such that it becomes zero at the cutoff. The advantage of
the shifted interaction modification is that it does not influence the force at all, and since only forces enter the
equations of motion it will not influence the dynamics of the system. The drawback is that the total change in the
potential is larger. Presently GROMACS only supports this shifted modification, and it is even applied by default
(but possible to turn off). Note that we also shift the direct-space component of the PME interaction; the potential
difference will be negligible since it has already decayed to the specified PME tolerance at the cutoff, but this
improves energy conservation.

When used with reaction-field electrostatics ((5.131)), the self-energy term will effectively make the electrostatic
potential constant (but non-zero) outside the cutoff.

5.5. Interaction function and force fields 408

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

For implementation reasons, GROMACS presently uses the reaction-field kernel for normal Coulomb interactions
too (with 𝜀𝑟𝑓 = 𝜀𝑟). Note that this will give the appearance of a similar constant potential outside the cutoff for
plain Coulomb electrostatics too. We will try to fix this in a future kernel, but since there are very few (if any)
cases where plain Coulomb is a good choice for electrostatics it has not been a high priority.

Although the present kernels only support shifting the potential, we do plan to bring back complete functionality
for switch functions, so for completeness in the interface we have retained that documentation below.

While the shift modifier will yield conservative forces, the forces will still have an abrupt change at the cutoff,
which among other things can make it difficult to efficiently minimize the energy of a system prior to normal
mode calculation. The force-switch function replaces the truncated forces by forces that are continuous and have
continuous derivatives at the cut-off radius. With such forces the time integration produces smaller errors, although
for Lennard-Jones interactions other errors tend to dominate, such as integration errors at the repulsive part of the
potential. For Coulomb interactions we advise against using switch modifiers since it can lead to large peaks in
the force close to the cutoff; we strongly recommend considering reaction-field or a proper long-range method
such as PME instead.

We apply the switch function to the force 𝐹 (𝑟) describing either the electrostatic or van der Waals force acting on
particle 𝑖 by particle 𝑗 as:

F𝑖 = 𝑐 𝐹 (𝑟𝑖𝑗)
r𝑖𝑗
𝑟𝑖𝑗

(5.136)

For pure Coulomb or Lennard-Jones interactions 𝐹 (𝑟) = 𝐹𝛼(𝑟) = 𝛼 𝑟−(𝛼+1). The switched force 𝐹𝑠(𝑟) can
generally be written as:

𝐹𝑠(𝑟) = 𝐹𝛼(𝑟) 𝑟 < 𝑟1
𝐹𝑠(𝑟) = 𝐹𝛼(𝑟) + 𝑆(𝑟) 𝑟1 ≤ 𝑟 < 𝑟𝑐
𝐹𝑠(𝑟) = 0 𝑟𝑐 ≤ 𝑟

(5.137)

When 𝑟1 = 0 this is a traditional shift function, otherwise it acts as a switch function. The corresponding shifted
potential function then reads:

𝑉𝑠(𝑟) =

∫︁ ∞

𝑟

𝐹𝑠(𝑥) 𝑑𝑥 (5.138)

The GROMACS force switch function 𝑆𝐹 (𝑟) should be smooth at the boundaries, therefore the following bound-
ary conditions are imposed on the switch function:

𝑆𝐹 (𝑟1) = 0
𝑆′
𝐹 (𝑟1) = 0
𝑆𝐹 (𝑟𝑐) = −𝐹𝛼(𝑟𝑐)
𝑆′
𝐹 (𝑟𝑐) = −𝐹 ′

𝛼(𝑟𝑐)

(5.139)

A 3𝑟𝑑 degree polynomial of the form

𝑆𝐹 (𝑟) = 𝐴(𝑟 − 𝑟1)
2 +𝐵(𝑟 − 𝑟1)

3 (5.140)

fulfills these requirements. The constants A and B are given by the boundary condition at 𝑟𝑐:

𝐴 = −𝛼 (𝛼+ 4)𝑟𝑐 − (𝛼+ 1)𝑟1

𝑟𝛼+2
𝑐 (𝑟𝑐 − 𝑟1)2

𝐵 = 𝛼
(𝛼+ 3)𝑟𝑐 − (𝛼+ 1)𝑟1

𝑟𝛼+2
𝑐 (𝑟𝑐 − 𝑟1)3

(5.141)

Thus the total force function is:

𝐹𝑠(𝑟) =
𝛼

𝑟𝛼+1
+𝐴(𝑟 − 𝑟1)

2 +𝐵(𝑟 − 𝑟1)
3 (5.142)

and the potential function reads:

𝑉𝑠(𝑟) =
1

𝑟𝛼
− 𝐴

3
(𝑟 − 𝑟1)

3 − 𝐵

4
(𝑟 − 𝑟1)

4 − 𝐶 (5.143)

5.5. Interaction function and force fields 409

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where

𝐶 =
1

𝑟𝛼𝑐
− 𝐴

3
(𝑟𝑐 − 𝑟1)

3 − 𝐵

4
(𝑟𝑐 − 𝑟1)

4 (5.144)

The GROMACS potential-switch function 𝑆𝑉 (𝑟) scales the potential between 𝑟1 and 𝑟𝑐, and has similar boundary
conditions, intended to produce smoothly-varying potential and forces:

𝑆𝑉 (𝑟1) = 1
𝑆′
𝑉 (𝑟1) = 0
𝑆′′
𝑉 (𝑟1) = 0
𝑆𝑉 (𝑟𝑐) = 0
𝑆′
𝑉 (𝑟𝑐) = 0
𝑆′′
𝑉 (𝑟𝑐) = 0

(5.145)

The fifth-degree polynomial that has these properties is

𝑆𝑉 (𝑟; 𝑟1, 𝑟𝑐) = 1− 10

(︂
𝑟 − 𝑟1
𝑟𝑐 − 𝑟1

)︂3

+ 15

(︂
𝑟 − 𝑟1
𝑟𝑐 − 𝑟1

)︂4

− 6

(︂
𝑟 − 𝑟1
𝑟𝑐 − 𝑟1

)︂5

(5.146)

This implementation is found in several other simulation packages,73 (page 580)75 (page 580) but differs from
that in CHARMM.76 (page 580) Switching the potential leads to artificially large forces in the switching region,
therefore it is not recommended to switch Coulomb interactions using this function,72 (page 580) but switching
Lennard-Jones interactions using this function produces acceptable results.

Modified short-range interactions with Ewald summation

When Ewald summation or particle-mesh Ewald is used to calculate the long-range interactions, the short-range
Coulomb potential must also be modified. Here the potential is switched to (nearly) zero at the cut-off, instead of
the force. In this case the short range potential is given by:

𝑉 (𝑟) = 𝑓
erfc(𝛽𝑟𝑖𝑗)

𝑟𝑖𝑗
𝑞𝑖𝑞𝑗 , (5.147)

where 𝛽 is a parameter that determines the relative weight between the direct space sum and the reciprocal space
sum and erfc(𝑥) is the complementary error function. For further details on long-range electrostatics, see sec. Long
Range Electrostatics (page 444).

5.5.2 Bonded interactions

Bonded interactions are based on a fixed list of atoms. They are not exclusively pair interactions, but include 3-
and 4-body interactions as well. There are bond stretching (2-body), bond angle (3-body), and dihedral angle
(4-body) interactions. A special type of dihedral interaction (called improper dihedral) is used to force atoms to
remain in a plane or to prevent transition to a configuration of opposite chirality (a mirror image).

Bond stretching

Harmonic potential

The bond stretching between two covalently bonded atoms 𝑖 and 𝑗 is represented by a harmonic potential (see also
Fig. 5.19):

𝑉𝑏 (𝑟𝑖𝑗) =
1

2
𝑘𝑏𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗)

2 (5.148)

With the corresponding force given by:

F𝑖(r𝑖𝑗) = 𝑘𝑏𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗)
r𝑖𝑗
𝑟𝑖𝑗

(5.149)

5.5. Interaction function and force fields 410

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

b0

Fig. 5.19: Principle of bond stretching.

Fourth power potential

In the GROMOS-96 force field 77 (page 580), the covalent bond potential is, for reasons of computational effi-
ciency, written as:

𝑉𝑏 (𝑟𝑖𝑗) =
1

4
𝑘𝑏𝑖𝑗
(︀
𝑟𝑖𝑗

2 − 𝑏2𝑖𝑗
)︀2 (5.150)

The corresponding force is:

F𝑖(r𝑖𝑗) = 𝑘𝑏𝑖𝑗(𝑟𝑖𝑗
2 − 𝑏2𝑖𝑗) r𝑖𝑗 (5.151)

The force constants for this form of the potential are related to the usual harmonic force constant 𝑘𝑏,harm (sec. Bond
stretching (page 410)) as

2𝑘𝑏𝑏2𝑖𝑗 = 𝑘𝑏,harm (5.152)

The force constants are mostly derived from the harmonic ones used in GROMOS-87 78 (page 580). Although
this form is computationally more efficient (because no square root has to be evaluated), it is conceptually more
complex. One particular disadvantage is that since the form is not harmonic, the average energy of a single bond
is not equal to 1

2𝑘𝑇 as it is for the normal harmonic potential.

Morse potential bond stretching

For some systems that require an anharmonic bond stretching potential, the Morse potential 79 (page 580) between
two atoms i and j is available in GROMACS. This potential differs from the harmonic potential in that it has an
asymmetric potential well and a zero force at infinite distance. The functional form is:

𝑉𝑚𝑜𝑟𝑠𝑒(𝑟𝑖𝑗) = 𝐷𝑖𝑗 [1− exp(−𝛽𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗))]
2, (5.153)

See also Fig. 5.20, and the corresponding force is:

F𝑚𝑜𝑟𝑠𝑒(r𝑖𝑗) = 2𝐷𝑖𝑗𝛽𝑖𝑗 exp(−𝛽𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗))*
[1− exp(−𝛽𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗))]

r𝑖𝑗
𝑟𝑖𝑗 ,

(5.154)

where 𝐷𝑖𝑗 is the depth of the well in kJ/mol, 𝛽𝑖𝑗 defines the steepness of the well (in nm−1), and 𝑏𝑖𝑗 is the
equilibrium distance in nm. The steepness parameter 𝛽𝑖𝑗 can be expressed in terms of the reduced mass of the
atoms i and j, the fundamental vibration frequency 𝜔𝑖𝑗 and the well depth 𝐷𝑖𝑗 :

𝛽𝑖𝑗 = 𝜔𝑖𝑗

√︂
𝜇𝑖𝑗

2𝐷𝑖𝑗
(5.155)

and because 𝜔 =
√︀
𝑘/𝜇, one can rewrite 𝛽𝑖𝑗 in terms of the harmonic force constant 𝑘𝑖𝑗 :

𝛽𝑖𝑗 =

√︃
𝑘𝑖𝑗
2𝐷𝑖𝑗

(5.156)

For small deviations (𝑟𝑖𝑗 − 𝑏𝑖𝑗), one can approximate the exp-term to first-order using a Taylor expansion:

exp(−𝑥) ≈ 1− 𝑥 (5.157)

5.5. Interaction function and force fields 411

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

and substituting (5.156) and (5.157) in the functional form:

𝑉𝑚𝑜𝑟𝑠𝑒(𝑟𝑖𝑗) = 𝐷𝑖𝑗 [1− exp(−𝛽𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗))]
2

= 𝐷𝑖𝑗 [1− (1−
√︁

𝑘𝑖𝑗

2𝐷𝑖𝑗
(𝑟𝑖𝑗 − 𝑏𝑖𝑗))]

2

= 1
2𝑘𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗))

2

(5.158)

we recover the harmonic bond stretching potential.

0.1 0.2 0.3 0.4 0.5 0.6
rij (nm)

0

100

200

300

400

V ij
(k

J
/ m

ol
)

Fig. 5.20: The Morse potential well, with bond length 0.15 nm.

Cubic bond stretching potential

Another anharmonic bond stretching potential that is slightly simpler than the Morse potential adds a cubic term
in the distance to the simple harmonic form:

𝑉𝑏 (𝑟𝑖𝑗) = 𝑘𝑏𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗)
2 + 𝑘𝑏𝑖𝑗𝑘

𝑐𝑢𝑏
𝑖𝑗 (𝑟𝑖𝑗 − 𝑏𝑖𝑗)

3 (5.159)

A flexible water model (based on the SPC water model 80 (page 580)) including a cubic bond stretching potential
for the O-H bond was developed by Ferguson 81 (page 580). This model was found to yield a reasonable infrared
spectrum. The Ferguson water model is available in the GROMACS library (flexwat-ferguson.itp). It
should be noted that the potential is asymmetric: overstretching leads to infinitely low energies. The integration
timestep is therefore limited to 1 fs.

The force corresponding to this potential is:

F𝑖(r𝑖𝑗) = 2𝑘𝑏𝑖𝑗(𝑟𝑖𝑗 − 𝑏𝑖𝑗)
r𝑖𝑗
𝑟𝑖𝑗

+ 3𝑘𝑏𝑖𝑗𝑘
𝑐𝑢𝑏
𝑖𝑗 (𝑟𝑖𝑗 − 𝑏𝑖𝑗)

2 r𝑖𝑗
𝑟𝑖𝑗

(5.160)

FENE bond stretching potential

In coarse-grained polymer simulations the beads are often connected by a FENE (finitely extensible nonlinear
elastic) potential 82 (page 580):

𝑉FENE(𝑟𝑖𝑗) = −1

2
𝑘𝑏𝑖𝑗𝑏

2
𝑖𝑗 log

(︃
1− 𝑟𝑖𝑗

2

𝑏2𝑖𝑗

)︃
(5.161)

The potential looks complicated, but the expression for the force is simpler:

𝐹FENE(r𝑖𝑗) = −𝑘𝑏𝑖𝑗

(︃
1− 𝑟𝑖𝑗

2

𝑏2𝑖𝑗

)︃−1

r𝑖𝑗 (5.162)

At short distances the potential asymptotically goes to a harmonic potential with force constant 𝑘𝑏, while it di-
verges at distance 𝑏.

5.5. Interaction function and force fields 412

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Harmonic angle potential

The bond-angle vibration between a triplet of atoms 𝑖 - 𝑗 - 𝑘 (Fig. 5.19) is also represented by a harmonic potential
on the angle 𝜃𝑖𝑗𝑘

θ0

Fig. 5.21: Principle of angle vibration.

𝑉𝑎(𝜃𝑖𝑗𝑘) =
1

2
𝑘𝜃𝑖𝑗𝑘(𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘

0)2 (5.163)

As the bond-angle vibration is represented by a harmonic potential, the form is the same as the bond stretching.

The force equations are given by the chain rule:

F𝑖 = −𝑑𝑉𝑎(𝜃𝑖𝑗𝑘)
𝑑r𝑖

F𝑘 = −𝑑𝑉𝑎(𝜃𝑖𝑗𝑘)
𝑑r𝑘

F𝑗 = −F𝑖 − F𝑘

where 𝜃𝑖𝑗𝑘 = arccos
(r𝑖𝑗 · r𝑘𝑗)
𝑟𝑖𝑗𝑟𝑘𝑗

(5.164)

The numbering 𝑖, 𝑗, 𝑘 is in sequence of covalently bonded atoms. Atom 𝑗 is in the middle; atoms 𝑖 and 𝑘 are at
the ends (see Fig. 5.21). Note that in the input in topology files, angles are given in degrees and force constants in
kJ/mol/rad2.

Cosine based angle potential

In the GROMOS-96 force field a simplified function is used to represent angle vibrations:

𝑉𝑎(𝜃𝑖𝑗𝑘) =
1

2
𝑘𝜃𝑖𝑗𝑘

(︀
cos(𝜃𝑖𝑗𝑘)− cos(𝜃𝑖𝑗𝑘

0)
)︀2 (5.165)

where

cos(𝜃𝑖𝑗𝑘) =
r𝑖𝑗 · r𝑘𝑗
𝑟𝑖𝑗𝑟𝑘𝑗

(5.166)

The corresponding force can be derived by partial differentiation with respect to the atomic positions. The force
constants in this function are related to the force constants in the harmonic form 𝑘𝜃,harm (Harmonic angle potential
(page 413)) by:

𝑘𝜃 sin2(𝜃𝑖𝑗𝑘
0) = 𝑘𝜃,harm (5.167)

In the GROMOS-96 manual there is a much more complicated conversion formula which is temperature depen-
dent. The formulas are equivalent at 0 K and the differences at 300 K are on the order of 0.1 to 0.2%. Note that in
the input in topology files, angles are given in degrees and force constants in kJ/mol.

5.5. Interaction function and force fields 413

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Restricted bending potential

The restricted bending (ReB) potential 83 (page 580) prevents the bending angle 𝜃 from reaching the 180∘ value.
In this way, the numerical instabilities due to the calculation of the torsion angle and potential are eliminated when
performing coarse-grained molecular dynamics simulations.

To systematically hinder the bending angles from reaching the 180∘ value, the bending potential (5.165) is divided
by a sin2 𝜃 factor:

𝑉ReB(𝜃𝑖) =
1

2
𝑘𝜃

(cos 𝜃𝑖 − cos 𝜃0)
2

sin2 𝜃𝑖
. (5.168)

Figure 5.22 shows the comparison between the ReB potential, (5.168), and the standard one (5.165).

Fig. 5.22: Bending angle potentials: cosine harmonic (solid black line), angle harmonic (dashed black line) and
restricted bending (red) with the same bending constant 𝑘𝜃 = 85 kJ mol−1 and equilibrium angle 𝜃0 = 130∘. The
orange line represents the sum of a cosine harmonic (𝑘 = 50 kJ mol−1) with a restricted bending (𝑘 = 25 kJ
mol−1) potential, both with 𝜃0 = 130∘.

The wall of the ReB potential is very repulsive in the region close to 180∘ and, as a result, the bending angles are
kept within a safe interval, far from instabilities. The power 2 of sin 𝜃𝑖 in the denominator has been chosen to
guarantee this behavior and allows an elegant differentiation:

𝐹ReB(𝜃𝑖) = − 𝑘𝜃

sin4 𝜃𝑖
(cos 𝜃𝑖 − cos 𝜃0)(1− cos 𝜃𝑖 cos 𝜃0)

𝜕 cos 𝜃𝑖
𝜕�⃗�𝑘

. (5.169)

Due to its construction, the restricted bending potential cannot be used for equilibrium 𝜃0 values too close to
0∘ or 180∘ (from experience, at least 10∘ difference is recommended). It is very important that, in the starting
configuration, all the bending angles are in the safe interval to avoid initial instabilities. This bending potential can
be used in combination with any form of torsion potential. It will always prevent three consecutive particles from
becoming collinear and, as a result, any torsion potential will remain free of singularities. It can be also added to a
standard bending potential to affect the angle around 180∘, but to keep its original form around the minimum (see
the orange curve in Fig. 5.22).

5.5. Interaction function and force fields 414

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Urey-Bradley potential

The Urey-Bradley bond-angle vibration between a triplet of atoms 𝑖 - 𝑗 - 𝑘 is represented by a harmonic potential
on the angle 𝜃𝑖𝑗𝑘 and a harmonic correction term on the distance between the atoms 𝑖 and 𝑘. Although this can be
easily written as a simple sum of two terms, it is convenient to have it as a single entry in the topology file and in
the output as a separate energy term. It is used mainly in the CHARMM force field 84 (page 580). The energy is
given by:

𝑉𝑎(𝜃𝑖𝑗𝑘) =
1

2
𝑘𝜃𝑖𝑗𝑘(𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘

0)2 +
1

2
𝑘𝑈𝐵
𝑖𝑗𝑘 (𝑟𝑖𝑘 − 𝑟0𝑖𝑘)

2 (5.170)

The force equations can be deduced from sections Harmonic potential (page 410) and Harmonic angle potential
(page 413).

Linear Angle potential

The linear angle potential was designed especially for linear compounds such as nitriles and for carbon dioxide
190 (page 585). It avoids the calculation of the angle per se, since the angle force is not well-defined if the angle
is 180 degrees. Rather, it computes the deviation of a central atom in a triplet i,j,k from a reference position

x0
𝑗 = 𝑎x𝑖 + (1− 𝑎)x𝑘

where a is defined by the bond-length i-j and j-k, in a symmetric molecule such as carbon dioxide a = 1/2. If the
compound has different bond lengths 𝑏𝑖𝑗 and 𝑏𝑗𝑘 respectivey, we instead have

𝑎 =
𝑏𝑗𝑘

𝑏𝑖𝑗 + 𝑏𝑗𝑘
.

If the order of atoms is changed to k,j,i, a needs to be replaced by 1-a. The energy is now given by

𝑉𝑙𝑖𝑛 =
𝑘𝑙𝑖𝑛
2

(︀
x𝑗 − x0

𝑗

)︀2
with 𝑘𝑙𝑖𝑛 the force constant. For examples, and a derivation of the forces from the energy function, see ref. 190
(page 585).

Bond-Bond cross term

The bond-bond cross term for three particles 𝑖, 𝑗, 𝑘 forming bonds 𝑖− 𝑗 and 𝑘 − 𝑗 is given by 85 (page 580):

𝑉𝑟𝑟′ = 𝑘𝑟𝑟′ (|r𝑖 − r𝑗 | − 𝑟1𝑒) (|r𝑘 − r𝑗 | − 𝑟2𝑒) (5.171)

where 𝑘𝑟𝑟′ is the force constant, and 𝑟1𝑒 and 𝑟2𝑒 are the equilibrium bond lengths of the 𝑖 − 𝑗 and 𝑘 − 𝑗 bonds
respectively. The force associated with this potential on particle 𝑖 is:

F𝑖 = −𝑘𝑟𝑟′ (|r𝑘 − r𝑗 | − 𝑟2𝑒)
r𝑖 − r𝑗
|r𝑖 − r𝑗 |

(5.172)

The force on atom 𝑘 can be obtained by swapping 𝑖 and 𝑘 in the above equation. Finally, the force on atom 𝑗
follows from the fact that the sum of internal forces should be zero: F𝑗 = −F𝑖 − F𝑘.

Bond-Angle cross term

The bond-angle cross term for three particles 𝑖, 𝑗, 𝑘 forming bonds 𝑖− 𝑗 and 𝑘 − 𝑗 is given by 85 (page 580):

𝑉𝑟𝜃 = 𝑘𝑟𝜃 (|r𝑖 − r𝑘| − 𝑟3𝑒) (|r𝑖 − r𝑗 | − 𝑟1𝑒 + |r𝑘 − r𝑗 | − 𝑟2𝑒) (5.173)

where 𝑘𝑟𝜃 is the force constant, 𝑟3𝑒 is the 𝑖 − 𝑘 distance, and the other constants are the same as in (5.171). The
force associated with the potential on atom 𝑖 is:

F𝑖 = −𝑘𝑟𝜃
[︂
(|r𝑖 − r𝑘| − 𝑟3𝑒)

r𝑖 − r𝑗
|r𝑖 − r𝑗 |

+ (|r𝑖 − r𝑗 | − 𝑟1𝑒 + |r𝑘 − r𝑗 | − 𝑟2𝑒)
r𝑖 − r𝑘
|r𝑖 − r𝑘|

]︂
(5.174)

5.5. Interaction function and force fields 415

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Quartic angle potential

For special purposes there is an angle potential that uses a fourth order polynomial:

𝑉𝑞(𝜃𝑖𝑗𝑘) =

4∑︁
𝑛=0

𝐶𝑛(𝜃𝑖𝑗𝑘 − 𝜃𝑖𝑗𝑘
0)𝑛 (5.175)

Improper dihedrals

Improper dihedrals are meant to keep planar groups (e.g. aromatic rings) planar, or to prevent molecules from
flipping over to their mirror images, see Fig. 5.23.

k

li

j

Fig. 5.23: Principle of improper dihedral angles. Out of plane bending for rings. The improper dihedral angle 𝜉 is
defined as the angle between planes (i,j,k) and (j,k,l).

i

kj

l

k

i

j

l

Fig. 5.24: Principle of improper dihedral angles. Out of tetrahedral angle. The improper dihedral angle 𝜉 is
defined as the angle between planes (i,j,k) and (j,k,l).

Improper dihedrals: harmonic type

The simplest improper dihedral potential is a harmonic potential; it is plotted in Fig. 5.25.

𝑉𝑖𝑑(𝜉𝑖𝑗𝑘𝑙) =
1

2
𝑘𝜉(𝜉𝑖𝑗𝑘𝑙 − 𝜉0)

2 (5.176)

Since the potential is harmonic it is discontinuous, but since the discontinuity is chosen at 180∘ distance from
𝜉0 this will never cause problems. Note that in the input in topology files, angles are given in degrees and force
constants in kJ/mol/rad2.

5.5. Interaction function and force fields 416

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

–20 –10 0 10 20
ξ

0

10

20

V i
(k

J
m

ol
–1

)

(°)

Fig. 5.25: Improper dihedral potential.

Improper dihedrals: periodic type

This potential is identical to the periodic proper dihedral (see below). There is a separate dihedral type for this
(type 4) only to be able to distinguish improper from proper dihedrals in the parameter section and the output.

Proper dihedrals

For the normal dihedral interaction there is a choice of either the GROMOS periodic function or a function based
on expansion in powers of cos𝜑 (the so-called Ryckaert-Bellemans potential). This choice has consequences
for the inclusion of special interactions between the first and the fourth atom of the dihedral quadruple. With the
periodic GROMOS potential a special 1-4 LJ-interaction must be included; with the Ryckaert-Bellemans potential
for alkanes the 1-4 interactions must be excluded from the non-bonded list. Note: Ryckaert-Bellemans potentials
are also used in e.g. the OPLS force field in combination with 1-4 interactions. You should therefore not modify
topologies generated by pdb2gmx (page 235) in this case.

Proper dihedrals: periodic type

Proper dihedral angles are defined according to the IUPAC/IUB convention, where 𝜑 is the angle between the 𝑖𝑗𝑘
and the 𝑗𝑘𝑙 planes, with zero corresponding to the cis configuration (𝑖 and 𝑙 on the same side). There are two
dihedral function types in GROMACS topology files. There is the standard type 1 which behaves like any other
bonded interactions. For certain force fields, type 9 is useful. Type 9 allows multiple potential functions to be
applied automatically to a single dihedral in the [dihedral] section when multiple parameters are defined
for the same atomtypes in the [dihedraltypes] section.

𝑉𝑑(𝜑𝑖𝑗𝑘𝑙) = 𝑘𝜑(1 + cos(𝑛𝜑− 𝜑𝑠)) (5.177)

5.5. Interaction function and force fields 417

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0.0 90.0 180.0 270.0 360.0
φ

0.0

20.0

40.0

60.0

80.0

V d
(k

J
m

ol
e–1

)

Fig. 5.26: Principle of proper dihedral angle (left, in trans form) and the dihedral angle potential (right).

Proper dihedrals: Ryckaert-Bellemans function

For alkanes, the following proper dihedral potential is often used (see Fig. 5.27):

𝑉𝑟𝑏(𝜑𝑖𝑗𝑘𝑙) =

5∑︁
𝑛=0

𝐶𝑛(cos(𝜓))
𝑛, (5.178)

where 𝜓 = 𝜑− 180∘.
Note: A conversion from one convention to another can be achieved by multiplying every coefficient 𝐶𝑛 by
(−1)𝑛.

Note: In a force field, the 𝐶𝑛 coefficients for each Ryckaert-Bellemans dihedral should sum to the same value,
ideally zero, to ensure consistency in the zero point of the potential energy. Failing that, energy values and
free energy determination (through 𝜕𝐻/𝜕𝜆) might have an undesirable offset, though the dynamics itself will be
unaffected.

An example of constants for 𝐶 is given in Table 5.8.

Table 5.8: Constants for Ryckaert-Bellemans potential (kJmol−1).

𝐶0 9.28 𝐶2 -13.12 𝐶4 26.24
𝐶1 12.16 𝐶3 -3.06 𝐶5 -31.5

(Note: The use of this potential implies exclusion of LJ interactions between the first and the last atom of the
dihedral, and 𝜓 is defined according to the “polymer convention” (𝜓𝑡𝑟𝑎𝑛𝑠 = 0).)

The RB dihedral function can also be used to include Fourier dihedrals (see below):

𝑉𝑟𝑏(𝜑𝑖𝑗𝑘𝑙) =
1

2
[𝐹1(1 + cos(𝜑)) + 𝐹2(1− cos(2𝜑)) + 𝐹3(1 + cos(3𝜑)) + 𝐹4(1− cos(4𝜑))]

(5.179)

Because of the equalities cos(2𝜑) = 2 cos2(𝜑)− 1, cos(3𝜑) = 4 cos3(𝜑)− 3 cos(𝜑) and
cos(4𝜑) = 8 cos4(𝜑)− 8 cos2(𝜑) + 1 one can translate the OPLS parameters to Ryckaert-Bellemans parameters
as follows:

5.5. Interaction function and force fields 418

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0.0 90.0 180.0 270.0 360.0
φ

0.0

10.0

20.0

30.0

40.0

50.0

V d
(k

J
m

ol
e–1

)

Fig. 5.27: Ryckaert-Bellemans dihedral potential.

𝐶0 = 𝐹2 +
1
2 (𝐹1 + 𝐹3)

𝐶1 = 1
2 (−𝐹1 + 3𝐹3)

𝐶2 = −𝐹2 + 4𝐹4

𝐶3 = −2𝐹3

𝐶4 = −4𝐹4

𝐶5 = 0

(5.180)

with OPLS parameters in protein convention and RB parameters in polymer convention (this yields a minus sign
for the odd powers of cos(𝜑)).
Note: Mind the conversion from kcal mol−1 for literature OPLS and RB parameters to kJ mol−1 in GROMACS.

Proper dihedrals: Fourier function

The OPLS potential function is given as the first three 86 (page 580) or four 87 (page 580) cosine terms of a
Fourier series. In GROMACS the four term function is implemented:

𝑉𝐹 (𝜑𝑖𝑗𝑘𝑙) =
1

2
[𝐶1(1 + cos(𝜑)) + 𝐶2(1− cos(2𝜑)) + 𝐶3(1 + cos(3𝜑)) + 𝐶4(1− cos(4𝜑))] ,

(5.181)

Internally, GROMACS uses the Ryckaert-Bellemans code to compute Fourier dihedrals (see above), because this
is more efficient.
Note: Mind the conversion from kcal mol−1 for literature OPLS parameters to kJ mol−1 in GROMACS.

5.5. Interaction function and force fields 419

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Proper dihedrals: Restricted torsion potential

In a manner very similar to the restricted bending potential (see Restricted bending potential (page 414)), a re-
stricted torsion/dihedral potential is introduced:

𝑉ReT(𝜑𝑖) =
1

2
𝑘𝜑

(cos𝜑𝑖 − cos𝜑0)
2

sin2 𝜑𝑖
(5.182)

with the advantages of being a function of cos𝜑 (no problems taking the derivative of sin𝜑) and of keeping the
torsion angle at only one minimum value. In this case, the factor sin2 𝜑 does not allow the dihedral angle to move
from the [−180∘:0] to [0:180∘] interval, i.e. it cannot have maxima both at −𝜑0 and +𝜑0 maxima, but only one of
them. For this reason, all the dihedral angles of the starting configuration should have their values in the desired
angles interval and the equilibrium 𝜑0 value should not be too close to the interval limits (as for the restricted
bending potential, described in Restricted bending potential (page 414), at least 10∘ difference is recommended).

Proper dihedrals: Combined bending-torsion potential

When the four particles forming the dihedral angle become collinear (this situation will never happen in atomistic
simulations, but it can occur in coarse-grained simulations) the calculation of the torsion angle and potential leads
to numerical instabilities. One way to avoid this is to use the restricted bending potential (see Restricted bending
potential (page 414)) that prevents the dihedral from reaching the 180∘ value.

Another way is to disregard any effects of the dihedral becoming ill-defined, keeping the dihedral force and
potential calculation continuous in entire angle range by coupling the torsion potential (in a cosine form) with the
bending potentials of the adjacent bending angles in a unique expression:

𝑉CBT(𝜃𝑖−1, 𝜃𝑖, 𝜑𝑖) = 𝑘𝜑 sin
3 𝜃𝑖−1 sin

3 𝜃𝑖

4∑︁
𝑛=0

𝑎𝑛 cos
𝑛 𝜑𝑖. (5.183)

This combined bending-torsion (CBT) potential has been proposed by 88 (page 580) for polymer melt simulations
and is extensively described in 83 (page 580).

This potential has two main advantages:

• it does not only depend on the dihedral angle 𝜑𝑖 (between the 𝑖 − 2, 𝑖 − 1, 𝑖 and 𝑖 + 1 beads) but also on
the bending angles 𝜃𝑖−1 and 𝜃𝑖 defined from three adjacent beads (𝑖− 2, 𝑖− 1 and 𝑖, and 𝑖− 1, 𝑖 and 𝑖+ 1,
respectively). The two sin3 𝜃 pre-factors, tentatively suggested by 89 (page 580) and theoretically discussed
by 90 (page 581), cancel the torsion potential and force when either of the two bending angles approaches
the value of 180∘.

• its dependence on 𝜑𝑖 is expressed through a polynomial in cos𝜑𝑖 that avoids the singularities in 𝜑 = 0∘ or
180∘ in calculating the torsional force.

These two properties make the CBT potential well-behaved for MD simulations with weak constraints on the
bending angles or even for steered / non-equilibrium MD in which the bending and torsion angles suffer major
modifications. When using the CBT potential, the bending potentials for the adjacent 𝜃𝑖−1 and 𝜃𝑖 may have any
form. It is also possible to leave out the two angle bending terms (𝜃𝑖−1 and 𝜃𝑖) completely. Fig. 5.28 illustrates
the difference between a torsion potential with and without the sin3 𝜃 factors (blue and gray curves, respectively).

Additionally, the derivative of 𝑉𝐶𝐵𝑇 with respect to the Cartesian variables is straightforward:

𝜕𝑉CBT(𝜃𝑖−1, 𝜃𝑖, 𝜑𝑖)

𝜕�⃗�𝑙
=
𝜕𝑉CBT

𝜕𝜃𝑖−1

𝜕𝜃𝑖−1

𝜕�⃗�𝑙
+
𝜕𝑉CBT

𝜕𝜃𝑖

𝜕𝜃𝑖
𝜕�⃗�𝑙

+
𝜕𝑉CBT

𝜕𝜑𝑖

𝜕𝜑𝑖
𝜕�⃗�𝑙

(5.184)

The CBT is based on a cosine form without multiplicity, so it can only be symmetrical around 0∘. To obtain an
asymmetrical dihedral angle distribution (e.g. only one maximum in [−180∘:180∘] interval), a standard torsion
potential such as harmonic angle or periodic cosine potentials should be used instead of a CBT potential. However,
these two forms have the inconveniences of the force derivation (1/ sin𝜑) and of the alignment of beads (𝜃𝑖 or
𝜃𝑖−1 = 0∘, 180∘). Coupling such non-cos𝜑 potentials with sin3 𝜃 factors does not improve simulation stability
since there are cases in which 𝜃 and 𝜑 are simultaneously 180∘. The integration at this step would be possible (due
to the cancelling of the torsion potential) but the next step would be singular (𝜃 is not 180∘ and 𝜑 is very close to
180∘).

5.5. Interaction function and force fields 420

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-180 -90 0 90 180

0
30

60
90

120
150

180
0

5

10

15

20

25

30

35

40

45

V T
[k

J
m

ol
-1

]

CBT
RB

φ [deg]

θ [deg]

V T
[k

J
m

ol
-1

]

Fig. 5.28: Blue: surface plot of the combined bending-torsion potential ((5.183) with 𝑘 = 10 kJ mol−1, 𝑎0 = 2.41,
𝑎1 = −2.95, 𝑎2 = 0.36, 𝑎3 = 1.33) when, for simplicity, the bending angles behave the same (𝜃1 = 𝜃2 = 𝜃).
Gray: the same torsion potential without the sin3 𝜃 terms (Ryckaert-Bellemans type). 𝜑 is the dihedral angle.

Bonded pair and 1-4 interactions

Most force fields do not use normal Lennard-Jones and Coulomb interactions for atoms separated by three bonds,
the so-called 1-4 interactions. These interactions are still affected by the modified electronic distributions due to
the chemical bonds and they are modified in the force field by the dihedral terms. For this reason the Lennard-Jones
and Coulomb 1-4 interactions are often scaled down, by a fixed factor given by the force field. These factors can
be supplied in the topology and the parameters can also be overriden per 1-4 interaction or atom type pair. The pair
interactions can be used for any atom pair in a molecule, not only 1-4 pairs. The non-bonded interactions between
such pairs should be excluded to avoid double interactions. Plain Lennard-Jones and Coulomb interactions are
used which are not affected by the non-bonded interaction treatment and potential modifiers.

Tabulated bonded interaction functions

Tabulated bonded interactions are currently (since version 2020) disabled in GROMACS. The aim is to re-enable
this functionality in the future. The section below is kept for reference.

For full flexibility, any functional shape can be used for bonds, angles and dihedrals through user-supplied tabu-
lated functions. The functional shapes are:

𝑉𝑏(𝑟𝑖𝑗) = 𝑘 𝑓 𝑏𝑛(𝑟𝑖𝑗)

𝑉𝑎(𝜃𝑖𝑗𝑘) = 𝑘 𝑓𝑎𝑛(𝜃𝑖𝑗𝑘)

𝑉𝑑(𝜑𝑖𝑗𝑘𝑙) = 𝑘 𝑓𝑑𝑛(𝜑𝑖𝑗𝑘𝑙)

(5.185)

where 𝑘 is a force constant in units of energy and 𝑓 is a cubic spline function; for details see Cubic splines for
potentials (page 533). For each interaction, the force constant 𝑘 and the table number 𝑛 are specified in the
topology. There are two different types of bonds, one that generates exclusions (type 8) and one that does not
(type 9). For details see Table 5.14. The table files are supplied to the mdrun (page 215) program. After the table
file name an underscore, the letter “b” for bonds, “a” for angles or “d” for dihedrals and the table number must be
appended. For example, a tabulated bond with 𝑛 = 0 can be read from the file table_b0.xvg. Multiple tables can
be supplied simply by adding files with different values of 𝑛, and are applied to the appropriate bonds, as
specified in the topology (Table 5.14). The format for the table files is three fixed-format columns of any suitable
width. These columns must contain 𝑥, 𝑓(𝑥), −𝑓 ′(𝑥), and the values of 𝑥 should be uniformly spaced.
Requirements for entries in the topology are given in Table 5.14. The setup of the tables is as follows:

5.5. Interaction function and force fields 421

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

bonds: 𝑥 is the distance in nm. For distances beyond the table length, mdrun (page 215) will quit with an error
message.
angles: 𝑥 is the angle in degrees. The table should go from 0 up to and including 180 degrees; the derivative is
taken in degrees.
dihedrals: 𝑥 is the dihedral angle in degrees. The table should go from -180 up to and including 180 degrees; the
IUPAC/IUB convention is used, i.e. zero is cis, the derivative is taken in degrees.

5.5.3 Restraints

Special potentials are used for imposing restraints on the motion of the system, either to avoid disastrous de-
viations, or to include knowledge from experimental data. In either case they are not really part of the force
field and the reliability of the parameters is not important. The potential forms, as implemented in GROMACS,
are mentioned just for the sake of completeness. Restraints and constraints refer to quite different algorithms in
GROMACS.

Position restraints

These are used to restrain particles to fixed reference positions R𝑖. They can be used during equilibration in order
to avoid drastic rearrangements of critical parts (e.g. to restrain motion in a protein that is subjected to large solvent
forces when the solvent is not yet equilibrated). Another application is the restraining of particles in a shell around
a region that is simulated in detail, while the shell is only approximated because it lacks proper interaction from
missing particles outside the shell. Restraining will then maintain the integrity of the inner part. For spherical
shells, it is a wise procedure to make the force constant depend on the radius, increasing from zero at the inner
boundary to a large value at the outer boundary. This feature has not, however, been implemented in GROMACS.

The following form is used:

𝑉𝑝𝑟(r𝑖) =
1

2
𝑘𝑝𝑟|r𝑖 −R𝑖|2 (5.186)

The potential is plotted in Fig. 5.29.

0.00 0.02 0.04 0.06 0.08 0.10
r-R (nm)

0.0

2.0

4.0

6.0

8.0

10.0

V po
sr

e
(k

J
m

ol
e–1

)

Fig. 5.29: Position restraint potential.

The potential form can be rewritten without loss of generality as:

𝑉𝑝𝑟(r𝑖) =
1

2

[︀
𝑘𝑥𝑝𝑟(𝑥𝑖 −𝑋𝑖)

2 x̂+ 𝑘𝑦𝑝𝑟(𝑦𝑖 − 𝑌𝑖)
2 ŷ + 𝑘𝑧𝑝𝑟(𝑧𝑖 − 𝑍𝑖)

2 ẑ
]︀

(5.187)

Now the forces are:

𝐹 𝑥
𝑖 = −𝑘𝑥𝑝𝑟 (𝑥𝑖 −𝑋𝑖)
𝐹 𝑦
𝑖 = −𝑘𝑦𝑝𝑟 (𝑦𝑖 − 𝑌𝑖)
𝐹 𝑧
𝑖 = −𝑘𝑧𝑝𝑟 (𝑧𝑖 − 𝑍𝑖)

(5.188)

5.5. Interaction function and force fields 422

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Using three different force constants the position restraints can be turned on or off in each spatial dimension; this
means that atoms can be harmonically restrained to a plane or a line. Position restraints are applied to a special
fixed list of atoms. Such a list is usually generated by the pdb2gmx (page 235) program.

Note that position restraints make the potential dependent on absolute coordinates in space. Therefore, in general
the pressure (and virial) is not well defined, as the pressure is the derivative of the free-energy of the system with
respect to the volume. When the reference coordinates are scaled along with the system, which can be selected
with the mdp option refcoord-scaling=all (page 56), the pressure and virial are well defined.

Flat-bottomed position restraints

Flat-bottomed position restraints can be used to restrain particles to part of the simulation volume. No force
acts on the restrained particle within the flat-bottomed region of the potential, however a harmonic force acts to
move the particle to the flat-bottomed region if it is outside it. It is possible to apply normal and flat-bottomed
position restraints on the same particle (however, only with the same reference position R𝑖). The following general
potential is used (Figure 5.30 A):

𝑉fb(r𝑖) =
1

2
𝑘fb[𝑑𝑔(r𝑖;R𝑖)− 𝑟fb]

2𝐻[𝑑𝑔(r𝑖;R𝑖)− 𝑟fb], (5.189)

where R𝑖 is the reference position, 𝑟fb is the distance from the center with a flat potential, 𝑘fb the force constant,
and𝐻 is the Heaviside step function. The distance 𝑑𝑔(r𝑖;R𝑖) from the reference position depends on the geometry
𝑔 of the flat-bottomed potential.

-1 -0.5 0 0.5 1
r [nm]

0

10

20

30

40

50

V(
r)

[k
J/

m
ol

]

-1 -0.5 0 0.5 1
r [nm]

0

10

20

30

40

50

2 rfb

A B

Fig. 5.30: Flat-bottomed position restraint potential. (A) Not inverted, (B) inverted.

The following geometries for the flat-bottomed potential are supported:

Sphere (𝑔 = 1): The particle is kept in a sphere of given radius. The force acts towards the center of the sphere.
The following distance calculation is used:

𝑑𝑔(r𝑖;R𝑖) = |r𝑖 −R𝑖| (5.190)

Cylinder (𝑔 = 6, 7, 8): The particle is kept in a cylinder of given radius parallel to the 𝑥 (𝑔 = 6), 𝑦 (𝑔 = 7), or
𝑧-axis (𝑔 = 8). For backwards compatibility, setting 𝑔 = 2 is mapped to 𝑔 = 8 in the code so that old tpr
(page 494) files and topologies work. The force from the flat-bottomed potential acts towards the axis of the
cylinder. The component of the force parallel to the cylinder axis is zero. For a cylinder aligned along the 𝑧-axis:

𝑑𝑔(r𝑖;R𝑖) =
√︀
(𝑥𝑖 −𝑋𝑖)2 + (𝑦𝑖 − 𝑌𝑖)2 (5.191)

5.5. Interaction function and force fields 423

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Layer (𝑔 = 3, 4, 5): The particle is kept in a layer defined by the thickness and the normal of the layer. The layer
normal can be parallel to the 𝑥, 𝑦, or 𝑧-axis. The force acts parallel to the layer normal.

𝑑𝑔(r𝑖;R𝑖) = |𝑥𝑖 −𝑋𝑖|, or 𝑑𝑔(r𝑖;R𝑖) = |𝑦𝑖 − 𝑌𝑖|, or 𝑑𝑔(r𝑖;R𝑖) = |𝑧𝑖 − 𝑍𝑖|. (5.192)

It is possible to apply multiple independent flat-bottomed position restraints of different geometry on one particle.
For example, applying a cylinder and a layer in 𝑧 keeps a particle within a disk. Applying three layers in 𝑥, 𝑦, and
𝑧 keeps the particle within a cuboid.

In addition, it is possible to invert the restrained region with the unrestrained region, leading to a potential that
acts to keep the particle outside of the volume defined by R𝑖, 𝑔, and 𝑟fb. That feature is switched on by defining a
negative 𝑟fb in the topology. The following potential is used (Figure 5.30 B):

𝑉 inv
fb (r𝑖) =

1

2
𝑘fb[𝑑𝑔(r𝑖;R𝑖)− |𝑟fb|]2𝐻[−(𝑑𝑔(r𝑖;R𝑖)− |𝑟fb|)]. (5.193)

Angle restraints

These are used to restrain the angle between two pairs of particles or between one pair of particles and the 𝑧-axis.
The functional form is similar to that of a proper dihedral. For two pairs of atoms:

𝑉𝑎𝑟(r𝑖, r𝑗 , r𝑘, r𝑙) = 𝑘𝑎𝑟(1− cos(𝑛(𝜃 − 𝜃0))), where 𝜃 = arccos

(︂
r𝑗 − r𝑖
‖r𝑗 − r𝑖‖

· r𝑙 − r𝑘
‖r𝑙 − r𝑘‖

)︂
(5.194)

For one pair of atoms and the 𝑧-axis:

𝑉𝑎𝑟(r𝑖, r𝑗) = 𝑘𝑎𝑟(1− cos(𝑛(𝜃 − 𝜃0))), where 𝜃 = arccos

⎛⎝ r𝑗 − r𝑖
‖r𝑗 − r𝑖‖

·

⎛⎝ 0
0
1

⎞⎠⎞⎠ (5.195)

A multiplicity (𝑛) of 2 is useful when you do not want to distinguish between parallel and anti-parallel vectors.
The equilibrium angle 𝜃 should be between 0 and 180 degrees for multiplicity 1 and between 0 and 90 degrees for
multiplicity 2.

Dihedral restraints

These are used to restrain the dihedral angle 𝜑 defined by four particles as in an improper dihedral (sec. Improper
dihedrals (page 416)) but with a slightly modified potential. Using:

𝜑′ = (𝜑− 𝜑0) MOD 2𝜋 (5.196)

where 𝜑0 is the reference angle, the potential is defined as:

𝑉𝑑𝑖ℎ𝑟(𝜑
′) =

⎧⎨⎩
1
2𝑘𝑑𝑖ℎ𝑟(𝜑

′ −∆𝜑)2 for ‖𝜑′‖ > ∆𝜑

0 for ‖𝜑′‖ ≤ ∆𝜑
(5.197)

where ∆𝜑 is a user defined angle and 𝑘𝑑𝑖ℎ𝑟 is the force constant. Note that in the input in topology files, angles
are given in degrees and force constants in kJ/mol/rad2.

5.5. Interaction function and force fields 424

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Distance restraints

Distance restraints add a penalty to the potential when the distance between specified pairs of atoms exceeds a
threshold value. They are normally used to impose experimental restraints from, for instance, experiments in
nuclear magnetic resonance (NMR), on the motion of the system. Thus, MD can be used for structure refinement
using NMR data. In GROMACS there are three ways to impose restraints on pairs of atoms:

• Simple harmonic restraints: use [bonds] type 6 (see sec. Exclusions (page 460)).

• Piecewise linear/harmonic restraints: [bonds] type 10.

• Complex NMR distance restraints, optionally with pair, time and/or ensemble averaging.

The last two options will be detailed now.

The potential form for distance restraints is quadratic below a specified lower bound and between two specified
upper bounds, and linear beyond the largest bound (see Fig. 5.31).

𝑉𝑑𝑟(𝑟𝑖𝑗) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2𝑘𝑑𝑟(𝑟𝑖𝑗 − 𝑟0)

2 for 𝑟𝑖𝑗 < 𝑟0

0 for 𝑟0 ≤ 𝑟𝑖𝑗 < 𝑟1

1
2𝑘𝑑𝑟(𝑟𝑖𝑗 − 𝑟1)

2 for 𝑟1 ≤ 𝑟𝑖𝑗 < 𝑟2

1
2𝑘𝑑𝑟(𝑟2 − 𝑟1)(2𝑟𝑖𝑗 − 𝑟2 − 𝑟1) for 𝑟2 ≤ 𝑟𝑖𝑗

(5.198)

0 0.1 0.2 0.3 0.4 0.5
r (nm)

0

5

10

15

V di
sr

e
(k

J
m

ol
−1

)

r0 r1 r2

Fig. 5.31: Distance Restraint potential.

The forces are

F𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−𝑘𝑑𝑟(𝑟𝑖𝑗 − 𝑟0)
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟𝑖𝑗 < 𝑟0

0 for 𝑟0 ≤ 𝑟𝑖𝑗 < 𝑟1

−𝑘𝑑𝑟(𝑟𝑖𝑗 − 𝑟1)
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟1 ≤ 𝑟𝑖𝑗 < 𝑟2

−𝑘𝑑𝑟(𝑟2 − 𝑟1)
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟2 ≤ 𝑟𝑖𝑗

(5.199)

For restraints not derived from NMR data, this functionality will usually suffice and a section of [bonds] type
10 can be used to apply individual restraints between pairs of atoms, see Topology file (page 468). For applying
restraints derived from NMR measurements, more complex functionality might be required, which is provided
through the [distance_restraints] section and is described below.

5.5. Interaction function and force fields 425

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Time averaging

Distance restraints based on instantaneous distances can potentially reduce the fluctuations in a molecule signifi-
cantly. This problem can be overcome by restraining to a time averaged distance 91 (page 581). The forces with
time averaging are:

F𝑖 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−𝑘𝑎𝑑𝑟(𝑟𝑖𝑗 − 𝑟0)
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟𝑖𝑗 < 𝑟0

0 for 𝑟0 ≤ 𝑟𝑖𝑗 < 𝑟1

−𝑘𝑎𝑑𝑟(𝑟𝑖𝑗 − 𝑟1)
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟1 ≤ 𝑟𝑖𝑗 < 𝑟2

−𝑘𝑎𝑑𝑟(𝑟2 − 𝑟1)
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟2 ≤ 𝑟𝑖𝑗

(5.200)

where 𝑟𝑖𝑗 is given by an exponential running average with decay time 𝜏 :

𝑟𝑖𝑗 = < 𝑟−3
𝑖𝑗 >−1/3 (5.201)

The force constant 𝑘𝑎𝑑𝑟 is switched on slowly to compensate for the lack of history at the beginning of the simula-
tion:

𝑘𝑎𝑑𝑟 = 𝑘𝑑𝑟

(︂
1− exp

(︂
− 𝑡

𝜏

)︂)︂
(5.202)

Because of the time averaging, we can no longer speak of a distance restraint potential.

This way an atom can satisfy two incompatible distance restraints on average by moving between two positions.
An example would be an amino acid side-chain that is rotating around its 𝜒 dihedral angle, thereby coming close
to various other groups. Such a mobile side chain can give rise to multiple NOEs that can not be fulfilled by a
single structure.

The computation of the time averaged distance in the mdrun (page 215) program is done in the following fashion:

𝑟−3
𝑖𝑗(0) = 𝑟𝑖𝑗(0)

−3

𝑟−3
𝑖𝑗(𝑡) = 𝑟−3

𝑖𝑗(𝑡−∆𝑡) exp
(︀
−Δ𝑡

𝜏

)︀
+ 𝑟𝑖𝑗(𝑡)

−3
[︀
1− exp

(︀
−Δ𝑡

𝜏

)︀]︀ (5.203)

When a pair is within the bounds, it can still feel a force because the time averaged distance can still be beyond
a bound. To prevent the protons from being pulled too close together, a mixed approach can be used. In this
approach, the penalty is zero when the instantaneous distance is within the bounds, otherwise the violation is the
square root of the product of the instantaneous violation and the time averaged violation:

F𝑖 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑘𝑎𝑑𝑟
√︀
(𝑟𝑖𝑗 − 𝑟0)(𝑟𝑖𝑗 − 𝑟0)

r𝑖𝑗
𝑟𝑖𝑗

for 𝑟𝑖𝑗 < 𝑟0 and 𝑟𝑖𝑗 < 𝑟0

−𝑘𝑎𝑑𝑟 min
(︁√︀

(𝑟𝑖𝑗 − 𝑟1)(𝑟𝑖𝑗 − 𝑟1), 𝑟2 − 𝑟1

)︁
r𝑖𝑗
𝑟𝑖𝑗

for 𝑟𝑖𝑗 > 𝑟1 and 𝑟𝑖𝑗 > 𝑟1

0 otherwise

(5.204)

Averaging over multiple pairs

Sometimes it is unclear from experimental data which atom pair gives rise to a single NOE, in other occasions
it can be obvious that more than one pair contributes due to the symmetry of the system, e.g. a methyl group
with three protons. For such a group, it is not possible to distinguish between the protons, therefore they should
all be taken into account when calculating the distance between this methyl group and another proton (or group
of protons). Due to the physical nature of magnetic resonance, the intensity of the NOE signal is inversely
proportional to the sixth power of the inter-atomic distance. Thus, when combining atom pairs, a fixed list of 𝑁
restraints may be taken together, where the apparent “distance” is given by:

𝑟𝑁 (𝑡) =

[︃
𝑁∑︁

𝑛=1

𝑟𝑛(𝑡)
−6

]︃−1/6

(5.205)

where we use 𝑟𝑖𝑗 or (5.201) for the 𝑟𝑛. The 𝑟𝑁 of the instantaneous and time-averaged distances can be combined
to do a mixed restraining, as indicated above. As more pairs of protons contribute to the same NOE signal, the

5.5. Interaction function and force fields 426

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

intensity will increase, and the summed “distance” will be shorter than any of its components due to the reciprocal
summation.

There are two options for distributing the forces over the atom pairs. In the conservative option, the force is
defined as the derivative of the restraint potential with respect to the coordinates. This results in a conservative
potential when time averaging is not used. The force distribution over the pairs is proportional to 𝑟−6. This means
that a close pair feels a much larger force than a distant pair, which might lead to a molecule that is “too rigid.”
The other option is an equal force distribution. In this case each pair feels 1/𝑁 of the derivative of the restraint
potential with respect to 𝑟𝑁 . The advantage of this method is that more conformations might be sampled, but the
non-conservative nature of the forces can lead to local heating of the protons.

It is also possible to use ensemble averaging using multiple (protein) molecules. In this case the bounds should be
lowered as in:

𝑟1 = 𝑟1 *𝑀−1/6

𝑟2 = 𝑟2 *𝑀−1/6 (5.206)

where 𝑀 is the number of molecules. The GROMACS preprocessor grompp (page 190) can do this automatically
when the appropriate option is given. The resulting “distance” is then used to calculate the scalar force according
to:

F𝑖 =

⎧⎨⎩
0 𝑟𝑁 < 𝑟1

𝑘𝑑𝑟(𝑟𝑁 − 𝑟1)
r𝑖𝑗
𝑟𝑖𝑗

𝑟1 ≤ 𝑟𝑁 < 𝑟2
𝑘𝑑𝑟(𝑟2 − 𝑟1)

r𝑖𝑗
𝑟𝑖𝑗

𝑟𝑁 ≥ 𝑟2

(5.207)

where 𝑖 and 𝑗 denote the atoms of all the pairs that contribute to the NOE signal.

Using distance restraints

A list of distance restrains based on NOE data can be added to a molecule definition in your topology file, like in
the following example:

[distance_restraints]
; ai aj type index type' low up1 up2 fac
10 16 1 0 1 0.0 0.3 0.4 1.0
10 28 1 1 1 0.0 0.3 0.4 1.0
10 46 1 1 1 0.0 0.3 0.4 1.0
16 22 1 2 1 0.0 0.3 0.4 2.5
16 34 1 3 1 0.0 0.5 0.6 1.0

In this example a number of features can be found. In columns ai and aj you find the atom numbers of the particles
to be restrained. The type column should always be 1. As explained in Distance restraints (page 425), multiple
distances can contribute to a single NOE signal. In the topology this can be set using the index column. In our
example, the restraints 10-28 and 10-46 both have index 1, therefore they are treated simultaneously. An extra
requirement for treating restraints together is that the restraints must be on successive lines, without any other
intervening restraint. The type’ column will usually be 1, but can be set to 2 to obtain a distance restraint that
will never be time- and ensemble-averaged; this can be useful for restraining hydrogen bonds. The columns low,
up1, and up2 hold the values of 𝑟0, 𝑟1, and 𝑟2 from (5.198). In some cases it can be useful to have different force
constants for some restraints; this is controlled by the column fac. The force constant in the parameter file is
multiplied by the value in the column fac for each restraint. Information for each restraint is stored in the energy
file and can be processed and plotted with gmx nmr (page 227).

5.5. Interaction function and force fields 427

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Orientation restraints

This section describes how orientations between vectors, as measured in certain NMR experiments, can be calcu-
lated and restrained in MD simulations. The presented refinement methodology and a comparison of results with
and without time and ensemble averaging have been published 92 (page 581).

Theory

In an NMR experiment, orientations of vectors can be measured when a molecule does not tumble completely
isotropically in the solvent. Two examples of such orientation measurements are residual dipolar couplings (be-
tween two nuclei) or chemical shift anisotropies. An observable for a vector r𝑖 can be written as follows:

𝛿𝑖 =
2

3
tr(SD𝑖) (5.208)

where S is the dimensionless order tensor of the molecule. The tensor D𝑖 is given by:

D𝑖 =
𝑐𝑖

‖r𝑖‖𝛼

⎛⎝ 3𝑥𝑥− 1 3𝑥𝑦 3𝑥𝑧
3𝑥𝑦 3𝑦𝑦 − 1 3𝑦𝑧
3𝑥𝑧 3𝑦𝑧 3𝑧𝑧 − 1

⎞⎠ (5.209)

with: 𝑥 =
𝑟𝑖,𝑥
‖r𝑖‖

, 𝑦 =
𝑟𝑖,𝑦
‖r𝑖‖

, 𝑧 =
𝑟𝑖,𝑧
‖r𝑖‖ (5.210)

For a dipolar coupling r𝑖 is the vector connecting the two nuclei, 𝛼 = 3 and the constant 𝑐𝑖 is given by:

𝑐𝑖 =
𝜇0

4𝜋
𝛾𝑖1𝛾

𝑖
2

ℏ
4𝜋

(5.211)

where 𝛾𝑖1 and 𝛾𝑖2 are the gyromagnetic ratios of the two nuclei.

The order tensor is symmetric and has trace zero. Using a rotation matrix T it can be transformed into the
following form:

T𝑇ST = 𝑠

⎛⎝ − 1
2 (1− 𝜂) 0 0

0 − 1
2 (1 + 𝜂) 0

0 0 1

⎞⎠ (5.212)

where −1 ≤ 𝑠 ≤ 1 and 0 ≤ 𝜂 ≤ 1. 𝑠 is called the order parameter and 𝜂 the asymmetry of the order tensor S.
When the molecule tumbles isotropically in the solvent, 𝑠 is zero, and no orientational effects can be observed
because all 𝛿𝑖 are zero.

Calculating orientations in a simulation

For reasons which are explained below, the D matrices are calculated which respect to a reference orientation of
the molecule. The orientation is defined by a rotation matrix R, which is needed to least-squares fit the current
coordinates of a selected set of atoms onto a reference conformation. The reference conformation is the starting
conformation of the simulation. In case of ensemble averaging, which will be treated later, the structure is taken
from the first subsystem. The calculated D𝑐

𝑖 matrix is given by:

D𝑐
𝑖 (𝑡) = R(𝑡)D𝑖(𝑡)R

𝑇 (𝑡) (5.213)

The calculated orientation for vector 𝑖 is given by:

𝛿𝑐𝑖 (𝑡) =
2

3
tr(S(𝑡)D𝑐

𝑖 (𝑡)) (5.214)

The order tensor S(𝑡) is usually unknown. A reasonable choice for the order tensor is the tensor which minimizes
the (weighted) mean square difference between the calculated and the observed orientations:

𝑀𝑆𝐷(𝑡) =

(︃
𝑁∑︁
𝑖=1

𝑤𝑖

)︃−1 𝑁∑︁
𝑖=1

𝑤𝑖(𝛿
𝑐
𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖)2 (5.215)

To properly combine different types of measurements, the unit of 𝑤𝑖 should be such that all terms are dimension-
less. This means the unit of 𝑤𝑖 is the unit of 𝛿𝑖 to the power −2. Note that scaling all 𝑤𝑖 with a constant factor
does not influence the order tensor.

5.5. Interaction function and force fields 428

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Time averaging

Since the tensors D𝑖 fluctuate rapidly in time, much faster than can be observed in an experiment, they should be
averaged over time in the simulation. However, in a simulation the time and the number of copies of a molecule are
limited. Usually one can not obtain a converged average of the D𝑖 tensors over all orientations of the molecule.
If one assumes that the average orientations of the r𝑖 vectors within the molecule converge much faster than
the tumbling time of the molecule, the tensor can be averaged in an axis system that rotates with the molecule,
as expressed by (5.213)). The time-averaged tensors are calculated using an exponentially decaying memory
function:

D𝑎
𝑖 (𝑡) =

∫︁ 𝑡

𝑢=𝑡0

D𝑐
𝑖 (𝑢) exp

(︂
− 𝑡− 𝑢

𝜏

)︂
d𝑢∫︁ 𝑡

𝑢=𝑡0

exp

(︂
− 𝑡− 𝑢

𝜏

)︂
d𝑢

(5.216)

Assuming that the order tensor S fluctuates slower than the D𝑖, the time-averaged orientation can be calculated
as:

𝛿𝑎𝑖 (𝑡) =
2

3
tr(S(𝑡)D𝑎

𝑖 (𝑡)) (5.217)

where the order tensor S(𝑡) is calculated using expression (5.215) with 𝛿𝑐𝑖 (𝑡) replaced by 𝛿𝑎𝑖 (𝑡).

Restraining

The simulated structure can be restrained by applying a force proportional to the difference between the calculated
and the experimental orientations. When no time averaging is applied, a proper potential can be defined as:

𝑉 =
1

2
𝑘

𝑁∑︁
𝑖=1

𝑤𝑖(𝛿
𝑐
𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖)2 (5.218)

where the unit of 𝑘 is the unit of energy. Thus the effective force constant for restraint 𝑖 is 𝑘𝑤𝑖. The forces are
given by minus the gradient of 𝑉 . The force F𝑖 working on vector r𝑖 is:

F𝑖(𝑡) = −d𝑉
dr𝑖

= −𝑘𝑤𝑖(𝛿
𝑐
𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖)

d𝛿𝑖(𝑡)
dr𝑖

= −𝑘𝑤𝑖(𝛿
𝑐
𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖)

2𝑐𝑖
‖r‖2+𝛼

(︂
2R𝑇SRr𝑖 −

2 + 𝛼

‖r‖2
tr(R𝑇SRr𝑖r

𝑇
𝑖)r𝑖

)︂ (5.219)

Ensemble averaging

Ensemble averaging can be applied by simulating a system of 𝑀 subsystems that each contain an identical set of
orientation restraints. The systems only interact via the orientation restraint potential which is defined as:

𝑉 =𝑀
1

2
𝑘

𝑁∑︁
𝑖=1

𝑤𝑖⟨𝛿𝑐𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖 ⟩2 (5.220)

The force on vector r𝑖,𝑚 in subsystem 𝑚 is given by:

F𝑖,𝑚(𝑡) = − d𝑉
dr𝑖,𝑚

= −𝑘𝑤𝑖⟨𝛿𝑐𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖 ⟩
d𝛿𝑐𝑖,𝑚(𝑡)

dr𝑖,𝑚
(5.221)

5.5. Interaction function and force fields 429

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Time averaging

When using time averaging it is not possible to define a potential. We can still define a quantity that gives a rough
idea of the energy stored in the restraints:

𝑉 =𝑀
1

2
𝑘𝑎

𝑁∑︁
𝑖=1

𝑤𝑖⟨𝛿𝑎𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖 ⟩2 (5.222)

The force constant 𝑘𝑎 is switched on slowly to compensate for the lack of history at times close to 𝑡0. It is exactly
proportional to the amount of average that has been accumulated:

𝑘𝑎 = 𝑘
1

𝜏

∫︁ 𝑡

𝑢=𝑡0

exp

(︂
− 𝑡− 𝑢

𝜏

)︂
d𝑢 (5.223)

What really matters is the definition of the force. It is chosen to be proportional to the square root of the prod-
uct of the time-averaged and the instantaneous deviation. Using only the time-averaged deviation induces large
oscillations. The force is given by:

F𝑖,𝑚(𝑡) =

⎧⎨⎩
0 for 𝑎 𝑏 ≤ 0

𝑘𝑎𝑤𝑖
𝑎

|𝑎|
√
𝑎 𝑏

d𝛿𝑐𝑖,𝑚(𝑡)

dr𝑖,𝑚
for 𝑎 𝑏 > 0

(5.224)

𝑎 = ⟨𝛿𝑎𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖 ⟩
𝑏 = ⟨𝛿𝑐𝑖 (𝑡)− 𝛿𝑒𝑥𝑝𝑖 ⟩

(5.225)

Using orientation restraints

Orientation restraints can be added to a molecule definition in the topology file in the section [
orientation_restraints]. Here we give an example section containing five N-H residual dipolar cou-
pling restraints:

[orientation_restraints]
; ai aj type exp. label alpha const. obs. weight
; Hz nm^3 Hz Hz^-2

31 32 1 1 3 3 6.083 -6.73 1.0
43 44 1 1 4 3 6.083 -7.87 1.0
55 56 1 1 5 3 6.083 -7.13 1.0
65 66 1 1 6 3 6.083 -2.57 1.0
73 74 1 1 7 3 6.083 -2.10 1.0

The unit of the observable is Hz, but one can choose any other unit. In columns ai and aj you find the atom
numbers of the particles to be restrained. The type column should always be 1. The exp. column denotes the
experiment number, starting at 1. For each experiment a separate order tensor S is optimized. The label should
be a unique number larger than zero for each restraint. The alpha column contains the power 𝛼 that is used in
(5.209)) to calculate the orientation. The const. column contains the constant 𝑐𝑖 used in the same equation. The
constant should have the unit of the observable times nm𝛼. The column obs. contains the observable, in any unit
you like. The last column contains the weights 𝑤𝑖; the unit should be the inverse of the square of the unit of the
observable.

Some parameters for orientation restraints can be specified in the grompp (page 190) mdp (page 488) file, for
a study of the effect of different force constants and averaging times and ensemble averaging see 92 (page 581).
Information for each restraint is stored in the energy file and can be processed and plotted with gmx nmr (page 227).

5.5. Interaction function and force fields 430

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.5.4 Polarization

Polarization can be treated by GROMACS by attaching shell (Drude) particles to atoms and/or virtual sites. The
energy of the shell particle is then minimized at each time step in order to remain on the Born-Oppenheimer
surface.

Simple polarization

This is implemented as a harmonic potential with equilibrium distance 0. The input given in the topology file is
the polarizability 𝛼 (in GROMACS units) as follows:

[polarization]
; Atom i j type alpha
1 2 1 0.001

in this case the polarizability volume is 0.001 nm3 (or 1 Å3). In order to compute the harmonic force constant 𝑘𝑐𝑠
(where 𝑐𝑠 stands for core-shell), the following is used 45 (page 579):

𝑘𝑐𝑠 =
𝑞2𝑠
𝛼

(5.226)

where 𝑞𝑠 is the charge on the shell particle.

Anharmonic polarization

For the development of the Drude force field by Roux and McKerell 93 (page 581) it was found that some particles
can overpolarize and this was fixed by introducing a higher order term in the polarization energy:

𝑉𝑝𝑜𝑙 =
𝑘𝑐𝑠
2
𝑟2𝑐𝑠 𝑟𝑐𝑠 ≤ 𝛿

=
𝑘𝑐𝑠
2
𝑟2𝑐𝑠 + 𝑘ℎ𝑦𝑝(𝑟𝑐𝑠 − 𝛿)4 𝑟𝑐𝑠 > 𝛿

(5.227)

where 𝛿 is a user-defined constant that is set to 0.02 nm for anions in the Drude force field 94 (page 581). Since
this original introduction it has also been used in other atom types 93 (page 581).

[polarization]
;Atom i j type alpha (nm^3) delta khyp
1 2 2 0.001786 0.02 16.736e8

The above force constant 𝑘ℎ𝑦𝑝 corresponds to 4·108 kcal/mol/nm4, hence the strange number.

Water polarization

A special potential for water that allows anisotropic polarization of a single shell particle 45 (page 579).

Thole polarization

Based on early work by Thole 95 (page 581), Roux and coworkers have implemented potentials for molecules like
ethanol 96 (page 581), 98 (page 581). Within such molecules, there are intra-molecular interactions between shell
particles, however these must be screened because full Coulomb would be too strong. The potential between two
shell particles 𝑖 and 𝑗 is:

𝑉𝑡ℎ𝑜𝑙𝑒 =
𝑞𝑖𝑞𝑗
𝑟𝑖𝑗

[︁
1−

(︁
1 +

𝑟𝑖𝑗
2

)︁
exp−𝑟𝑖𝑗

]︁
(5.228)

Note that there is a sign error in Equation 1 of Noskov et al. 98 (page 581):

𝑟𝑖𝑗 = 𝑎
𝑟𝑖𝑗

(𝛼𝑖𝛼𝑗)1/6
(5.229)

5.5. Interaction function and force fields 431

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where 𝑎 is a magic (dimensionless) constant, usually chosen to be 2.6 98 (page 581); 𝛼𝑖 and 𝛼𝑗 are the polariz-
abilities of the respective shell particles.

5.5.5 Free energy interactions

This section describes the 𝜆-dependence of the potentials used for free energy calculations (see sec. Free energy
calculations (page 395)). All common types of potentials and constraints can be interpolated smoothly from state
A (𝜆 = 0) to state B (𝜆 = 1) and vice versa. All bonded interactions are interpolated by linear interpolation of the
interaction parameters. Non-bonded interactions can be interpolated linearly or via soft-core interactions.

Starting in GROMACS 4.6, 𝜆 is a vector, allowing different components of the free energy transformation to
be carried out at different rates. Coulomb, Lennard-Jones, bonded, and restraint terms can all be controlled
independently, as described in the mdp (page 488) options.

Harmonic potentials

The example given here is for the bond potential, which is harmonic in GROMACS. However, these equations
apply to the angle potential and the improper dihedral potential as well.

𝑉𝑏 =
1

2

[︀
(1− 𝜆)𝑘𝐴𝑏 + 𝜆𝑘𝐵𝑏

]︀ [︀
𝑏− (1− 𝜆)𝑏𝐴0 − 𝜆𝑏𝐵0

]︀2
𝜕𝑉𝑏
𝜕𝜆

=
1

2
(𝑘𝐵𝑏 − 𝑘𝐴𝑏)

[︀
𝑏− (1− 𝜆)𝑏𝐴0 + 𝜆𝑏𝐵0

]︀2
+

(𝑏𝐴0 − 𝑏𝐵0)
[︀
𝑏− (1− 𝜆)𝑏𝐴0 − 𝜆𝑏𝐵0

]︀ [︀
(1− 𝜆)𝑘𝐴𝑏 + 𝜆𝑘𝐵𝑏

]︀
GROMOS-96 bonds and angles

Fourth-power bond stretching and cosine-based angle potentials are interpolated by linear interpolation of the
force constant and the equilibrium position. Formulas are not given here.

Proper dihedrals

For the proper dihedrals, the equations are somewhat more complicated:

𝑉𝑑 =
[︀
(1− 𝜆)𝑘𝐴𝑑 + 𝜆𝑘𝐵𝑑

]︀ (︀
1 + cos

[︀
𝑛𝜑𝜑− (1− 𝜆)𝜑𝐴𝑠 − 𝜆𝜑𝐵𝑠

]︀)︀
𝜕𝑉𝑑
𝜕𝜆

= (𝑘𝐵𝑑 − 𝑘𝐴𝑑)
(︀
1 + cos

[︀
𝑛𝜑𝜑− (1− 𝜆)𝜑𝐴𝑠 − 𝜆𝜑𝐵𝑠

]︀)︀
+

(𝜑𝐵𝑠 − 𝜑𝐴𝑠)
[︀
(1− 𝜆)𝑘𝐴𝑑 − 𝜆𝑘𝐵𝑑

]︀
sin
[︀
𝑛𝜑𝜑− (1− 𝜆)𝜑𝐴𝑠 − 𝜆𝜑𝐵𝑠

]︀
Note: that the multiplicity 𝑛𝜑 can not be parameterized because the function should remain periodic on the interval
[0, 2𝜋].

Tabulated bonded interactions

For tabulated bonded interactions only the force constant can interpolated:

𝑉 = ((1− 𝜆)𝑘𝐴 + 𝜆𝑘𝐵) 𝑓

𝜕𝑉

𝜕𝜆
= (𝑘𝐵 − 𝑘𝐴) 𝑓

(5.230)

5.5. Interaction function and force fields 432

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Coulomb interaction

The Coulomb interaction between two particles of which the charge varies with 𝜆 is:

𝑉𝑐 =
𝑓

𝜀𝑟𝑓𝑟𝑖𝑗

[︀
(1− 𝜆)𝑞𝐴𝑖 𝑞

𝐴
𝑗 + 𝜆 𝑞𝐵𝑖 𝑞

𝐵
𝑗

]︀
𝜕𝑉𝑐
𝜕𝜆

=
𝑓

𝜀𝑟𝑓𝑟𝑖𝑗

[︀
−𝑞𝐴𝑖 𝑞𝐴𝑗 + 𝑞𝐵𝑖 𝑞

𝐵
𝑗

]︀ (5.231)

where 𝑓 = 1
4𝜋𝜀0

= 138.935 458 (see chapter Definitions and Units (page 358)).

Coulomb interaction with reaction field

The Coulomb interaction including a reaction field, between two particles of which the charge varies with 𝜆 is:

𝑉𝑐 = 𝑓

[︂
1

𝑟𝑖𝑗
+ 𝑘𝑟𝑓 𝑟𝑖𝑗

2 − 𝑐𝑟𝑓

]︂ [︀
(1− 𝜆)𝑞𝐴𝑖 𝑞

𝐴
𝑗 + 𝜆 𝑞𝐵𝑖 𝑞

𝐵
𝑗

]︀
𝜕𝑉𝑐
𝜕𝜆

= 𝑓

[︂
1

𝑟𝑖𝑗
+ 𝑘𝑟𝑓 𝑟𝑖𝑗

2 − 𝑐𝑟𝑓

]︂ [︀
−𝑞𝐴𝑖 𝑞𝐴𝑗 + 𝑞𝐵𝑖 𝑞

𝐵
𝑗

]︀ (5.232)

Note that the constants 𝑘𝑟𝑓 and 𝑐𝑟𝑓 are defined using the dielectric constant 𝜀𝑟𝑓 of the medium (see sec. Coulomb
interaction with reaction field (page 408)).

Lennard-Jones interaction

For the Lennard-Jones interaction between two particles of which the atom type varies with 𝜆 we can write:

𝑉𝐿𝐽 =
(1− 𝜆)𝐶𝐴

12 + 𝜆𝐶𝐵
12

𝑟𝑖𝑗12
− (1− 𝜆)𝐶𝐴

6 + 𝜆𝐶𝐵
6

𝑟𝑖𝑗6

𝜕𝑉𝐿𝐽

𝜕𝜆
=

𝐶𝐵
12 − 𝐶𝐴

12

𝑟𝑖𝑗12
− 𝐶𝐵

6 − 𝐶𝐴
6

𝑟𝑖𝑗6

(5.233)

It should be noted that it is also possible to express a pathway from state A to state B using 𝜎 and 𝜖 (see (5.123)).
It may seem to make sense physically to vary the force field parameters 𝜎 and 𝜖 rather than the derived parameters
𝐶12 and 𝐶6. However, the difference between the pathways in parameter space is not large, and the free energy
itself does not depend on the pathway, so we use the simple formulation presented above.

Kinetic Energy

When the mass of a particle changes, there is also a contribution of the kinetic energy to the free energy (note
that we can not write the momentum p as 𝑚v, since that would result in the sign of 𝜕𝐸𝑘

𝜕𝜆 being incorrect 99
(page 581)):

𝐸𝑘 =
1

2

p2

(1− 𝜆)𝑚𝐴 + 𝜆𝑚𝐵

𝜕𝐸𝑘

𝜕𝜆
= −1

2

p2(𝑚𝐵 −𝑚𝐴)

((1− 𝜆)𝑚𝐴 + 𝜆𝑚𝐵)2

(5.234)

after taking the derivative, we can insert p = 𝑚v, such that:

𝜕𝐸𝑘

𝜕𝜆
= −1

2
v2(𝑚𝐵 −𝑚𝐴) (5.235)

5.5. Interaction function and force fields 433

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Constraints

The constraints are formally part of the Hamiltonian, and therefore they give a contribution to the free energy. In
GROMACS this can be calculated using the LINCS or the SHAKE algorithm. If we have 𝑘 = 1 . . .𝐾 constraint
equations 𝑔𝑘 for LINCS, then

𝑔𝑘 = |r𝑘| − 𝑑𝑘 (5.236)

where r𝑘 is the displacement vector between two particles and 𝑑𝑘 is the constraint distance between the two
particles. We can express the fact that the constraint distance has a 𝜆 dependency by

𝑑𝑘 = (1− 𝜆)𝑑𝐴𝑘 + 𝜆𝑑𝐵𝑘 (5.237)

Thus the 𝜆-dependent constraint equation is

𝑔𝑘 = |r𝑘| −
(︀
(1− 𝜆)𝑑𝐴𝑘 + 𝜆𝑑𝐵𝑘

)︀
. (5.238)

The (zero) contribution 𝐺 to the Hamiltonian from the constraints (using Lagrange multipliers 𝜆𝑘, which are
logically distinct from the free-energy 𝜆) is

𝐺 =

𝐾∑︁
𝑘

𝜆𝑘𝑔𝑘

𝜕𝐺

𝜕𝜆
=

𝜕𝐺

𝜕𝑑𝑘

𝜕𝑑𝑘
𝜕𝜆

= −
𝐾∑︁
𝑘

𝜆𝑘
(︀
𝑑𝐵𝑘 − 𝑑𝐴𝑘

)︀
(5.239)

For SHAKE, the constraint equations are

𝑔𝑘 = r2𝑘 − 𝑑2𝑘 (5.240)

with 𝑑𝑘 as before, so

𝜕𝐺

𝜕𝜆
= −2

𝐾∑︁
𝑘

𝜆𝑘
(︀
𝑑𝐵𝑘 − 𝑑𝐴𝑘

)︀
(5.241)

Soft-core interactions: Beutler et al.

0 0.5 1 1.5 2 2.5 3
r

−1

0

1

2

3

4

5

V sc

LJ, α=0
LJ, α=1.5
LJ, α=2
3/r, α=0
3/r, α=1.5
3/r, α=2

Fig. 5.32: Soft-core interactions at 𝜆 = 0.5, with 𝑝 = 2 and 𝐶𝐴
6 = 𝐶𝐴

12 = 𝐶𝐵
6 = 𝐶𝐵

12 = 1.

In a free-energy calculation where particles grow out of nothing, or particles disappear, using the simple linear
interpolation of the Lennard-Jones and Coulomb potentials as described in (5.233) and (5.232) may lead to poor

5.5. Interaction function and force fields 434

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

convergence. When the particles have nearly disappeared, or are close to appearing (at 𝜆 close to 0 or 1), the
interaction energy will be weak enough for particles to get very close to each other, leading to large fluctuations
in the measured values of 𝜕𝑉/𝜕𝜆 (which, because of the simple linear interpolation, depends on the potentials at
both the endpoints of 𝜆).

To circumvent these problems, the singularities in the potentials need to be removed. This can be done by mod-
ifying the regular Lennard-Jones and Coulomb potentials with “soft-core” potentials that limit the energies and
forces involved at 𝜆 values between 0 and 1, but not at 𝜆 = 0 or 1.

In GROMACS the soft-core potentials 𝑉𝑠𝑐 are shifted versions of the regular potentials, so that the singularity in
the potential and its derivatives at 𝑟 = 0 is never reached. This formulation was introduced by Beutler et al.100
(page 581):

𝑉𝑠𝑐(𝑟) = (1− 𝜆)𝑉 𝐴(𝑟𝐴) + 𝜆𝑉 𝐵(𝑟𝐵)

𝑟𝐴 =
(︀
𝛼𝜎6

𝐴𝜆
𝑝 + 𝑟6

)︀ 1
6

𝑟𝐵 =
(︀
𝛼𝜎6

𝐵(1− 𝜆)
𝑝
+ 𝑟6

)︀ 1
6

(5.242)

where 𝑉 𝐴 and 𝑉 𝐵 are the normal “hard core” Van der Waals or electrostatic potentials in state A (𝜆 = 0) and
state B (𝜆 = 1) respectively, 𝛼 is the soft-core parameter (set with sc_alpha in the mdp (page 488) file), 𝑝 is
the soft-core 𝜆 power (set with sc_power), 𝜎 is the radius of the interaction, which is (𝐶12/𝐶6)

1/6 or an input
parameter (sc_sigma) when 𝐶6 or 𝐶12 is zero. Beutler et al.100 (page 581) probed various combinations of the
𝑟 power values for the Lennard-Jones and Coulombic interactions. GROMACS uses 𝑟6 for both, van der Waals
and electrostatic interactions.

For intermediate 𝜆, 𝑟𝐴 and 𝑟𝐵 alter the interactions very little for 𝑟 > 𝛼1/6𝜎 and quickly switch the soft-core
interaction to an almost constant value for smaller 𝑟 (Fig. 5.32). The force is:

𝐹𝑠𝑐(𝑟) = −𝜕𝑉𝑠𝑐(𝑟)
𝜕𝑟

= (1− 𝜆)𝐹𝐴(𝑟𝐴)

(︂
𝑟

𝑟𝐴

)︂5

+ 𝜆𝐹𝐵(𝑟𝐵)

(︂
𝑟

𝑟𝐵

)︂5

(5.243)

where 𝐹𝐴 and 𝐹𝐵 are the “hard core” forces. The contribution to the derivative of the free energy is:

𝜕𝑉𝑠𝑐(𝑟)

𝜕𝜆
= 𝑉 𝐵(𝑟𝐵)− 𝑉 𝐴(𝑟𝐴) + (1− 𝜆)

𝜕𝑉 𝐴(𝑟𝐴)

𝜕𝑟𝐴

𝜕𝑟𝐴
𝜕𝜆

+ 𝜆
𝜕𝑉 𝐵(𝑟𝐵)

𝜕𝑟𝐵

𝜕𝑟𝐵
𝜕𝜆

= 𝑉 𝐵(𝑟𝐵)− 𝑉 𝐴(𝑟𝐴)+
𝑝𝛼

6

[︁
𝜆𝐹𝐵(𝑟𝐵)𝑟

−5
𝐵 𝜎6

𝐵(1− 𝜆)
𝑝−1 − (1− 𝜆)𝐹𝐴(𝑟𝐴)𝑟

−5
𝐴 𝜎6

𝐴𝜆
𝑝−1
]︁

The original GROMOS Lennard-Jones soft-core function 100 (page 581) uses 𝑝 = 2, but 𝑝 = 1 gives a smoother
𝜕𝐻/𝜕𝜆 curve. Another issue that should be considered is the soft-core effect of hydrogens without Lennard-Jones
interaction. Their soft-core 𝜎 is set with sc_sigma. These hydrogens produce peaks in 𝜕𝐻/𝜕𝜆 at 𝜆 is 0 and/or
1 for 𝑝 = 1 and close to 0 and/or 1 with 𝑝 = 2. Lowering sc_sigma will decrease this effect, but it will also
increase the interactions with hydrogens relative to the other interactions in the soft-core state.

When soft-core potentials are selected (by setting sc_alpha >0), and the Coulomb and Lennard-Jones po-
tentials are turned on or off sequentially, then the Coulombic interaction is turned off linearly, rather than using
soft-core interactions, which should be less statistically noisy in most cases. This behavior can be overwritten by
setting sc-coul=yes. Note that sc-coul (page 72) is only taken into account when lambda states are used,
and you can still turn off soft-core interactions by setting sc-alpha=0. Additionally, the soft-core interaction
potential is only applied when either the A or B state has zero interaction potential. If both A and B states have
nonzero interaction potential, default linear scaling described above is used. When both Coulombic and Lennard-
Jones interactions are turned off simultaneously, a soft-core potential is used, and a hydrogen is being introduced
or deleted, the sigma is set to sc-sigma-min, which itself defaults to sc-sigma-default.

5.5. Interaction function and force fields 435

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Soft-core interactions: Gapsys et al.

In this section we describe the functional form and parameters for the soft-cored non-bonded interactions using
the formalism by Gapsys et al. 183 (page 585).

The Gapsys et al. soft-core is formulated to act on the level of van der Waals and electrostatic forces: the
non-bonded interactions are linearized at a point defined as, 𝑟𝑠𝑐𝐿𝐽 or 𝑟𝑠𝑐𝑄, respectively. The linearization
point depends on the state of the system as controlled by the 𝜆 parameter and two parameters 𝛼𝑄 (set with
sc-gapsys-scale-linpoint-q (page 73)) and 𝛼𝐿𝐽 (set with sc-gapsys-scale-linpoint-lj
(page 73)). The dependence on 𝜆 guarantees that the end-states are properly represented by their hard-core po-
tentials. Fig. 5.33 illustrates the behaviour of the linearization point, forces and integrated potential energies with
respect to the parameters 𝛼𝑄 and 𝛼𝐿𝐽 . The optimal choices of the parameter values have been systematically
explored in 183 (page 585). These recommended values are set by default when sc-function=gapsys is
selected: sc-gapsys-scale-linpoint-q=0.3 and sc-gapsys-scale-linpoint-lj=0.85.

Fig. 5.33: Illustration of the soft-core parameter influence on the linearization point (top row), forces (middle row)
and energies (bottom row) for van der Waals (left column) and electrostatic interactions (right column). The case
of two interacting atoms is considered. In state A both atoms have charges of 0.5 and 𝜎 = 0.3 nm, 𝜖 = 0.5 kJ/mol.
In state B all the non-bonded interactions are set to zero. The parameter 𝜆 is set to 0.5 and electrostatic interaction
cutoff is 1 nm.

The parameter 𝛼𝐿𝐽 is a unitless scaling factor in the range [0, 1). It scales the position of the point from which
the van der Waals force will be linearized. The linearization of the force is allowed in the range [0, 𝐹𝐿𝐽

𝑚𝑖𝑛), where
setting 𝛼𝐿𝐽 = 0 results in a standard hard-core van der Waals interaction. Setting 𝛼𝐿𝐽 closer to 1 brings the force
linearization point towards the minimum in the Lennard-Jones force curve (𝐹𝐿𝐽

𝑚𝑖𝑛). This construct allows retaining
the repulsion between two particles with non-zero C12 parameter at any 𝜆 value.

The parameter 𝛼𝑄 has a unit of 𝑛𝑚
𝑒2 and is defined in the range [0, inf). It scales the position of the point from

which the Coulombic force will be linearized. Even though in theory 𝛼𝑄 can be set to an arbitrarily large value,
algorithmically the linearization point for the force is bound in the range [0, 𝐹𝑄

𝑟𝑐𝑜𝑢𝑙), where setting 𝛼𝑄 = 0 results
in a standard hard-core Coulombic interaction. Setting 𝛼𝑄 to a larger value softens the Coulombic force.

5.5. Interaction function and force fields 436

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

In all the notations below, for simplicity, the distance between two atoms 𝑖 and 𝑗 is noted as 𝑟, i.e. 𝑟 = 𝑟𝑖𝑗 .

Forces: van der Waals interactions

F𝐿𝐽
𝑖𝑗 (r) =

⎧⎨⎩(
12𝐶

(12)
𝑖𝑗

𝑟13 − 6𝐶
(6)
𝑖𝑗

𝑟7) r𝑟 , if 𝑟 ≥ 𝑟𝑠𝑐𝐿𝐽

𝑑F𝐿𝐽
𝑖𝑗

𝑑𝑟 𝑟=𝑟𝑠𝑐𝐿𝐽
𝑟 + F𝐿𝐽

𝑖𝑗 (𝑟𝑠𝑐𝐿𝐽), if 𝑟 < 𝑟𝑠𝑐𝐿𝐽

(5.244)

where the switching point between the soft and hard-core Lennard-Jones forces 𝑟𝑠𝑐𝐿𝐽 = 𝛼𝐿𝐽(
26
7 𝜎

6𝜆)
1
6 for state

A, and 𝑟𝑠𝑐𝐿𝐽 = 𝛼𝐿𝐽(
26
7 𝜎

6(1− 𝜆))
1
6 for state B. In analogy to the Beutler et al. soft core version, 𝜎 is the radius

of the interaction, which is (𝐶12/𝐶6)
1/6 or an input parameter (set with sc-sigma-LJ-gapsys) when C6 or

C12 is zero. The default value for this parameter is sc-sigma-LJ-gapsys=0.3.

Explicit expression:

F𝐿𝐽(r) =

⎧⎨⎩
(︁

12𝐶(12)

𝑟13 − 6𝐶(6)

𝑟7

)︁
r
𝑟 , if 𝑟 ≥ 𝑟𝑠𝑐𝐿𝐽(︁

− 156𝐶(12)

𝑟14𝑠𝑐𝐿𝐽
+ 42𝐶(6)

𝑟8𝑠𝑐𝐿𝐽

)︁
r+ 168𝐶(12)

𝑟13𝑠𝑐𝐿𝐽
− 48𝐶(6)

𝑟7𝑠𝑐𝐿𝐽
, if 𝑟 < 𝑟𝑠𝑐𝐿𝐽

(5.245)

Forces: Coulomb interactions

F𝑄
𝑖𝑗(r) =

⎧⎪⎪⎨⎪⎪⎩
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝜀𝑟𝑟2
r
𝑟 , if 𝑟 ≥ 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

𝑑F𝑄
𝑖𝑗

𝑑𝑟 𝑟=𝑟𝑠𝑐𝑄
𝑟 + F𝑄

𝑖𝑗(𝑟𝑠𝑐𝑄), if 𝑟 < 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄
𝑑F𝑄

𝑖𝑗

𝑑𝑟 𝑟=𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄
𝑟 + F𝑄

𝑖𝑗(𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄), if 𝑟 < 𝑟𝑠𝑐𝑄 ≥ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

(5.246)

where the switching point 𝑟𝑠𝑐 between the soft and hard-core electrostatic forces is 𝑟𝑠𝑐𝑄 = 𝛼𝑄(1 + |𝑞𝑖𝑞𝑗 |)𝜆
1
6 for

state A, and 𝑟𝑠𝑐𝑄 = 𝛼𝑄(1 + |𝑞𝑖𝑞𝑗 |)(1− 𝜆)
1
6 for state B. The 𝜆 dependence of the linearization point for both van

der Waals and Coulombic interactions is of the same power 1/6.

Explicit expression:

F𝑄(r) =

⎧⎪⎪⎨⎪⎪⎩
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝜀𝑟𝑟2
r
𝑟 , if 𝑟 ≥ 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

1
4𝜋𝜀0𝜀𝑟

(︀
− 2𝑞𝑖𝑞𝑗

𝑟3𝑠𝑐
r+

3𝑞𝑖𝑞𝑗
𝑟2𝑠𝑐

)︀
, if 𝑟 < 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

1
4𝜋𝜀0𝜀𝑟

(︀
− 2𝑞𝑖𝑞𝑗

𝑟3𝑐𝑢𝑡𝑜𝑓𝑓𝑄
r+

3𝑞𝑖𝑞𝑗
𝑟2𝑐𝑢𝑡𝑜𝑓𝑓𝑄

)︀
, if 𝑟 < 𝑟𝑠𝑐𝑄 ≥ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

(5.247)

Energies: van der Waals interactions

Explicit definition of energies:

𝑉𝐿𝐽(𝑟) =

{︃
𝐶(12)

𝑟12 − 𝐶(6)

𝑟6 , if 𝑟 ≥ 𝑟𝑠𝑐𝐿𝐽(︁
78𝐶(12)

𝑟14𝑠𝑐𝐿𝐽
− 21𝐶(6)

𝑟8𝑠𝑐𝐿𝐽

)︁
𝑟2 −

(︁
168𝐶(12)

𝑟13𝑠𝑐𝐿𝐽
− 48𝐶(6)

𝑟7𝑠𝑐𝐿𝐽

)︁
𝑟 + 91𝐶(12)

𝑟12𝑠𝑐𝐿𝐽
− 28𝐶(6)

𝑟6𝑠𝑐𝐿𝐽
, if 𝑟 < 𝑟𝑠𝑐𝐿𝐽

(5.248)

5.5. Interaction function and force fields 437

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Energies: Coulomb interactions

𝑉𝑄(𝑟) =

⎧⎪⎪⎨⎪⎪⎩
𝑞𝑖𝑞𝑗

4𝜋𝜀0𝜀𝑟𝑟
, if 𝑟 ≥ 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

𝑞𝑖𝑞𝑗
𝑟3𝑠𝑐𝑄

𝑟2 − 3𝑞𝑖𝑞𝑗
𝑟2𝑠𝑐𝑄

𝑟 +
3𝑞𝑖𝑞𝑗
𝑟𝑠𝑐𝑄

, if 𝑟 < 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄
𝑞𝑖𝑞𝑗

𝑟3𝑐𝑢𝑡𝑜𝑓𝑓𝑄
𝑟2 − 3𝑞𝑖𝑞𝑗

𝑟2𝑐𝑢𝑡𝑜𝑓𝑓𝑄
𝑟 +

3𝑞𝑖𝑞𝑗
𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

, if 𝑟 < 𝑟𝑠𝑐𝑄 ≥ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄

(5.249)

𝜕𝐻/𝜕𝜆: van der Waals interactions

Here we provide the explicit expressions of 𝜕𝐻/𝜕𝜆 for Lennard-Jones potential, when 𝑟 < 𝑟𝑠𝑐𝐿𝐽 . For simplicity,
in the expression below we use the notation 𝑟𝑠𝑐𝐿𝐽𝐴

= 𝑟𝑠𝑐𝐴 and 𝑟𝑠𝑐𝐿𝐽𝐵
= 𝑟𝑠𝑐𝐵 .

𝜕𝐻

𝜕𝜆
= 𝑉 𝐵

𝐿𝐽(𝑟)− 𝑉 𝐴
𝐿𝐽(𝑟) + (1− 𝜆)

𝜕𝑉 𝐴
𝐿𝐽(𝑟)

𝜕𝜆
+ 𝜆

𝜕𝑉 𝐵
𝐿𝐽(𝑟)

𝜕𝜆

=

(︃
78𝐶

(12)
𝐵

𝑟14𝑠𝑐𝐵
−

21𝐶
(6)
𝐵

𝑟8𝑠𝑐𝐵

)︃
𝑟2 −

(︃
168𝐶

(12)
𝐵

𝑟13𝑠𝑐𝐵
−

48𝐶
(6)
𝐵

𝑟7𝑠𝑐𝐵

)︃
𝑟 +

91𝐶
(12)
𝐵

𝑟12𝑠𝑐𝐵
−

28𝐶
(6)
𝐵

𝑟6𝑠𝑐𝐵

−

[︃(︃
78𝐶

(12)
𝐴

𝑟14𝑠𝑐𝐴
−

21𝐶
(6)
𝐴

𝑟8𝑠𝑐𝐴

)︃
𝑟2 −

(︃
168𝐶

(12)
𝐴

𝑟13𝑠𝑐𝐴
−

48𝐶
(6)
𝐴

𝑟7𝑠𝑐𝐴

)︃
𝑟 +

91𝐶
(12)
𝐴

𝑟12𝑠𝑐𝐴
−

28𝐶
(6)
𝐴

𝑟6𝑠𝑐𝐴

]︃

+
14(𝜆− 1)

𝜆

[︃(︃
13𝐶

(12)
𝐴

𝑟14𝑠𝑐𝐴
−

2𝐶
(6)
𝐴

𝑟8𝑠𝑐𝐴

)︃
𝑟2 −

(︃
26𝐶

(12)
𝐴

𝑟13𝑠𝑐𝐴
−

4𝐶
(6)
𝐴

𝑟7𝑠𝑐𝐴

)︃
𝑟 +

13𝐶
(12)
𝐴

𝑟12𝑠𝑐𝐴
−

2𝐶
(6)
𝐴

𝑟6𝑠𝑐𝐴

]︃

+
14𝜆

1− 𝜆

[︃(︃
13𝐶

(12)
𝐵

𝑟14𝑠𝑐𝐵
−

2𝐶
(6)
𝐵

𝑟8𝑠𝑐𝐵

)︃
𝑟2 −

(︃
26𝐶

(12)
𝐵

𝑟13𝑠𝑐𝐵
−

4𝐶
(6)
𝐵

𝑟7𝑠𝑐𝐵

)︃
𝑟 +

13𝐶
(12)
𝐵

𝑟12𝑠𝑐𝐵
−

2𝐶
(6)
𝐵

𝑟6𝑠𝑐𝐵

]︃

(5.250)

𝜕𝐻/𝜕𝜆 for Lennard-Jones potential, when 𝑟 ≥ 𝑟𝑠𝑐𝐿𝐽 is calculated as a standard hard-core contribution to 𝜕𝐻/𝜕𝜆:
𝜕𝐻
𝜕𝜆 = 𝑉 𝐵

𝐿𝐽(𝑟)− 𝑉 𝐴
𝐿𝐽(𝑟).

𝜕𝐻/𝜕𝜆 for Coulomb interactions

Here we provide the explicit expressions of 𝜕𝐻/𝜕𝜆 for Coulomb potential, when 𝑟 < 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄. For
simplicity, in the expression below we use the notation 𝑟𝑠𝑐𝑄𝐴

= 𝑟𝑠𝑐𝐴 and 𝑟𝑠𝑐𝑄𝐵
= 𝑟𝑠𝑐𝐵 .

𝜕𝐻

𝜕𝜆
= 𝑉 𝐵

𝑄 (𝑟)− 𝑉 𝐴
𝑄 (𝑟) + (1− 𝜆)

𝜕𝑉 𝐴
𝑄 (𝑟)

𝜕𝜆
+ 𝜆

𝜕𝑉 𝐵
𝑄 (𝑟)

𝜕𝜆

=
𝑞𝐵𝑖 𝑞

𝐵
𝑗

𝑟3𝑠𝑐𝐵
𝑟2 −

3𝑞𝐵𝑖 𝑞
𝐵
𝑗

𝑟2𝑠𝑐𝐵
𝑟 +

3𝑞𝐵𝑖 𝑞
𝐵
𝑗

𝑟𝑠𝑐𝐵

−

[︃
𝑞𝐴𝑖 𝑞

𝐴
𝑗

𝑟3𝑠𝑐𝐴
𝑟2 −

3𝑞𝐴𝑖 𝑞
𝐴
𝑗

𝑟2𝑠𝑐𝐴
𝑟 +

3𝑞𝐴𝑖 𝑞
𝐴
𝑗

𝑟𝑠𝑐𝐴

]︃

+
𝜆− 1

2𝜆

[︃
𝑞𝐴𝑖 𝑞

𝐴
𝑗

𝑟3𝑠𝑐𝐴
𝑟2 −

2𝑞𝐴𝑖 𝑞
𝐴
𝑗

𝑟2𝑠𝑐𝐴
𝑟 +

𝑞𝐴𝑖 𝑞
𝐴
𝑗

𝑟𝑠𝑐𝐴

]︃

+
𝜆

2(1− 𝜆)

[︃
𝑞𝐵𝑖 𝑞

𝐵
𝑗

𝑟3𝑠𝑐𝐵
𝑟2 −

2𝑞𝐵𝑖 𝑞
𝐵
𝑗

𝑟2𝑠𝑐𝐵
𝑟 +

𝑞𝐵𝑖 𝑞
𝐵
𝑗

𝑟𝑠𝑐𝐵

]︃
(5.251)

𝜕𝐻/𝜕𝜆 for Coulomb potential, when 𝑟 < 𝑟𝑠𝑐𝑄 ≥ 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄 is calculated using the same expression above by
setting 𝑟𝑠𝑐𝐴 = 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄 and 𝑟𝑠𝑐𝐵 = 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄.

𝜕𝐻/𝜕𝜆 for Coulomb potential, when 𝑟 ≥ 𝑟𝑠𝑐𝑄 < 𝑟𝑐𝑢𝑡𝑜𝑓𝑓𝑄 is calculated as a standard hard-core contribution to
𝜕𝐻/𝜕𝜆: 𝜕𝐻

𝜕𝜆 = 𝑉 𝐵
𝑄 (𝑟)− 𝑉 𝐴

𝑄 (𝑟).

5.5. Interaction function and force fields 438

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.5.6 Methods

Exclusions and 1-4 Interactions.

Atoms within a molecule that are close by in the chain, i.e. atoms that are covalently bonded, or linked by one
or two atoms are called first neighbors, second neighbors and third neighbors, respectively (see Fig. 5.34). Since
the interactions of atom i with atoms i+1 and i+2 are mainly quantum mechanical, they can not be modeled by a
Lennard-Jones potential. Instead it is assumed that these interactions are adequately modeled by a harmonic bond
term or constraint (i, i+1) and a harmonic angle term (i, i+2). The first and second neighbors (atoms i+1 and i+2)
are therefore excluded from the Lennard-Jones interaction list of atom i; atoms i+1 and i+2 are called exclusions
of atom i.

i+1 i+3

i i+2 i+4

Fig. 5.34: Atoms along an alkane chain.

For third neighbors, the normal Lennard-Jones repulsion is sometimes still too strong, which means that when
applied to a molecule, the molecule would deform or break due to the internal strain. This is especially the case
for carbon-carbon interactions in a cis-conformation (e.g. cis-butane). Therefore, for some of these interactions,
the Lennard-Jones repulsion has been reduced in the GROMOS force field, which is implemented by keeping a
separate list of 1-4 and normal Lennard-Jones parameters. In other force fields, such as OPLS 103 (page 581), the
standard Lennard-Jones parameters are reduced by a factor of two, but in that case also the dispersion (r−6) and
the Coulomb interaction are scaled. GROMACS can use either of these methods.

Treatment of Cut-offs

GROMACS is quite flexible in treating cut-offs, which implies there can be quite a number of parameters to set.
These parameters are set in the input file for grompp. There are two sort of parameters that affect the cut-off
interactions; you can select which type of interaction to use in each case, and which cut-offs should be used in the
neighbor searching.

For both Coulomb and van der Waals interactions there are interaction type selectors (termed vdwtype and
coulombtype) and two parameters, for a total of six non-bonded interaction parameters. See the User Guide
for a complete description of these parameters.

Table 5.9 lists the parameters for the available functional forms and cut-off modifications. See Pair lists generation
(page 367) for more details about pair-list generation regarding cut-offs.

Table 5.9: Parameters for the different functional forms of the non-
bonded interactions.

Type Parameters

Coulomb Plain cut-off 𝑟𝑐, 𝜀𝑟
Reaction field 𝑟𝑐, 𝜀𝑟𝑓
Shift function 𝑟1, 𝑟𝑐, 𝜀𝑟
Switch function 𝑟1, 𝑟𝑐, 𝜀𝑟

VdW Plain cut-off 𝑟𝑐
Shift function 𝑟1, 𝑟𝑐
Switch function 𝑟1, 𝑟𝑐

5.5. Interaction function and force fields 439

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.5.7 Virtual interaction sites

Virtual interaction sites (called dummy atoms in GROMACS versions before 3.3) can be used in GROMACS in
a number of ways. We write the position of the virtual site r𝑠 as a function of the positions of other particles r𝑖:
r𝑠 = 𝑓(r1..r𝑛). The virtual site, which may carry charge or be involved in other interactions, can now be used in
the force calculation. The force acting on the virtual site must be redistributed over the particles with mass in a
consistent way. A good way to do this can be found in ref. 104 (page 581). We can write the potential energy as:

𝑉 = 𝑉 (r𝑠, r1, . . . , r𝑛) = 𝑉 *(r1, . . . , r𝑛) (5.252)

The force on the particle 𝑖 is then:

F𝑖 = −𝜕𝑉
*

𝜕r𝑖
= −𝜕𝑉

𝜕r𝑖
− 𝜕𝑉

𝜕r𝑠

𝜕r𝑠
𝜕r𝑖

= F𝑑𝑖𝑟𝑒𝑐𝑡
𝑖 + F𝑖 (5.253)

The first term is the normal force. The second term is the force on particle 𝑖 due to the virtual site, which can be
written in tensor notation:

F𝑖 =

⎡⎢⎢⎢⎢⎢⎣
𝜕𝑥𝑠
𝜕𝑥𝑖

𝜕𝑦𝑠
𝜕𝑥𝑖

𝜕𝑧𝑠
𝜕𝑥𝑖

𝜕𝑥𝑠
𝜕𝑦𝑖

𝜕𝑦𝑠
𝜕𝑦𝑖

𝜕𝑧𝑠
𝜕𝑦𝑖

𝜕𝑥𝑠
𝜕𝑧𝑖

𝜕𝑦𝑠
𝜕𝑧𝑖

𝜕𝑧𝑠
𝜕𝑧𝑖

⎤⎥⎥⎥⎥⎥⎦F𝑠 (5.254)

where F𝑠 is the force on the virtual site and 𝑥𝑠, 𝑦𝑠 and 𝑧𝑠 are the coordinates of the virtual site. In this way, the
total force and the total torque are conserved 104 (page 581).

The computation of the virial ((5.26)) is non-trivial when virtual sites are used. Since the virial involves a sum-
mation over all the atoms (rather than virtual sites), the forces must be redistributed from the virtual sites to the
atoms (using (5.254)) before computation of the virial. In some special cases where the forces on the atoms can
be written as a linear combination of the forces on the virtual sites (types 2 and 3 below) there is no difference be-
tween computing the virial before and after the redistribution of forces. However, in the general case redistribution
should be done first.

���
���
���

���
���
���
����
����
����
����

���
���
���
���

3fd

| || | | || |

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

2

a 1−a
a

b

a

1−a

3fad3

θ

db

3out 4fd

ca

2fd

Fig. 5.35: The seven different types of virtual site construction. The constructing atoms are shown as black circles,
the virtual sites in gray.

There are six ways to construct virtual sites from surrounding atoms in GROMACS, which we classify by the
number of constructing atoms. Note that all site types mentioned can be constructed from types 3fd (normal-
ized, in-plane) and 3out (non-normalized, out of plane). However, the amount of computation involved increases
sharply along this list, so we strongly recommended using the first adequate virtual site type that will be sufficient
for a certain purpose. Fig. 5.35 depicts 6 of the available virtual site constructions. The conceptually simplest
construction types are linear combinations:

r𝑠 =

𝑁∑︁
𝑖=1

𝑤𝑖 r𝑖 (5.255)

The force is then redistributed using the same weights:

F𝑖 = 𝑤𝑖 F𝑠 (5.256)

The types of virtual sites supported in GROMACS are given in the list below. Constructing atoms in virtual sites
can be virtual sites themselves, but only if they are higher in the list, i.e. virtual sites can be constructed from
“particles” that are simpler virtual sites. The virtual site velocities are reported, but not used in the integration of
the virtual site positions.

5.5. Interaction function and force fields 440

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

On top of an atom

• This allows giving an atom multiple atom types and with that also assigned multiple, different bonded
interactions. This can especially be of use in free-energy calculations.

• The coordinates of the virtual site equal that of the constructing atom:

r𝑠 = r𝑖 (5.257)

• The force is moved to the constructing atom:

F𝑖 = F𝑠 (5.258)

• The velocity of the virtual site equals that of the constructing atom:

v𝑠 = v𝑖 (5.259)

As a linear combination of two atoms (Fig. 5.35 2)

• The weights are calculated as

𝑤𝑖 = 1− 𝑎 , 𝑤𝑗 = 𝑎 (5.260)

• In this case the virtual site is on the line through atoms 𝑖 and 𝑗.

• The velocity of the virtual site is a linear combination of the velocities of the constructing atoms

On the line through two atoms, with a fixed distance (Fig. 5.35 2fd)

• The position is calculated as:

r𝑠 = r𝑖 + 𝑎
r𝑖𝑗
|r𝑖𝑗 | (5.261)

• In this case the virtual site is on the line through the other two particles at a distance of |𝑎| from 𝑖. The force
on particles 𝑖 and 𝑗 due to the force on the virtual site can be computed as:

F𝑖 = F𝑠 − 𝛾(F𝑖𝑠 − p)

F𝑗 = 𝛾(F𝑠 − p)
where

𝛾 =
𝑎

|r𝑖𝑗 |

p =
r𝑖𝑠 · F𝑠

r𝑖𝑠 · r𝑖𝑠
r𝑖𝑠

(5.262)

• The velocity is calculated as:

v𝑠 = v𝑖 +
𝑎

|r𝑖𝑗 |

(︂
v𝑖𝑗 − r𝑖𝑗

v𝑖𝑗 · r𝑖𝑗
|r𝑖𝑗 |2

)︂
(5.263)

As a linear combination of three atoms (Fig. 5.35 3)

• The weights are calculated as:

𝑤𝑖 = 1− 𝑎− 𝑏 , 𝑤𝑗 = 𝑎 , 𝑤𝑘 = 𝑏 (5.264)

• In this case the virtual site is in the plane of the other three particles.

5.5. Interaction function and force fields 441

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

In the plane of three atoms, with a fixed distance (Fig. 5.35 3fd)

• The position is calculated as:

r𝑠 = r𝑖 + 𝑏
r𝑖𝑗𝑘
|r𝑖𝑗𝑘|

where r𝑖𝑗𝑘 = r𝑖𝑗 + 𝑎r𝑗𝑘 (5.265)

• In this case the virtual site is in the plane of the other three particles at a distance of |𝑏| from 𝑖. The force on
particles 𝑖, 𝑗 and 𝑘 due to the force on the virtual site can be computed as:

F𝑖 = F𝑠 − 𝛾(F𝑖𝑠 − p)

F𝑗 = (1− 𝑎)𝛾(F𝑠 − p)

F𝑘 = 𝑎𝛾(F𝑠 − p)

where
𝛾 =

𝑏

|r𝑖𝑗 + 𝑎r𝑗𝑘|

p =
r𝑖𝑠 · F𝑠

r𝑖𝑠 · r𝑖𝑠
r𝑖𝑠

(5.266)

• The velocity is calculated as:

v𝑠 = v𝑖 +
𝑏

|r𝑖𝑗𝑘|

(︂
ṙ𝑖𝑗𝑘 − r𝑖𝑗𝑘

ṙ𝑖𝑗𝑘 · r𝑖𝑗𝑘
|r𝑖𝑗𝑘|2

)︂
(5.267)

In the plane of three atoms, with a fixed angle and distance (Fig. 5.35 3fad)

• The position is calculated as:

r𝑠 = r𝑖 + 𝑑 cos 𝜃
r𝑖𝑗
|r𝑖𝑗 |

+ 𝑑 sin 𝜃
r⊥
|r⊥|

where r⊥ = r𝑗𝑘 − r𝑖𝑗 · r𝑗𝑘
r𝑖𝑗 · r𝑖𝑗

r𝑖𝑗 (5.268)

• In this case the virtual site is in the plane of the other three particles at a distance of |𝑑| from 𝑖 at an angle of
𝛼 with r𝑖𝑗 . Atom 𝑘 defines the plane and the direction of the angle. Note that in this case 𝑏 and 𝛼 must be
specified, instead of 𝑎 and 𝑏 (see also sec. Virtual sites (page 455)). The force on particles 𝑖, 𝑗 and 𝑘 due to
the force on the virtual site can be computed as (with r⊥ as defined in (5.268)):

F𝑖 = F𝑠 − 𝑑 cos 𝜃

|r𝑖𝑗 |
F1 +

𝑑 sin 𝜃

|r⊥|

(︂
r𝑖𝑗 · r𝑗𝑘
r𝑖𝑗 · r𝑖𝑗

F2 + F3

)︂
F𝑗 =

𝑑 cos 𝜃

|r𝑖𝑗 |
F1 − 𝑑 sin 𝜃

|r⊥|

(︂
F2 +

r𝑖𝑗 · r𝑗𝑘
r𝑖𝑗 · r𝑖𝑗

F2 + F3

)︂
F𝑘 =

𝑑 sin 𝜃

|r⊥|
F2

where F1 = F𝑠 −
r𝑖𝑗 · F𝑠

r𝑖𝑗 · r𝑖𝑗
r𝑖𝑗 , F2 = F1 −

r⊥ · F𝑠

r⊥ · r⊥
r⊥ and F3 =

r𝑖𝑗 · F𝑠

r𝑖𝑗 · r𝑖𝑗
r⊥

(5.269)

• The velocity is calculated as:

v𝑠 = v𝑖 + 𝑑 cos 𝜃
𝛿

𝛿𝑡

r𝑖𝑗
|r𝑖𝑗 |

+ 𝑑 sin 𝜃
𝛿

𝛿𝑡

r⊥
|r⊥|

where

𝛿

𝛿𝑡

r𝑖𝑗
|r𝑖𝑗 |

=
1

|r𝑖𝑗 |

(︂
v𝑖𝑗 − r𝑖𝑗

v𝑖𝑗 · r𝑖𝑗
|r𝑖𝑗 |2

)︂
𝛿

𝛿𝑡

r⊥
|r⊥|

=
1

|r⊥|

(︂
ṙ⊥ − r⊥

ṙ⊥ · r⊥
|r⊥|2

)︂
ṙ⊥ = v𝑗𝑘 − r𝑖𝑗

|r𝑖𝑗 |2(v𝑖𝑗 · r𝑗𝑘 + r𝑖𝑗 · v𝑗𝑘)− (r𝑖𝑗 · r𝑗𝑘)(2r𝑖𝑗 · v𝑖𝑗)

|r𝑖𝑗 |4
− r𝑖𝑗 · r𝑗𝑘

|r𝑖𝑗 |2
v𝑖𝑗

(5.270)

5.5. Interaction function and force fields 442

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

As a non-linear combination of three atoms, out of plane (Fig. 5.35 3out)

• The position is calculated as:

r𝑠 = r𝑖 + 𝑎r𝑖𝑗 + 𝑏r𝑖𝑘 + 𝑐(r𝑖𝑗 × r𝑖𝑘) (5.271)

• This enables the construction of virtual sites out of the plane of the other atoms. The force on particles 𝑖, 𝑗
and 𝑘 due to the force on the virtual site can be computed as:

F𝑗 =

⎡⎢⎣ 𝑎 −𝑐 𝑧𝑖𝑘 𝑐 𝑦𝑖𝑘

𝑐 𝑧𝑖𝑘 𝑎 −𝑐 𝑥𝑖𝑘
−𝑐 𝑦𝑖𝑘 𝑐 𝑥𝑖𝑘 𝑎

⎤⎥⎦F𝑠

F𝑘 =

⎡⎢⎣ 𝑏 𝑐 𝑧𝑖𝑗 −𝑐 𝑦𝑖𝑗
−𝑐 𝑧𝑖𝑗 𝑏 𝑐 𝑥𝑖𝑗

𝑐 𝑦𝑖𝑗 −𝑐 𝑥𝑖𝑗 𝑏

⎤⎥⎦F𝑠

F𝑖 = F𝑠 − F𝑗 − F𝑘

(5.272)

• The velocity is calculated as:

v𝑠 = v𝑖 +
𝑐

|r𝑚|

(︂
ṙ𝑚 − r𝑚

ṙ𝑚 · r𝑚
|r𝑚|2

)︂
(5.273)

From four atoms, with a fixed distance, see separate Fig. 5.36

• This construction is a bit complex, in particular since the previous type (4fd) could be unstable which forced
us to introduce a more elaborate construction:

x

x
x

x

i

j

k

l

sx

rjajbr

Fig. 5.36: The new 4fdn virtual site construction, which is stable even when all constructing atoms are in the same
plane.

• The position is calculated as

r𝑗𝑎 = 𝑎 r𝑖𝑘 − r𝑖𝑗 = 𝑎 (x𝑘 − x𝑖)− (x𝑗 − x𝑖)

r𝑗𝑏 = 𝑏 r𝑖𝑙 − r𝑖𝑗 = 𝑏 (x𝑙 − x𝑖)− (x𝑗 − x𝑖)

r𝑚 = r𝑗𝑎 × r𝑗𝑏

r𝑠 = r𝑖 + 𝑐
r𝑚
|r𝑚|

• The velocity is calculated as:

5.5. Interaction function and force fields 443

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

v𝑠 = v𝑖 +
𝑐

|r𝑚|

(︂
ṙ𝑚 − r𝑚

ṙ𝑚 · r𝑚
|r𝑚|2

)︂
where

ṙ𝑚 = ṙ𝑗𝑎 × r𝑗𝑏 + r𝑗𝑎 × ṙ𝑗𝑏

(5.274)

• In this case the virtual site is at a distance of |𝑐| from 𝑖, while 𝑎 and 𝑏 are parameters. Note that the vectors
r𝑖𝑘 and r𝑖𝑗 are not normalized to save floating-point operations. The force on particles 𝑖, 𝑗, 𝑘 and 𝑙 due
to the force on the virtual site are computed through chain rule derivatives of the construction expression.
This is exact and conserves energy, but it does lead to relatively lengthy expressions that we do not include
here (over 200 floating-point operations). The interested reader can look at the source code in vsite.c.
Fortunately, this vsite type is normally only used for chiral centers such as 𝐶𝛼 atoms in proteins.

The new 4fdn construct is identified with a ‘type’ value of 2 in the topology. The earlier 4fd type is still
supported internally (‘type’ value 1), but it should not be used for new simulations. All current GROMACS
tools will automatically generate type 4fdn instead.

A linear combination of 𝑁 atoms with relative weights 𝑎𝑖

• The weight for atom 𝑖 is:

𝑤𝑖 = 𝑎𝑖

⎛⎝ 𝑁∑︁
𝑗=1

𝑎𝑗

⎞⎠−1

(5.275)

• There are three options for setting the weights:

• center of geometry: equal weights

• center of mass: 𝑎𝑖 is the mass of atom 𝑖; when in free-energy simulations the mass of the atom is changed,
only the mass of the A-state is used for the weight

• center of weights: 𝑎𝑖 is defined by the user

5.5.8 Long Range Electrostatics

Ewald summation

The total electrostatic energy of 𝑁 particles and their periodic images is given by

𝑉 =
𝑓

2

∑︁
𝑛𝑥

∑︁
𝑛𝑦

∑︁
𝑛𝑧*

𝑁∑︁
𝑖

𝑁∑︁
𝑗

𝑞𝑖𝑞𝑗
r𝑖𝑗,n

. (5.276)

(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = n is the box index vector, and the star indicates that terms with 𝑖 = 𝑗 should be omitted when
(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (0, 0, 0). The distance r𝑖𝑗,n is the real distance between the charges and not the minimum-image.
This sum is conditionally convergent, but very slow.

Ewald summation was first introduced as a method to calculate long-range interactions of the periodic images
in crystals 105 (page 581). The idea is to convert the single slowly-converging sum (5.276) into two quickly-

5.5. Interaction function and force fields 444

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

converging terms and a constant term:

𝑉 = 𝑉dir + 𝑉rec + 𝑉0

𝑉dir =
𝑓

2

𝑁∑︁
𝑖,𝑗

∑︁
𝑛𝑥

∑︁
𝑛𝑦

∑︁
𝑛𝑧*

𝑞𝑖𝑞𝑗
erfc(𝛽𝑟𝑖𝑗,n)

𝑟𝑖𝑗,n

𝑉rec =
𝑓

2𝜋𝑉

𝑁∑︁
𝑖,𝑗

𝑞𝑖𝑞𝑗
∑︁
𝑚𝑥

∑︁
𝑚𝑦

∑︁
𝑚𝑧*

exp
(︀
−(𝜋m/𝛽)2 + 2𝜋𝑖m · (r𝑖 − r𝑗)

)︀
m2

𝑉0 = − 𝑓𝛽√
𝜋

𝑁∑︁
𝑖

𝑞2𝑖 ,

(5.277)

where 𝛽 is a parameter that determines the relative weight of the direct and reciprocal sums and m =
(𝑚𝑥,𝑚𝑦,𝑚𝑧). In this way we can use a short cut-off (of the order of 1 nm) in the direct space sum and a
short cut-off in the reciprocal space sum (e.g. 10 wave vectors in each direction). Unfortunately, the computa-
tional cost of the reciprocal part of the sum increases as 𝑁2 (or 𝑁3/2 with a slightly better algorithm) and it is
therefore not realistic for use in large systems.

Using Ewald

Do not use Ewald unless you are absolutely sure this is what you want - for almost all cases the PME method
below will perform much better. If you still want to employ classical Ewald summation enter this in your mdp
(page 488) file, if the side of your box is about 3 nm:

coulombtype = Ewald
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.6
ewald-rtol = 1e-5

The ratio of the box dimensions and the fourierspacing parameter determines the highest magnitude of wave
vectors𝑚𝑥,𝑚𝑦,𝑚𝑧 to use in each direction. With a 3-nm cubic box this example would use 11 wave vectors (from
−5 to 5) in each direction. The ewald-rtol parameter is the relative strength of the electrostatic interaction at
the cut-off. Decreasing this gives you a more accurate direct sum, but a less accurate reciprocal sum.

PME

Particle-mesh Ewald is a method proposed by Tom Darden 14 (page 577) to improve the performance of the
reciprocal sum. Instead of directly summing wave vectors, the charges are assigned to a grid using interpolation.
The implementation in GROMACS uses cardinal B-spline interpolation 15 (page 577), which is referred to as
smooth PME (SPME). The grid is then Fourier transformed with a 3D FFT algorithm and the reciprocal energy
term obtained by a single sum over the grid in k-space.

The potential at the grid points is calculated by inverse transformation, and by using the interpolation factors we
get the forces on each atom.

The PME algorithm scales as 𝑁 log(𝑁), and is substantially faster than ordinary Ewald summation on medium to
large systems. On very small systems it might still be better to use Ewald to avoid the overhead in setting up grids
and transforms. For the parallelization of PME see the section on MPMD PME (Multiple-Program, Multiple-Data
PME parallelization (page 403)).

With the Verlet cut-off scheme, the PME direct space potential is shifted by a constant such that the potential is
zero at the cut-off. This shift is small and since the net system charge is close to zero, the total shift is very small,
unlike in the case of the Lennard-Jones potential where all shifts add up. We apply the shift anyhow, such that the
potential is the exact integral of the force.

5.5. Interaction function and force fields 445

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Using PME

As an example for using Particle-mesh Ewald summation in GROMACS, specify the following lines in your mdp
(page 488) file:

coulombtype = PME
rvdw = 0.9
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme-order = 4
ewald-rtol = 1e-5

In this case the fourierspacing parameter determines the maximum spacing for the FFT grid (i.e. minimum
number of grid points), and pme-order controls the interpolation order. Using fourth-order (cubic) interpolation
and this spacing should give electrostatic energies accurate to about 5 · 10−3. Since the Lennard-Jones energies
are not this accurate it might even be possible to increase this spacing slightly.

Pressure scaling works with PME, but be aware of the fact that anisotropic scaling can introduce artificial ordering
in some systems.

P3M-AD

The Particle-Particle Particle-Mesh methods of Hockney & Eastwood can also be applied in GROMACS for the
treatment of long range electrostatic interactions 106 (page 581). Although the P3M method was the first efficient
long-range electrostatics method for molecular simulation, the smooth PME (SPME) method has largely replaced
P3M as the method of choice in atomistic simulations. One performance disadvantage of the original P3M method
was that it required 3 3D-FFT back transforms to obtain the forces on the particles. But this is not required for P3M
and the forces can be derived through analytical differentiation of the potential, as done in PME. The resulting
method is termed P3M-AD. The only remaining difference between P3M-AD and PME is the optimization of the
lattice Green influence function for error minimization that P3M uses. However, in 2012 it has been shown that
the SPME influence function can be modified to obtain P3M 107 (page 581). This means that the advantage of
error minimization in P3M-AD can be used at the same computational cost and with the same code as PME, just
by adding a few lines to modify the influence function. However, at optimal parameter setting the effect of error
minimization in P3M-AD is less than 10%. P3M-AD does show large accuracy gains with interlaced (also known
as staggered) grids, but that is not supported in GROMACS (yet).

P3M is used in GROMACS with exactly the same options as used with PME by selecting the electrostatics type:

coulombtype = P3M-AD

Optimizing Fourier transforms and PME calculations

It is recommended to optimize the parameters for calculation of electrostatic interaction such as PME grid dimen-
sions and cut-off radii. This is particularly relevant to do before launching long production runs.

gmx mdrun (page 215) will automatically do a lot of PME optimization, and GROMACS also includes a special
tool, gmx tune_pme (page 286), which automates the process of selecting the optimal number of PME-only ranks.

5.5. Interaction function and force fields 446

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.5.9 Long Range Van der Waals interactions

Dispersion correction

In this section, we derive long-range corrections due to the use of a cut-off for Lennard-Jones or Buckingham
interactions. We assume that the cut-off is so long that the repulsion term can safely be neglected, and therefore
only the dispersion term is taken into account. Due to the nature of the dispersion interaction (we are truncating
a potential proportional to −𝑟−6), energy and pressure corrections are both negative. While the energy correc-
tion is usually small, it may be important for free energy calculations where differences between two different
Hamiltonians are considered. In contrast, the pressure correction is very large and can not be neglected under any
circumstances where a correct pressure is required, especially for any NPT simulations. Although it is, in princi-
ple, possible to parameterize a force field such that the pressure is close to the desired experimental value without
correction, such a method makes the parameterization dependent on the cut-off and is therefore undesirable.

Energy

The long-range contribution of the dispersion interaction to the virial can be derived analytically, if we assume a
homogeneous system beyond the cut-off distance 𝑟𝑐. The dispersion energy between two particles is written as:

𝑉 (𝑟𝑖𝑗) = −𝐶6 𝑟𝑖𝑗
−6 (5.278)

and the corresponding force is:

F𝑖𝑗 = −6𝐶6 𝑟
−8
𝑖𝑗 r𝑖𝑗 (5.279)

In a periodic system it is not easy to calculate the full potentials, so usually a cut-off is applied, which can be
abrupt or smooth. We will call the potential and force with cut-off 𝑉𝑐 and F𝑐. The long-range contribution to the
dispersion energy in a system with 𝑁 particles and particle density 𝜌 = 𝑁/𝑉 is:

𝑉𝑙𝑟 =
1

2
𝑁𝜌

∫︁ ∞

0

4𝜋𝑟2𝑔(𝑟) (𝑉 (𝑟)− 𝑉𝑐(𝑟)) d𝑟 (5.280)

We will integrate this for the shift function, which is the most general form of van der Waals interaction available
in GROMACS. The shift function has a constant difference 𝑆 from 0 to 𝑟1 and is 0 beyond the cut-off distance 𝑟𝑐.
We can integrate (5.280), assuming that the density in the sphere within 𝑟1 is equal to the global density and the
radial distribution function 𝑔(𝑟) is 1 beyond 𝑟1:

𝑉𝑙𝑟 =
1

2
𝑁

(︂
𝜌

∫︁ 𝑟1

0

4𝜋𝑟2𝑔(𝑟)𝐶6 𝑆 d𝑟 + 𝜌

∫︁ 𝑟𝑐

𝑟1

4𝜋𝑟2 (𝑉 (𝑟)− 𝑉𝑐(𝑟)) d𝑟 + 𝜌

∫︁ ∞

𝑟𝑐

4𝜋𝑟2𝑉 (𝑟) d𝑟

)︂
=

1

2
𝑁

(︂(︂
4

3
𝜋𝜌𝑟31 − 1

)︂
𝐶6 𝑆 + 𝜌

∫︁ 𝑟𝑐

𝑟1

4𝜋𝑟2 (𝑉 (𝑟)− 𝑉𝑐(𝑟)) d𝑟 −
4

3
𝜋𝑁𝜌𝐶6 𝑟

−3
𝑐

)︂ (5.281)

where the term −1 corrects for the self-interaction. For a plain cut-off we only need to assume that 𝑔(𝑟) is 1
beyond 𝑟𝑐 and the correction reduces to 108 (page 581):

𝑉𝑙𝑟 = −2

3
𝜋𝑁𝜌𝐶6 𝑟

−3
𝑐 (5.282)

If we consider, for example, a box of pure water, simulated with a cut-off of 0.9 nm and a density of 1 g cm−3 this
correction is −0.75 kJ mol−1 per molecule.

For a homogeneous mixture we need to define an average dispersion constant:

⟨𝐶6⟩ =
2

𝑁(𝑁 − 1)

𝑁∑︁
𝑖

𝑁∑︁
𝑗>𝑖

𝐶6(𝑖, 𝑗) (5.283)

In GROMACS, excluded pairs of atoms do not contribute to the average.

In the case of inhomogeneous simulation systems, e.g. a system with a lipid interface, the energy correction can
be applied if ⟨𝐶6⟩ for both components is comparable.

5.5. Interaction function and force fields 447

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Virial and pressure

The scalar virial of the system due to the dispersion interaction between two particles 𝑖 and 𝑗 is given by:

Ξ = −1

2
r𝑖𝑗 · F𝑖𝑗 = 3𝐶6 𝑟

−6
𝑖𝑗 (5.284)

The pressure is given by:

𝑃 =
2

3𝑉
(𝐸𝑘𝑖𝑛 − Ξ) (5.285)

The long-range correction to the virial is given by:

Ξ𝑙𝑟 =
1

2
𝑁𝜌

∫︁ ∞

0

4𝜋𝑟2𝑔(𝑟)(Ξ− Ξ𝑐) d𝑟 (5.286)

We can again integrate the long-range contribution to the virial assuming 𝑔(𝑟) is 1 beyond 𝑟1:

Ξ𝑙𝑟 =
1

2
𝑁𝜌

(︂∫︁ 𝑟𝑐

𝑟1

4𝜋𝑟2(Ξ− Ξ𝑐) d𝑟 +

∫︁ ∞

𝑟𝑐

4𝜋𝑟23𝐶6 𝑟𝑖𝑗
−6 d𝑟

)︂
=

1

2
𝑁𝜌

(︂∫︁ 𝑟𝑐

𝑟1

4𝜋𝑟2(Ξ− Ξ𝑐) d𝑟 + 4𝜋𝐶6 𝑟
−3
𝑐

)︂
For a plain cut-off the correction to the pressure is 108 (page 581):

𝑃𝑙𝑟 = −4

3
𝜋𝐶6 𝜌

2𝑟−3
𝑐 (5.287)

Using the same example of a water box, the correction to the virial is 0.75 kJ mol−1 per molecule, the correspond-
ing correction to the pressure for SPC water is approximately −280 bar.

For homogeneous mixtures, we can again use the average dispersion constant ⟨𝐶6⟩ ((5.283)):

𝑃𝑙𝑟 = −4

3
𝜋⟨𝐶6⟩𝜌2𝑟−3

𝑐 (5.288)

For inhomogeneous systems, (5.288) can be applied under the same restriction as holds for the energy (see sec. En-
ergy (page 447)).

Lennard-Jones PME

In order to treat systems, using Lennard-Jones potentials, that are non-homogeneous outside of the cut-off distance,
we can instead use the Particle-mesh Ewald method as discussed for electrostatics above. In this case the modified
Ewald equations become

𝑉 = 𝑉dir + 𝑉rec + 𝑉0

𝑉dir = −1

2

𝑁∑︁
𝑖,𝑗

∑︁
𝑛𝑥

∑︁
𝑛𝑦

∑︁
𝑛𝑧*

𝐶𝑖𝑗
6 𝑔(𝛽𝑟𝑖𝑗,n)

𝑟𝑖𝑗,n6

(5.289)

𝑉rec =
𝜋

3
2 𝛽3

2𝑉

∑︁
𝑚𝑥

∑︁
𝑚𝑦

∑︁
𝑚𝑧*

𝑓(𝜋|m|/𝛽)×
𝑁∑︁
𝑖,𝑗

𝐶𝑖𝑗
6 exp [−2𝜋𝑖m · (ri − rj)]

𝑉0 = −𝛽
6

12

𝑁∑︁
𝑖

𝐶𝑖𝑖
6

(5.290)

where m = (𝑚𝑥,𝑚𝑦,𝑚𝑧), 𝛽 is the parameter determining the weight between direct and reciprocal space, and
𝐶𝑖𝑗

6 is the combined dispersion parameter for particle 𝑖 and 𝑗. The star indicates that terms with 𝑖 = 𝑗 should

5.5. Interaction function and force fields 448

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

be omitted when ((𝑛𝑥, 𝑛𝑦, 𝑛𝑧) = (0, 0, 0)), and r𝑖𝑗,n is the real distance between the particles. Following the
derivation by Essmann 15 (page 577), the functions 𝑓 and 𝑔 introduced above are defined as

𝑓(𝑥) = 1/3
[︀
(1− 2𝑥2)exp(−𝑥2) + 2𝑥3

√
𝜋 erfc(𝑥)

]︀
𝑔(𝑥) = exp(−𝑥2)(1 + 𝑥2 +

𝑥4

2
).

(5.291)

The above methodology works fine as long as the dispersion parameters can be combined geometrically ((5.124))
in the same way as the charges for electrostatics

𝐶𝑖𝑗
6,geom =

(︁
𝐶𝑖𝑖

6 𝐶
𝑗𝑗
6

)︁1/2
(5.292)

For Lorentz-Berthelot combination rules ((5.125)), the reciprocal part of this sum has to be calculated seven times
due to the splitting of the dispersion parameter according to

𝐶𝑖𝑗
6,L−B = (𝜎𝑖 + 𝜎𝑗)

6 =

6∑︁
𝑛=0

𝑃𝑛𝜎
𝑛
𝑖 𝜎

(6−𝑛)
𝑗 , (5.293)

for 𝑃𝑛 the Pascal triangle coefficients. This introduces a non-negligible cost to the reciprocal part, requiring
seven separate FFTs, and therefore this has been the limiting factor in previous attempts to implement LJ-PME. A
solution to this problem is to use geometrical combination rules in order to calculate an approximate interaction
parameter for the reciprocal part of the potential, yielding a total interaction of

𝑉 (𝑟 < 𝑟𝑐) = 𝐶dir
6 𝑔(𝛽𝑟)𝑟−6⏟ ⏞
Direct space

+𝐶recip
6,geom[1− 𝑔(𝛽𝑟)]𝑟−6⏟ ⏞

Reciprocal space

= 𝐶recip
6,geom𝑟

−6 +
(︁
𝐶dir

6 − 𝐶recip
6,geom

)︁
𝑔(𝛽𝑟)𝑟−6

𝑉 (𝑟 > 𝑟𝑐) = 𝐶recip
6,geom[1− 𝑔(𝛽𝑟)]𝑟−6⏟ ⏞

Reciprocal space

.

This will preserve a well-defined Hamiltonian and significantly increase the performance of the simulations. The
approximation does introduce some errors, but since the difference is located in the interactions calculated in
reciprocal space, the effect will be very small compared to the total interaction energy. In a simulation of a lipid
bilayer, using a cut-off of 1.0 nm, the relative error in total dispersion energy was below 0.5%. A more thorough
discussion of this can be found in 109 (page 581).

In GROMACS we now perform the proper calculation of this interaction by subtracting, from the direct-space
interactions, the contribution made by the approximate potential that is used in the reciprocal part

𝑉dir = 𝐶dir
6 𝑟−6 − 𝐶recip

6 [1− 𝑔(𝛽𝑟)]𝑟−6. (5.294)

This potential will reduce to the expression in (5.289) when 𝐶dir
6 = 𝐶recip

6 , and the total interaction is given by

𝑉 (𝑟 < 𝑟𝑐) = 𝐶dir
6 𝑟−6 − 𝐶recip

6 [1− 𝑔(𝛽𝑟)]𝑟−6⏟ ⏞
Direct space

+𝐶recip
6 [1− 𝑔(𝛽𝑟)]𝑟−6⏟ ⏞

Reciprocal space

= 𝐶dir
6 𝑟−6

𝑉 (𝑟 > 𝑟𝑐) = 𝐶recip
6 [1− 𝑔(𝛽𝑟)]𝑟−6. (5.295)

For the case when 𝐶dir
6 ̸= 𝐶recip

6 this will retain an unmodified LJ force up to the cut-off, and the error is an order
of magnitude smaller than in simulations where the direct-space interactions do not account for the approximation
used in reciprocal space. When using a VdW interaction modifier of potential-shift, the constant(︁

−𝐶dir
6 + 𝐶recip

6 [1− 𝑔(𝛽𝑟𝑐)]
)︁
𝑟−6
𝑐 (5.296)

is added to (5.295) in order to ensure that the potential is continuous at the cutoff. Note that, in the same way as
(5.294), this degenerates into the expected −𝐶6𝑔(𝛽𝑟𝑐)𝑟

−6
𝑐 when 𝐶dir

6 = 𝐶recip
6 . In addition to this, a long-range

dispersion correction can be applied to correct for the approximation using a combination rule in reciprocal space.
This correction assumes, as for the cut-off LJ potential, a uniform particle distribution. But since the error of the
combination rule approximation is very small this long-range correction is not necessary in most cases. Also note
that this homogenous correction does not correct the surface tension, which is an inhomogeneous property.

5.5. Interaction function and force fields 449

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Using LJ-PME

As an example for using Particle-mesh Ewald summation for Lennard-Jones interactions in GROMACS, specify
the following lines in your mdp (page 488) file:

vdwtype = PME
rvdw = 0.9
vdw-modifier = Potential-Shift
rlist = 0.9
rcoulomb = 0.9
fourierspacing = 0.12
pme-order = 4
ewald-rtol-lj = 0.001
lj-pme-comb-rule = geometric

The same Fourier grid and interpolation order are used if both LJ-PME and electrostatic PME are active, so the
settings for fourierspacing and pme-order are common to both. ewald-rtol-lj controls the splitting
between direct and reciprocal space in the same way as ewald-rtol. In addition to this, the combination rule
to be used in reciprocal space is determined by lj-pme-comb-rule. If the current force field uses Lorentz-
Berthelot combination rules, it is possible to set lj-pme-comb-rule = geometric in order to gain a sig-
nificant increase in performance for a small loss in accuracy. The details of this approximation can be found in the
section above.

Note that the use of a complete long-range dispersion correction means that as with Coulomb PME, rvdw is
now a free parameter in the method, rather than being necessarily restricted by the force-field parameterization
scheme. Thus it is now possible to optimize the cutoff, spacing, order and tolerance terms for accuracy and best
performance.

Naturally, the use of LJ-PME rather than LJ cut-off adds computation and communication done for the reciprocal-
space part, so for best performance in balancing the load of parallel simulations using PME-only ranks, more such
ranks should be used. It may be possible to improve upon the automatic load-balancing used by mdrun (page 215).

5.5.10 Force field

A force field is built up from two distinct components:

• The set of equations (called the potential functions) used to generate the potential energies and their deriva-
tives, the forces. These are described in detail in the previous chapter.

• The parameters used in this set of equations. These are not given in this manual, but in the data files
corresponding to your GROMACS distribution.

Within one set of equations various sets of parameters can be used. Care must be taken that the combination of
equations and parameters form a consistent set. It is in general dangerous to make ad hoc changes in a subset
of parameters, because the various contributions to the total force are usually interdependent. This means in
principle that every change should be documented, verified by comparison to experimental data and published in
a peer-reviewed journal before it can be used.

GROMACS 2026.0-dev includes several force fields, and additional ones are available on the website. If you do
not know which one to select we recommend GROMOS-96 for united-atom setups and OPLS-AA/L for all-atom
parameters. That said, we describe the available options in some detail.

5.5. Interaction function and force fields 450

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMOS-96

. Warning

The GROMOS force fields have been parametrized with a physically incorrect multiple-time-stepping scheme
for a twin-range cut-off. When used with a single-range cut-off (or a correct Trotter multiple-time-stepping
scheme), physical properties, such as the density, might differ from the intended values. Since there are
researchers actively working on validating GROMOS with modern integrators we have not yet removed the
GROMOS force fields, but you should be aware of these issues and check if molecules in your system are
affected before proceeding. Further information is available in GitLab Issue 2884 , and a longer explanation of
our decision to remove physically incorrect algorithms can be found at DOI:10.26434/chemrxiv.11474583.v1
.

GROMACS supports the GROMOS-96 force fields 77 (page 580). All parameters for the 43A1, 43A2 (devel-
opment, improved alkane dihedrals), 45A3, 53A5, and 53A6 parameter sets are included. All standard building
blocks are included and topologies can be built automatically by pdb2gmx (page 235).

The GROMOS-96 force field is a further development of the GROMOS-87 force field. It has improvements
over the GROMOS-87 force field for proteins and small molecules. Note that the sugar parameters present in
53A6 do correspond to those published in 2004110 (page 581), which are different from those present in 45A4,
which is not included in GROMACS at this time. The 45A4 parameter set corresponds to a later revision of these
parameters. The GROMOS-96 force field is not, however, recommended for use with long alkanes and lipids. The
GROMOS-96 force field differs from the GROMOS-87 force field in a few respects:

• the force field parameters

• the parameters for the bonded interactions are not linked to atom types

• a fourth power bond stretching potential (Fourth power potential (page 411))

• an angle potential based on the cosine of the angle (Cosine based angle potential (page 413))

There are two differences in implementation between GROMACS and GROMOS-96 which can lead to slightly
different results when simulating the same system with both packages:

• in GROMOS-96 neighbor searching for solvents is performed on the first atom of the solvent molecule.
This is not implemented in GROMACS, but the difference with searching by centers of charge groups is
very small

• the virial in GROMOS-96 is molecule-based. This is not implemented in GROMACS, which uses atomic
virials

The GROMOS-96 force field was parameterized with a Lennard-Jones cut-off of 1.4 nm, so be sure to use a
Lennard-Jones cut-off (rvdw) of at least 1.4. A larger cut-off is possible because the Lennard-Jones potential and
forces are almost zero beyond 1.4 nm.

GROMOS-96 files

GROMACS can read and write GROMOS-96 coordinate and trajectory files. These files should have the extension
g96 (page 486). Such a file can be a GROMOS-96 initial/final configuration file, a coordinate trajectory file, or
a combination of both. The file is fixed format; all floats are written as 15.9, and as such, files can get huge.
GROMACS supports the following data blocks in the given order:

• Header block:

TITLE (mandatory)

• Frame blocks:

5.5. Interaction function and force fields 451

https://gitlab.com/gromacs/gromacs/-/issues/2884
https://doi.org/10.26434/chemrxiv.11474583.v1

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

TIMESTEP (optional)
POSITION/POSITIONRED (mandatory)
VELOCITY/VELOCITYRED (optional)
BOX (optional)

See the GROMOS-96 manual 77 (page 580) for a complete description of the blocks. Note that all GROMACS
programs can read compressed (.Z) or gzipped (.gz) files.

OPLS/AA

AMBER

GROMACS provides native support for the following AMBER force fields:

• AMBER94 111 (page 581)

• AMBER96 112 (page 581)

• AMBER99 113 (page 581)

• AMBER99SB 114 (page 582)

• AMBER99SB-ILDN 115 (page 582)

• AMBER03 116 (page 582)

• AMBERGS 117 (page 582)

AMBER19SB and newer versions provide support for amino-acid-specific energy correction maps (CMAPs).
When these force fields are used with pdb2gmx (page 235), the default option is to enable CMAPs. If that is not
the desired behavior, they can be disabled with -nocmap parameters.

CMAP types are specified using the following format:

[cmaptypes]
C-* N-GLY XC-GLY C-GLY N-* 1 24 24\
3.44619344 4.59474328 4.73235504 5.80145072 8.84401368 ...

where:

• first five columns are pairs of atom and residue types,

• sixth coulumn is function type (presently only 1 is supported),

• seventh and eighth coulumns are grid size in x and y dimensions,

• following grid size x * grid size y values constitute the CMAP grid.

CHARMM

GROMACS supports the CHARMM force field for proteins 118 (page 582), 119 (page 582), lipids 120 (page 582)
and nucleic acids 121 (page 582), 122 (page 582). The protein parameters (and to some extent the lipid and
nucleic acid parameters) were thoroughly tested – both by comparing potential energies between the port and the
standard parameter set in the CHARMM molecular simulation package, as well by how the protein force field
behaves together with GROMACS-specific techniques such as virtual sites (enabling long time steps) recently
implemented 123 (page 582) – and the details and results are presented in the paper by Bjelkmar et al. 124
(page 582). The nucleic acid parameters, as well as the ones for HEME, were converted and tested by Michel
Cuendet.

When selecting the CHARMM force field in pdb2gmx (page 235) the default option is to use CMAP (for tor-
sional correction map). To exclude CMAP, use -nocmap. The basic form of the CMAP term implemented in
GROMACS is a function of the 𝜑 and 𝜓 backbone torsion angles. This term is defined in the rtp file by a [
cmap] statement at the end of each residue supporting CMAP. The following five atom names define the two

5.5. Interaction function and force fields 452

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

torsional angles. Atoms 1-4 define 𝜑, and atoms 2-5 define 𝜓. The corresponding atom types are then matched to
the correct CMAP type in the cmap.itp file that contains the correction maps.

A port of the CHARMM36 force field for use with GROMACS is also available at the MacKerell lab webpage.

For branched polymers or other topologies not supported by pdb2gmx (page 235), it is possible to use Topo-
Tools 125 (page 582) to generate a GROMACS top file.

Coarse-grained force fields

Coarse-graining is a systematic way of reducing the number of degrees of freedom representing a system of
interest. To achieve this, typically whole groups of atoms are represented by single beads and the coarse-grained
force fields describes their effective interactions. Depending on the choice of parameterization, the functional
form of such an interaction can be complicated and often tabulated potentials are used.

Coarse-grained models are designed to reproduce certain properties of a reference system. This can be either a full
atomistic model or even experimental data. Depending on the properties to reproduce there are different methods
to derive such force fields. An incomplete list of methods is given below:

• Conserving free energies

– Simplex method

– MARTINI force field (see next section)

• Conserving distributions (like the radial distribution function), so-called structure-based coarse-graining

– (iterative) Boltzmann inversion

– Inverse Monte Carlo

• Conversing forces

– Force matching

Note that coarse-grained potentials are state dependent (e.g. temperature, density,. . .) and should be re-
parametrized depending on the system of interest and the simulation conditions. This can for example be done
using the Versatile Object-oriented Toolkit for Coarse-Graining Applications (VOTCA) (???). The package was
designed to assists in systematic coarse-graining, provides implementations for most of the algorithms mentioned
above and has a well tested interface to GROMACS. It is available as open source and further information can be
found at www.votca.org.

MARTINI

The MARTINI force field is a coarse-grain parameter set that allows for the construction of many systems, includ-
ing proteins and membranes.

PLUM

The PLUM force field 126 (page 582) is an example of a solvent-free protein-membrane model for which the
membrane was derived from structure-based coarse-graining 127 (page 582). A GROMACS implementation can
be found at github.com/tbereau/plumx.

5.5. Interaction function and force fields 453

http://mackerell.umaryland.edu/charmm_ff.shtml#gromacs
http://www.votca.org
https://cgmartini.nl
https://github.com/tbereau/plumx

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.6 Topologies

GROMACS must know on which atoms and combinations of atoms the various contributions to the potential func-
tions (see chapter Interaction function and force fields (page 405)) must act. It must also know what parameters
must be applied to the various functions. All this is described in the topology file top (page 492), which lists the
constant attributes of each atom. There are many more atom types than elements, but only atom types present in
biological systems are parameterized in the force field, plus some metals, ions and silicon. The bonded and special
interactions are determined by fixed lists that are included in the topology file. Certain non-bonded interactions
must be excluded (first and second neighbors), as these are already treated in bonded interactions. In addition,
there are dynamic attributes of atoms - their positions, velocities and forces. These do not strictly belong to the
molecular topology, and are stored in the coordinate file gro (page 486) (positions and velocities), or trajectory file
trr (page 494) (positions, velocities, forces).

This chapter describes the setup of the topology file, the top (page 492) file and the database files: what the
parameters stand for and how/where to change them if needed. First, all file formats are explained. Section
Force-field files (page 481) describes the organization of the files in each force field.

Note: if you construct your own topologies, we encourage you to upload them to our topology archive at our
webpage! Just imagine how thankful you would have been if your topology had been available there before you
started. The same goes for new force fields or modified versions of the standard force fields - contribute them to
the force field archive!

5.6.1 Particle type

In GROMACS, there are three types of particles , see Table 5.10. Only regular atoms and virtual interaction sites
are used in GROMACS; shells are necessary for polarizable models like the Shell-Water models 45 (page 579).

Table 5.10: Particle types in GROMACS

Particle Symbol

atom A
shell S
virtual site V (or D)

Atom types

Each force field defines a set of atom types, which have a characteristic name or number, and mass (in a.m.u.).
These listings are found in the atomtypes.atp file (atp (page 485) = atom type parameter file). Therefore,
it is in this file that you can begin to change and/or add an atom type. This file is only used by gmx pdb2gmx
(page 235). A sample from the gromos43a1.ff force field is listed below.

| O 15.99940 ; carbonyl oxygen (C=O)
| OM 15.99940 ; carboxyl oxygen (CO-)
| OA 15.99940 ; hydroxyl, sugar or ester oxygen
| OW 15.99940 ; water oxygen
| N 14.00670 ; peptide nitrogen (N or NH)
| NT 14.00670 ; terminal nitrogen (NH2)
| NL 14.00670 ; terminal nitrogen (NH3)
| NR 14.00670 ; aromatic nitrogen
| NZ 14.00670 ; Arg NH (NH2)
| NE 14.00670 ; Arg NE (NH)
| C 12.01100 ; bare carbon
|CH1 13.01900 ; aliphatic or sugar CH-group
|CH2 14.02700 ; aliphatic or sugar CH2-group
|CH3 15.03500 ; aliphatic CH3-group

5.6. Topologies 454

http://www.gromacs.org

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Note: GROMACS makes use of the atom types as a name, not as a number (as e.g. in GROMOS).

The interaction parameters for the atom types are set through the [atomtypes] section in the topology file,
often obtained through including a force field parameter file. The atomtypes listed in the atomtypes.atp file
and the [atomtypes] section are non-bonded atom types. These are used to look up the non-bonded Van
der Waals interaction parameters. Some force fields use these same atom types to look up parameters for bonded
interactions. Other force fields additionally use bonded atom types to look up parameters for bonded interactions.
This is because there are often far fewer bonded atom types needed than non-bonded atom types. In this case, the
set of parameters for each non-bonded atom type includes a bonded atom type. Another optional parameter for
non-bonded atom types is the atomic number. This is only used in hybrid QM/MM simulations.

Virtual sites

Some force fields use virtual interaction sites (interaction sites that are constructed from other particle positions)
on which certain interactions are located (e.g. on benzene rings, to reproduce the correct quadrupole). This is
described in sec. Virtual interaction sites (page 440).

To make virtual sites in your system, you should include a section [virtual_sites?] (for backward
compatibility the old name [dummies?] can also be used) in your topology file, where the ? stands for the
number constructing particles for the virtual site. This will be 2 for type 2, 3 for types 3, 3fd, 3fad and 3out and
4 for type 4fdn. The last of these replace an older 4fd type (with the ‘type’ value 1) that could occasionally be
unstable; while it is still supported internally in the code, the old 4fd type should not be used in new input files.
The different types are explained in sec. Virtual interaction sites (page 440).

Parameters for type 1 should look like this:

[virtual_sites1]
; Site from funct
5 1 1

for type 2 like this:

[virtual_sites2]
; Site from funct a
5 1 2 1 0.7439756

for type 2fd like this:

[virtual_sites2]
; Site from funct d
5 1 2 2 -0.105

for type 3 like this:

[virtual_sites3]
; Site from funct a b
5 1 2 3 1 0.7439756 0.128012

for type 3fd like this:

[virtual_sites3]
; Site from funct a d
5 1 2 3 2 0.5 -0.105

for type 3fad like this:

[virtual_sites3]
; Site from funct theta d
5 1 2 3 3 120 0.5

5.6. Topologies 455

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

for type 3out like this:

[virtual_sites3]
; Site from funct a b c
5 1 2 3 4 -0.4 -0.4 6.9281

for type 4fdn like this:

[virtual_sites4]
; Site from funct a b c
5 1 2 3 4 2 1.0 0.9 0.105

This will result in the construction of a virtual site, number 5 (first column Site), based on the positions of
the atoms whose indices are 1 and 2 or 1, 2 and 3 or 1, 2, 3 and 4 (next two, three or four columns from)
following the rules determined by the function number (next column funct) with the parameters specified (last
one, two or three columns a b . .). Obviously, the atom numbers (including virtual site number) depend on
the molecule. It may be instructive to study the topologies for TIP4P or TIP5P water models that are included
with the GROMACS distribution.

Note that if any constant bonded interactions are defined between virtual sites and/or normal atoms, they will be
removed by grompp (page 190) (unless the option -normvsbds is used). This removal of bonded interactions is
done after generating exclusions, as the generation of exclusions is based on “chemically” bonded interactions.

Virtual sites can be constructed in a more generic way using basic geometric parameters. The directive that can be
used is [virtual_sitesn]. Required parameters are listed in Table 5.14. An example entry for defining a
virtual site at the center of geometry of a given set of atoms might be:

[virtual_sitesn]
; Site funct from
5 1 1 2 3 4

5.6.2 Parameter files

Atoms

The static properties (see Table 5.11) assigned to the atom types are assigned based on data in several places. The
mass is listed in atomtypes.atp (see Atom types (page 454)), whereas the charge is listed in rtp (page 491)
(rtp (page 491) = residue topology parameter file, see rtp (page 491)). This implies that the charges are only
defined in the building blocks of amino acids, nucleic acids or otherwise, as defined by the user. When generating
a topology (page 492) using the pdb2gmx (page 235) program, the information from these files is combined.

Table 5.11: Static atom type properties in GROMACS

Property Symbol Unit

Type • •

Mass m a.m.u.
Charge q electron
epsilon 𝜖 kJ/mol
sigma 𝜎 nm

5.6. Topologies 456

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Non-bonded parameters

The non-bonded parameters consist of the van der Waals parameters V (c6 or 𝜎, depending on the combination
rule, see The Lennard-Jones interaction (page 405)) and W (c12 or 𝜖), as listed in the file ffnonbonded.
itp, where ptype is the particle type (see Table 5.10). As with the bonded parameters, entries in [*type]
directives are applied to their counterparts in the topology file. Missing parameters generate warnings, except as
noted below in section Intramolecular pair interactions (page 459).

[atomtypes]
;name at.num mass charge ptype V(c6) W(c12)

O 8 15.99940 0.000 A 0.22617E-02 0.74158E-06
OM 8 15.99940 0.000 A 0.22617E-02 0.74158E-06
.....

[nonbond_params]
; i j func V(c6) W(c12)

O O 1 0.22617E-02 0.74158E-06
O OA 1 0.22617E-02 0.13807E-05
.....

Note that most of the included force fields also include the at.num. column, but this same information is implied
in the OPLS-AA bond_type column. The interpretation of the parameters V and W depends on the combination
rule that was chosen in the [defaults] section of the topology file (see Topology file (page 468)):

for combination rule 1 :
V𝑖𝑖 = 𝐶

(6)
𝑖 = 4 𝜖𝑖𝜎

6
𝑖 [kJ mol−1 nm6]

W𝑖𝑖 = 𝐶
(12)
𝑖 = 4 𝜖𝑖𝜎

12
𝑖 [kJ mol−1 nm12]

for combination rules 2 and 3 :
V𝑖𝑖 = 𝜎𝑖 [nm]
W𝑖𝑖 = 𝜖𝑖 [kJ mol−1]

(5.297)

Some or all combinations for different atom types can be given in the [nonbond_params] section, again
with parameters V and W as defined above. Any combination that is not given will be computed from the param-
eters for the corresponding atom types, according to the combination rule:

for combination rules 1 and 3 :
𝐶

(6)
𝑖𝑗 =

(︁
𝐶

(6)
𝑖 𝐶

(6)
𝑗

)︁ 1
2

𝐶
(12)
𝑖𝑗 =

(︁
𝐶

(12)
𝑖 𝐶

(12)
𝑗

)︁ 1
2

for combination rule 2 :
𝜎𝑖𝑗 = 1

2 (𝜎𝑖 + 𝜎𝑗)
𝜖𝑖𝑗 =

√
𝜖𝑖 𝜖𝑗

(5.298)

When 𝜎 and 𝜖 need to be supplied (rules 2 and 3), it would seem it is impossible to have a non-zero 𝐶12 combined
with a zero 𝐶6 parameter. However, providing a negative 𝜎 will do exactly that, such that 𝐶6 is set to zero and
𝐶12 is calculated normally. This situation represents a special case in reading the value of 𝜎, and nothing more.

There is only one set of combination rules for Buckingham potentials:

𝐴𝑖𝑗 = (𝐴𝑖𝑖𝐴𝑗𝑗)
1/2

𝐵𝑖𝑗 = 2/
(︁

1
𝐵𝑖𝑖

+ 1
𝐵𝑗𝑗

)︁
𝐶𝑖𝑗 = (𝐶𝑖𝑖 𝐶𝑗𝑗)

1/2

(5.299)

5.6. Topologies 457

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Bonded parameters

The bonded parameters (i.e. bonds, bond angles, improper and proper dihedrals) are listed in ffbonded.
itp. The entries in this database describe, respectively, the atom types in the interactions, the type of the inter-
action, and the parameters associated with that interaction. These parameters are then read by grompp (page 190)
when processing a topology and applied to the relevant bonded parameters, i.e. bondtypes are applied to entries
in the [bonds] directive, etc. Any bonded parameter that is missing from the relevant :[*type] directive
generates a fatal error. The types of interactions are listed in Table 5.14. Example excerpts from such files follow:

[bondtypes]
; i j func b0 kb

C O 1 0.12300 502080.
C OM 1 0.12500 418400.
......

[angletypes]
; i j k func th0 cth
HO OA C 1 109.500 397.480
HO OA CH1 1 109.500 397.480
......

[dihedraltypes]
; i l func q0 cq
NR5* NR5 2 0.000 167.360
NR5* NR5* 2 0.000 167.360
......

[dihedraltypes]
; j k func phi0 cp mult

C OA 1 180.000 16.736 2
C N 1 180.000 33.472 2
......

[dihedraltypes]
;
; Ryckaert-Bellemans Dihedrals
;
; aj ak funct
CP2 CP2 3 9.2789 12.156 -13.120 -3.0597 26.240 -31.495

In the ffbonded.itp file, you can add bonded parameters. If you want to include parameters for new atom
types, make sure you define them in atomtypes.atp as well.

For most interaction types, bonded parameters are searched and assigned using an exact match for all type
names and allowing only a single set of parameters. The exception to this rule are dihedral parameters. For [
dihedraltypes] wildcard atom type names can be specified with the letter X in one or more of the four
positions. Thus one can for example assign proper dihedral parameters based on the types of the middle two
atoms. The parameters for the entry with the most exact matches, i.e. the least wildcard matches, will be used.
Note that GROMACS versions older than 5.1.3 used the first match, which means that a full match would be
ignored if it is preceded by an entry that matches on wildcards. Thus it is suggested to put wildcard entries at
the end, in case someone might use a forcefield with older versions of GROMACS. In addition there is a dihedral
type 9 which adds the possibility of assigning multiple dihedral potentials, useful for combining terms with dif-
ferent multiplicities. The different dihedral potential parameter sets should be on directly adjacent lines in the [
dihedraltypes] section.

5.6. Topologies 458

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.6.3 Molecule definition

Moleculetype entries

An organizational structure that usually corresponds to molecules is the [moleculetype] entry. This entry
serves two main purposes. One is to give structure to the topology file(s), usually corresponding to real molecules.
This makes the topology easier to read and writing it less labor intensive. A second purpose is computational
efficiency. The system definition that is kept in memory is proportional in size of the moleculetype definitions.
If a molecule is present in 100000 copies, this saves a factor of 100000 in memory, which means the system usually
fits in cache, which can improve performance tremendously. Interactions that correspond to chemical bonds, that
generate exclusions, can only be defined between atoms within a moleculetype. It is allowed to have multiple
molecules which are not covalently bonded in one moleculetype definition. Molecules can be made infinitely
long by connecting to themselves over periodic boundaries. When such periodic molecules are present, an option
in the mdp (page 488) file needs to be set to tell GROMACS not to attempt to make molecules that are broken over
periodic boundaries whole again.

Intermolecular interactions

In some cases, one would like atoms in different molecules to also interact with other interactions than the usual
non-bonded interactions. This is often the case in binding studies. When the molecules are covalently bound,
e.g. a ligand binding covalently to a protein, they are effectively one molecule and they should be defined in one
[moleculetype] entry. Note that pdb2gmx (page 235) has an option to put two or more molecules in one
[moleculetype] entry. When molecules are not covalently bound, it is much more convenient to use sep-
arate moleculetype definitions and specify the intermolecular interactions in the [intermolecular_-
interactions] section. In this section, which is placed at the end of the topology (see Table 5.13), normal
bonded interactions can be specified using global atom indices. The only restrictions are that no interactions can
be used that generates exclusions and no constraints can be used.

Intramolecular pair interactions

Extra Lennard-Jones and electrostatic interactions between pairs of atoms in a molecule can be added in the
[pairs] section of a molecule definition. The parameters for these interactions can be set independently
from the non-bonded interaction parameters. In the GROMOS force fields, pairs are only used to modify the 1-4
interactions (interactions of atoms separated by three bonds). In these force fields the 1-4 interactions are excluded
from the non-bonded interactions (see sec. Exclusions (page 460)).

[pairtypes]
; i j func cs6 cs12 ; THESE ARE 1-4 INTERACTIONS

O O 1 0.22617E-02 0.74158E-06
O OM 1 0.22617E-02 0.74158E-06
.....

The pair interaction parameters for the atom types in ffnonbonded.itp are listed in the [pairtypes]
section. The GROMOS force fields list all these interaction parameters explicitly, but this section might be empty
for force fields like OPLS that calculate the 1-4 interactions by uniformly scaling the parameters. Pair parameters
that are not present in the [pairtypes] section are only generated when gen-pairs is set to yes in the
[defaults] directive of forcefield.itp (see Topology file (page 468)). When gen-pairs is set to
no, grompp (page 190) will give a warning for each pair type for which no parameters are given.

The normal pair interactions, intended for 1-4 interactions, have function type 1. Function type 2 and the [
pairs_nb] are intended for free-energy simulations. When determining hydration free energies, the solute
needs to be decoupled from the solvent. This can be done by adding a B-state topology (see sec. Free energy
calculations (page 395)) that uses zero for all solute non-bonded parameters, i.e. charges and LJ parameters.
However, the free energy difference between the A and B states is not the total hydration free energy. One has
to add the free energy for reintroducing the internal Coulomb and LJ interactions in the solute when in vacuum.
This second step can be combined with the first step when the Coulomb and LJ interactions within the solute
are not modified. For this purpose, there is a pairs function type 2, which is identical to function type 1, except

5.6. Topologies 459

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

that the B-state parameters are always identical to the A-state parameters. For searching the parameters in the [
pairtypes] section, no distinction is made between function type 1 and 2. The pairs section [pairs_-
nb] is intended to replace the non-bonded interaction. It uses the unscaled charges and the non-bonded LJ
parameters; it also only uses the A-state parameters. Note that one should add exclusions for all atom pairs listed
in [pairs_nb], otherwise such pairs will also end up in the normal neighbor lists.

Alternatively, this same behavior can be achieved without ever touching the topology, by using the
couple-moltype, couple-lambda0, couple-lambda1, and couple-intramol keywords. See sec-
tions sec. Free energy calculations (page 395) and sec. Free energy implementation (page 498) for more informa-
tion.

All three pair types always use plain Coulomb interactions, even when Reaction-field, PME, Ewald or shifted
Coulomb interactions are selected for the non-bonded interactions. Energies for types 1 and 2 are written to
the energy and log file in separate “LJ-14” and “Coulomb-14” entries per energy group pair. Energies for [
pairs_nb] are added to the “LJ-(SR)” and “Coulomb-(SR)” terms.

Exclusions

The exclusions for non-bonded interactions are generated by grompp (page 190) for neighboring atoms up to a
certain number of bonds away, as defined in the [moleculetype] section in the topology file (see Topology
file (page 468)). Particles are considered bonded when they are connected by “chemical” bonds ([bonds]
types 1 to 5, 7 or 8) or constraints ([constraints] type 1). Type 5 [bonds] can be used to create a
connection between two atoms without creating an interaction. There is a harmonic interaction ([bonds] type
6) that does not connect the atoms by a chemical bond. There is also a second constraint type ([constraints
] type 2) that fixes the distance, but does not connect the atoms by a chemical bond. For a complete list of all
these interactions, see Table 5.14.

Extra exclusions within a molecule can be added manually in a [exclusions] section. Each line should
start with one atom index, followed by one or more atom indices. All non-bonded interactions between the first
atom and the other atoms will be excluded.

5.6.4 Constraint algorithms

Constraints are defined in the [constraints] section. The format is two atom numbers followed by the
function type, which can be 1 or 2, and the constraint distance. The only difference between the two types is
that type 1 is used for generating exclusions and type 2 is not (see sec. Exclusions (page 460)). The distances
are constrained using the LINCS or the SHAKE algorithm, which can be selected in the mdp (page 488) file.
Both types of constraints can be perturbed in free-energy calculations by adding a second constraint distance (see
Constraint forces (page 480)). Several types of bonds and angles (see Table 5.14) can be converted automatically
to constraints by grompp (page 190). There are several options for this in the mdp (page 488) file.

We have also implemented the SETTLE algorithm 47 (page 579), which is an analytical solution of SHAKE,
specifically for water. SETTLE can be selected in the topology file. See, for instance, the SPC molecule definition:

[moleculetype]
; molname nrexcl
SOL 1

[atoms]
; nr at type res nr ren nm at nm cg nr charge
1 OW 1 SOL OW1 1 -0.82
2 HW 1 SOL HW2 1 0.41
3 HW 1 SOL HW3 1 0.41

[settles]
; OW funct doh dhh
1 1 0.1 0.16333

(continues on next page)

5.6. Topologies 460

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

[exclusions]
1 2 3
2 1 3
3 1 2

The [settles] directive defines the first atom of the water molecule. The settle funct is always 1, and the
distance between O-H and H-H distances must be given. Note that the algorithm can also be used for TIP3P and
TIP4P 128 (page 582). TIP3P just has another geometry. TIP4P has a virtual site, but since that is generated it
does not need to be shaken (nor stirred).

5.6.5 pdb2gmx input files

The GROMACS program pdb2gmx (page 235) generates a topology for the input coordinate file. Several formats
are supported for that coordinate file, but pdb (page 490) is the most commonly-used format (hence the name
pdb2gmx (page 235)). pdb2gmx (page 235) searches for force fields in sub-directories of the GROMACS share/
top directory and your working directory. Force fields are recognized from the file forcefield.itp in a
directory with the extension .ff. The file forcefield.doc may be present, and if so, its first line will be
used by pdb2gmx (page 235) to present a short description to the user to help in choosing a force field. Otherwise,
the user can choose a force field with the -ff xxx command-line argument to pdb2gmx (page 235), which
indicates that a force field in a xxx.ff directory is desired. pdb2gmx (page 235) will search first in the working
directory, then in the GROMACS share/top directory, and use the first matching xxx.ff directory found.

Two general files are read by pdb2gmx (page 235): an atom type file (extension atp (page 485), see Atom types
(page 454)) from the force-field directory, and a file called residuetypes.dat from either the working di-
rectory, or the GROMACS share/top directory. residuetypes.dat determines which residue names are
considered protein, DNA, RNA, water, and ions.

pdb2gmx (page 235) can read one or multiple databases with topological information for different types of
molecules. A set of files belonging to one database should have the same basename, preferably telling some-
thing about the type of molecules (e.g. aminoacids, rna, dna). The possible files are:

• <basename>.rtp

• <basename>.r2b (optional)

• <basename>.arn (optional)

• <basename>.hdb (optional)

• <basename>.n.tdb (optional)

• <basename>.c.tdb (optional)

Only the rtp (page 491) file, which contains the topologies of the building blocks, is mandatory. Information
from other files will only be used for building blocks that come from an rtp (page 491) file with the same base
name. The user can add building blocks to a force field by having additional files with the same base name in their
working directory. By default, only extra building blocks can be defined, but calling pdb2gmx (page 235) with the
-rtpo option will allow building blocks in a local file to replace the default ones in the force field.

Residue database

The files holding the residue databases have the extension rtp (page 491). Originally this file contained building
blocks (amino acids) for proteins, and is the GROMACS interpretation of the rt37c4.dat file of GROMOS.
So the residue database file contains information (bonds, charges, charge groups, and improper dihedrals) for
a frequently-used building block. It is better not to change this file because it is standard input for pdb2gmx
(page 235), but if changes are needed make them in the top (page 492) file (see Topology file (page 468)), or
in a rtp (page 491) file in the working directory as explained in sec. pdb2gmx input files (page 461). Defining
topologies of new small molecules is probably easier by writing an include topology file itp (page 487) directly.
This will be discussed in section Molecule.itp file (page 476). When adding a new protein residue to the database,

5.6. Topologies 461

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

do not forget to add the residue name to the residuetypes.dat file, so that grompp (page 190), make_ndx (page 213)
and analysis tools can recognize the residue as a protein residue (see Default Groups (page 552)).

The rtp (page 491) files are only used by pdb2gmx (page 235). As mentioned before, the only extra information
this program needs from the rtp (page 491) database is bonds, charges of atoms, charge groups, and improper
dihedrals, because the rest is read from the coordinate input file. Some proteins contain residues that are not
standard, but are listed in the coordinate file. You have to construct a building block for this “strange” residue,
otherwise you will not obtain a top (page 492) file. This also holds for molecules in the coordinate file such as
ligands, polyatomic ions, crystallization co-solvents, etc. The residue database is constructed in the following
way:

[bondedtypes] ; mandatory
; bonds angles dihedrals impropers

1 1 1 2 ; mandatory

[GLY] ; mandatory

[atoms] ; mandatory
; name type charge chargegroup

N N -0.280 0
H H 0.280 0

CA CH2 0.000 1
C C 0.380 2
O O -0.380 2

[bonds] ; optional
;atom1 atom2 b0 kb

N H
N CA

CA C
C O

-C N

[exclusions] ; optional
;atom1 atom2

[angles] ; optional
;atom1 atom2 atom3 th0 cth

[dihedrals] ; optional
;atom1 atom2 atom3 atom4 phi0 cp mult

[impropers] ; optional
;atom1 atom2 atom3 atom4 q0 cq

N -C CA H
-C -CA N -O

[ZN]

[atoms]
ZN ZN 2.000 0

The file is free format; the only restriction is that there can be at most one entry on a line. The first field in
the file is the [bondedtypes] field, which is followed by four numbers, indicating the interaction type for
bonds, angles, dihedrals, and improper dihedrals. The file contains residue entries, which consist of atoms and
(optionally) bonds, angles, dihedrals, and impropers. The charge group codes denote the charge group numbers.
Atoms in the same charge group should always be ordered consecutively. When using the hydrogen database
with pdb2gmx (page 235) for adding missing hydrogens (see hdb (page 487)), the atom names defined in the
rtp (page 491) entry should correspond exactly to the naming convention used in the hydrogen database. The

5.6. Topologies 462

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

atom names in the bonded interaction can be preceded by a minus or a plus, indicating that the atom is in the
preceding or following residue respectively. Explicit parameters added to bonds, angles, dihedrals, and impropers
override the standard parameters in the itp (page 487) files. This should only be used in special cases. Instead of
parameters, a string can be added for each bonded interaction. This is used in GROMOS-96 rtp (page 491) files.
These strings are copied to the topology file and can be replaced by force-field parameters by the C-preprocessor
in grompp (page 190) using #define statements.

pdb2gmx (page 235) automatically generates all angles. This means that for most force fields the [angles
] field is only useful for overriding itp (page 487) parameters. For the GROMOS-96 force field the interaction
number of all angles needs to be specified.

pdb2gmx (page 235) automatically generates one proper dihedral for every rotatable bond, preferably on heavy
atoms. When the [dihedrals] field is used, no other dihedrals will be generated for the bonds correspond-
ing to the specified dihedrals. It is possible to put more than one dihedral function on a rotatable bond. In the
case of CHARMM27 FF pdb2gmx (page 235) can add correction maps to the dihedrals using the default -cmap
option. Please refer to CHARMM (page 452) for more information.

pdb2gmx (page 235) sets the number of exclusions to 3, which means that interactions between atoms connected
by at most 3 bonds are excluded. Pair interactions are generated for all pairs of atoms that are separated by 3
bonds (except pairs of hydrogens). When more interactions need to be excluded, or some pair interactions should
not be generated, an [exclusions] field can be added, followed by pairs of atom names on separate lines.
All non-bonded and pair interactions between these atoms will be excluded.

Residue to building block database

Each force field has its own naming convention for residues. Most residues have consistent naming, but some,
especially those with different protonation states, can have many different names. The r2b (page 492) files are
used to convert standard residue names to the force-field build block names. If no r2b (page 492) is present in the
force-field directory or a residue is not listed, the building block name is assumed to be identical to the residue
name. The r2b (page 492) can contain 2 or 5 columns. The 2-column format has the residue name in the first
column and the building block name in the second. The 5-column format has 3 additional columns with the
building block for the residue occurring in the N-terminus, C-terminus and both termini at the same time (single
residue molecule). This is useful for, for instance, the AMBER force fields. If one or more of the terminal versions
are not present, a dash should be entered in the corresponding column.

There is a GROMACS naming convention for residues which is only apparent (except for the pdb2gmx (page 235)
code) through the r2b (page 492) file and specbond.dat files. This convention is only of importance when
you are adding residue types to an rtp (page 491) file. The convention is listed in Table 5.12. For special bonds
with, for instance, a heme group, the GROMACS naming convention is introduced through specbond.dat
(see Special bonds (page 467)), which can subsequently be translated by the r2b (page 492) file, if required.

Table 5.12: Internal GROMACS residue naming convention.

GROMACS ID Residue

ARG protonated arginine
ARGN neutral arginine
ASP negatively charged aspartic acid
ASPH neutral aspartic acid
CYS neutral cysteine
CYS2 cysteine with sulfur bound to another cysteine or a heme
GLU negatively charged glutamic acid
GLUH neutral glutamic acid
HISD neutral histidine with N𝛿 protonated
HISE neutral histidine with N𝜖 protonated
HISH positive histidine with both N𝛿 and N𝜖 protonated
HIS1 histidine bound to a heme
LYSN neutral lysine
LYS protonated lysine
HEME heme

5.6. Topologies 463

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Atom renaming database

Force fields often use atom names that do not follow IUPAC or PDB convention. The arn (page 485) database
is used to translate the atom names in the coordinate file to the force-field names. Atoms that are not listed keep
their names. The file has three columns: the building block name, the old atom name, and the new atom name,
respectively. The residue name supports question-mark wildcards that match a single character.

An additional general atom renaming file called xlateat.dat is present in the share/top directory, which
translates common non-standard atom names in the coordinate file to IUPAC/PDB convention. Thus, when writing
force-field files, you can assume standard atom names and no further atom name translation is required, except for
translating from standard atom names to the force-field ones.

Hydrogen database

The hydrogen database is stored in hdb (page 487) files. It contains information for the pdb2gmx (page 235)
program on how to connect hydrogen atoms to existing atoms. In versions of the database before GROMACS 3.3,
hydrogen atoms were named after the atom they are connected to: the first letter of the atom name was replaced
by an ‘H.’ In the versions from 3.3 onwards, the H atom has to be listed explicitly, because the old behavior
was protein-specific and hence could not be generalized to other molecules. If more than one hydrogen atom
is connected to the same atom, a number will be added to the end of the hydrogen atom name. For example,
adding two hydrogen atoms to ND2 (in asparagine), the hydrogen atoms will be named HD21 and HD22. This is
important since atom naming in the rtp (page 491) file must be the same. The format of the hydrogen database is
as follows:

; res # additions
H add type H i j k

ALA 1
1 1 H N -C CA

ARG 4
1 2 H N CA C
1 1 HE NE CD CZ
2 3 HH1 NH1 CZ NE
2 3 HH2 NH2 CZ NE

On the first line we see the residue name (ALA or ARG) and the number of kinds of hydrogen atoms that may be
added to this residue by the hydrogen database. After that follows one line for each addition, on which we see:

• The number of H atoms added

• The method for adding H atoms, which can be any of:

1. one planar hydrogen, e.g. rings or peptide bond
One hydrogen atom (n) is generated, lying in the plane of atoms (i,j,k) on the plane bisecting angle
(j-i-k) at a distance of 0.1 nm from atom i, such that the angles (n-i-j) and (n-i-k) are > 90o.

2. one single hydrogen, e.g. hydroxyl
One hydrogen atom (n) is generated at a distance of 0.1 nm from atom i, such that angle (n-i-j)=109.5
degrees and dihedral (n-i-j-k)=trans.

3. two planar hydrogens, e.g. ethylene -C=CH2, or amide -C(=O)NH2

Two hydrogens (n1,n2) are generated at a distance of 0.1 nm from atom i, such that angle
(n1-i-j)=(n2-i-j)=120 degrees and dihedral (n1-i-j-k)=cis and (n2-i-j-k)=trans, such that names are
according to IUPAC standards 129 (page 582).

4. two or three tetrahedral hydrogens, e.g. -CH3

Three (n1,n2,n3) or two (n1,n2) hydrogens are generated at a distance of 0.1 nm from atom i, such
that angle (n1-i-j)=(n2-i-j)=(n3-i-j)=109.47o, dihedral (n1-i-j-k)=trans, (n2-i-j-k)=trans+120 and
(n3-i-j-k)=trans+240o.

5. one tetrahedral hydrogen, e.g. C3CH

5.6. Topologies 464

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

One hydrogen atom (n′) is generated at a distance of 0.1 nm from atom i in tetrahedral conformation
such that angle (n′-i-j)=(n′-i-k)=(n′-i-l)=109.47o.

6. two tetrahedral hydrogens, e.g. C-CH2-C
Two hydrogen atoms (n1,n2) are generated at a distance of 0.1 nm from atom i in tetrahedral
conformation on the plane bisecting angle j-i-k with angle (n1-i-n2)=(n1-i-j)=(n1-i-k)=109.47o.

7. two water hydrogens
Two hydrogens are generated around atom i according to SPC 80 (page 580) water geometry. The
symmetry axis will alternate between three coordinate axes in both directions.

8. three water “hydrogens”
Two hydrogens are generated around atom i according to SPC 80 (page 580) water geometry. The
symmetry axis will alternate between three coordinate axes in both directions. In addition, an extra
particle is generated on the position of the oxygen with the first letter of the name replaced by ‘M’.
This is for use with four-atom water models such as TIP4P 128 (page 582).

9. four water “hydrogens”
Same as above, except that two additional particles are generated on the position of the oxygen, with
names ‘LP1’ and ‘LP2.’ This is for use with five-atom water models such as TIP5P 130 (page 582).

• The name of the new H atom (or its prefix, e.g. HD2 for the asparagine example given earlier).

• Three or four control atoms (i,j,k,l), where the first always is the atom to which the H atoms are connected.
The other two or three depend on the code selected. For water, there is only one control atom.

Some more exotic cases can be approximately constructed from the above tools, and with suitable use of energy
minimization are good enough for beginning MD simulations. For example secondary amine hydrogen, nitrenyl
hydrogen (C = NH) and even ethynyl hydrogen could be approximately constructed using method 2 above for
hydroxyl hydrogen.

Termini database

The termini databases are stored in aminoacids.n.tdb and aminoacids.c.tdb for the N- and C-termini
respectively. They contain information for the pdb2gmx (page 235) program on how to connect new atoms to
existing ones, which atoms should be removed or changed, and which bonded interactions should be added. Their
format is as follows (from gromos43a1.ff/aminoacids.c.tdb):

[None]

[COO-]
[replace]
C C C 12.011 0.27
O O1 OM 15.9994 -0.635
OXT O2 OM 15.9994 -0.635
[add]
2 8 O C CA N

OM 15.9994 -0.635
[bonds]
C O1 gb_5
C O2 gb_5
[angles]
O1 C O2 ga_37
CA C O1 ga_21
CA C O2 ga_21
[dihedrals]
N CA C O2 gd_20
[impropers]
C CA O2 O1 gi_1

5.6. Topologies 465

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The file is organized in blocks, each with a header specifying the name of the block. These blocks correspond
to different types of termini that can be added to a molecule. In this example [COO-] is the first block,
corresponding to changing the terminal carbon atom into a deprotonated carboxyl group. [None] is the
second terminus type, corresponding to a terminus that leaves the molecule as it is. Block names cannot be any
of the following: replace, add, delete, bonds, angles, dihedrals, impropers. Doing so would
interfere with the parameters of the block, and would probably also be very confusing to human readers.

For each block the following options are present:

• [replace]

Replace an existing atom by one with a different atom type, atom name, charge, and/or mass. This entry
can be used to replace an atom that is present both in the input coordinates and in the rtp (page 491)
database, but also to only rename an atom in the input coordinates such that it matches the name in the
force field. In the latter case, there should also be a corresponding [add] section present that gives
instructions to add the same atom, such that the position in the sequence and the bonding is known. Such
an atom can be present in the input coordinates and kept, or not present and constructed by pdb2gmx
(page 235). For each atom to be replaced on line should be entered with the following fields:

– name of the atom to be replaced

– new atom name (optional)

– new atom type

– new mass

– new charge

• [add]

Add new atoms. For each (group of) added atom(s), a two-line entry is necessary. The first line contains
the same fields as an entry in the hydrogen database (name of the new atom, number of atoms, type of
addition, control atoms, see hdb (page 487)), but the possible types of addition are extended by two more,
specifically for C-terminal additions:

1. two carboxyl oxygens, -COO−

Two oxygens (n1,n2) are generated according to rule 3, at a distance of 0.136 nm from atom i and an
angle (n1-i-j)=(n2-i-j)=117 degrees

2. carboxyl oxygens and hydrogen, -COOH
Two oxygens (n1,n2) are generated according to rule 3, at distances of 0.123 nm and 0.125 nm from
atom i for n1 and n2, respectively, and angles (n1-i-j)=121 and (n2-i-j)=115 degrees. One hydrogen
(n′) is generated around n2 according to rule 2, where n-i-j and n-i-j-k should be read as n′-n2-i and
n′-n2-i-j, respectively.

After this line, another line follows that specifies the details of the added atom(s), in the same way as for
replacing atoms, i.e.:

– atom type

– mass

– charge

– charge group (optional)

Like in the hydrogen database (see rtp (page 491)), when more than one atom is connected to an existing
one, a number will be appended to the end of the atom name. Note that, like in the hydrogen database, the
atom name is now on the same line as the control atoms, whereas it was at the beginning of the second line
prior to GROMACS version 3.3. When the charge group field is left out, the added atom will have the same
charge group number as the atom that it is bonded to.

• [delete]

Delete existing atoms. One atom name per line.

• [bonds], [angles], [dihedrals] and [impropers]

5.6. Topologies 466

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Add additional bonded parameters. The format is identical to that used in the rtp (page 491) file, see rtp
(page 491).

Virtual site database

Since we cannot rely on the positions of hydrogens in input files, we need a special input file to decide the
geometries and parameters with which to add virtual site hydrogens. For more complex virtual site constructs
(e.g. when entire aromatic side chains are made rigid) we also need information about the equilibrium bond
lengths and angles for all atoms in the side chain. This information is specified in the vsd (page 495) file for each
force field. Just as for the termini, there is one such file for each class of residues in the rtp (page 491) file.

The virtual site database is a simple list of information. The first couple of sections specify which mass centers
(typically called MCH3/MNH3) to use for CH3, NH3, and NH2 groups. Depending on the equilibrium bond
lengths and angles between the hydrogens and heavy atoms we need to apply slightly different constraint distances
between these mass centers. Note that we do not have to specify the actual parameters (that is automatic), just the
type of mass center to use. To accomplish this, there are three sections names [CH3], [NH3], and [NH2
]. For each of these we expect three columns. The first column is the atom type bound to the 2/3 hydrogens, the
second column is the next heavy atom type which this is bound, and the third column the type of mass center to
use. As a special case, in the [NH2] section it is also possible to specify planar in the second column, which
will use a different construction without mass center. There are currently different opinions in some force fields
whether an NH2 group should be planar or not, but we try hard to stick to the default equilibrium parameters of
the force field.

The second part of the virtual site database contains explicit equilibrium bond lengths and angles for pairs/triplets
of atoms in aromatic side chains. These entries are currently read by specific routines in the virtual site generation
code, so if you would like to extend it e.g. to nucleic acids you would also need to write new code there. These
sections are named after the short amino acid names ([PHE], [TYR], [TRP], [HID], [HIE],
[HIP]), and simply contain 2 or 3 columns with atom names, followed by a number specifying the bond
length (in nm) or angle (in degrees). Note that these are approximations of the equilibrated geometry for the entire
molecule, which might not be identical to the equilibrium value for a single bond/angle if the molecule is strained.

Special bonds

The primary mechanism used by pdb2gmx (page 235) to generate inter-residue bonds relies on head-to-tail link-
ing of backbone atoms in different residues to build a macromolecule. In some cases (e.g. disulfide bonds, a
heme group, branched polymers), it is necessary to create inter-residue bonds that do not lie on the backbone.
The file specbond.dat takes care of this function. It is necessary that the residues belong to the same [
moleculetype]. The -merge and -chainsep functions of pdb2gmx (page 235) can be useful when man-
aging special inter-residue bonds between different chains.

The first line of specbond.dat indicates the number of entries that are in the file. If you add a new entry,
be sure to increment this number. The remaining lines in the file provide the specifications for creating bonds.
For these bonds, you can also optionally specify a custom improper dihedral associated with the new bond. The
format of the lines, with optional entries in [], is as follows:

resA atomA nbondsA resB atomB nbondsB length newresA newresB [atomI atomJ
atomK atomL]

The columns indicate:

1. resA The name of residue A that participates in the bond.

2. atomA The name of the atom in residue A that forms the bond.

3. nbondsA The total number of bonds atomA can form.

4. resB The name of residue B that participates in the bond.

5. atomB The name of the atom in residue B that forms the bond.

6. nbondsB The total number of bonds atomB can form.

5.6. Topologies 467

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

7. length The reference length for the bond. If atomA and atomB are not within length ± 10% in the
coordinate file supplied to pdb2gmx (page 235), no bond will be formed.

8. newresA The new name of residue A, if necessary. Some force fields use e.g. CYS2 for a cysteine in a
disulfide or heme linkage.

9. newresB The new name of residue B, likewise.

10.atomI Custom improper dihedral atom i of i-j-k-l. Has format
[specbond residue]-[atom name] (e.g. B-SG). The letter is either A or B corresponding to resA or
resB, respectively.

11. atomJ Custom improper dihedral atom j of i-j-k-l.

12. atomK Custom improper dihedral atom k of i-j-k-l.

13. atomL Custom improper dihedral atom l of i-j-k-l.

5.6.6 File formats

Topology file

The topology file is built following the GROMACS specification for a molecular topology. A top (page 492)
file can be generated by pdb2gmx (page 235). All possible entries in the topology file are listed in Tables 5.13
and 5.14. Also tabulated are: all the units of the parameters, which interactions can be perturbed for free energy
calculations, which bonded interactions are used by grompp (page 190) for generating exclusions, and which
bonded interactions can be converted to constraints by grompp (page 190).

Table 5.13: The topology file.

Parameters

interaction type directive # at. f. tp parameters
mandatory defaults non-bonded function type; combination rule(𝑐𝑟); generate pairs

(no/yes); fudge LJ (); fudge QQ ()
mandatory atomtypes atom type; bonded type; atomic number; m (u); q (e); particle

type; V(𝑐𝑟) ; W(𝑐𝑟) (bonded type and atomic number are optional)
bondtypes (see Table 5.14, directive bonds)

pairtypes (see Table 5.14, directive pairs)

angletypes (see Table 5.14, directive angles)

dihedraltypes(*) (see Table 5.14, directive dihedrals)

constrainttypes(see Table 5.14, directive constraints)

LJ nonbond_-
params

2 1 V(𝑐𝑟) ; W(𝑐𝑟)

Buckingham nonbond_-
params

2 2 𝑎 kJ mol−1 ;
𝑏 nm−1; 𝑐6
(kJ mol−1 nm−6)

5.6. Topologies 468

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Molecule definition(s)
F. E.

mandatory moleculetype molecule name;
𝑛
(𝑛𝑟𝑒𝑥𝑐𝑙)
𝑒𝑥

mandatory atoms 1 atom type; residue
number; residue
name; atom name;
charge group num-
ber; 𝑞 (e); 𝑚 (u)

type
𝑞,𝑚

intra-molecular interaction and geometry definitions as described in Table 5.14

System

mandatory system system name
mandatory molecules molecule name; number of molecules

Inter-molecular interactions

optional intermolecular_interactions
one or more bonded interactions as described in Table 5.14, with two or more atoms, no interactions that
generate exclusions, no constraints, use global atom numbers

• # at is the required number of atom type indices for this directive

• f. tp is the value used to select this function type

• F. E. indicates which of the parameters can be interpolated in free energy calculations

• (𝑐𝑟) the combination rule determines the type of LJ parameters, see Non-bonded parameters (page 457)

• (*) for dihedraltypes one can specify 4 atoms or the inner (outer for improper) 2 atoms

• 𝑛(𝑛𝑟𝑒𝑥𝑐𝑙)𝑒𝑥 exclude neighbors 𝑛𝑒𝑥 bonds away for non-bonded interactions

• For free energy calculations, type, 𝑞 and 𝑚 or no parameters should be added for topology B (𝜆 = 1) on the
same line, after the normal parameters.

Table 5.14: Details of [moleculetype] directives

Name of inter-
action

Topology file
directive

num.
atomsPage 472, 1

func.
typePage 472, 2

Order of pa-
rameters and
their units

use in
F.E.?Page 472, 3

bond bonds4,5 2 1 𝑏0 (nm); 𝑘𝑏 (kJ
mol−1nm−2

all

G96 bond bondsPage 472, 4,Page 472, 52 2 𝑏0 (nm); 𝑘𝑏 (kJ
mol−1nm−4

all

Morse bondsPage 472, 4,Page 472, 52 3 𝑏0 (nm); 𝐷
(kJ mol−1; 𝛽
(nm−1

all

cubic bond bondsPage 472, 4,Page 472, 52 4 𝑏0 (nm); 𝐶𝑖=2,3

(kJ mol−1nm−𝑖

connection bondsPage 472, 4 2 5
harmonic
potential

bonds 2 6 𝑏0 (nm); 𝑘𝑏 (kJ
mol−1nm−2

all

FENE bond bondsPage 472, 4 2 7 𝑏𝑚 (nm); 𝑘𝑏 (kJ
mol−1nm−2

continues on next page

5.6. Topologies 469

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Table 5.14 – continued from previous page

Name of inter-
action

Topology file
directive

num. atoms1 func. type2 Order of pa-
rameters and
their units

use in F.E.?3

tabulated bond bondsPage 472, 4 2 8 table number
(≥ 0); 𝑘 kJ
mol−1

𝑘

tabulated bond6 bonds 2 9 table number
(≥ 0); 𝑘 kJ
mol−1

𝑘

restraint poten-
tial

bonds 2 10 low, up1,2
(nm); 𝑘𝑑𝑟 ((kJ
mol−1nm−2)

all

extra LJ or
Coulomb

pairs 2 1 𝑉 7; 𝑊 Page 472, 7 all

extra LJ or
Coulomb

pairs 2 2 fudge QQ ();
𝑞𝑖; 𝑞𝑗 (e),
𝑉 Page 472, 7;
𝑊 Page 472, 7

extra LJ or
Coulomb

pairs_nb 2 1 𝑞𝑖; 𝑞𝑗 (e);
𝑉 Page 472, 7;
𝑊 Page 472, 7

angle anglesPage 472, 5 3 1 𝜃0 (deg); 𝑘𝜃 (kJ
mol−1rad−2)

all

G96 angle anglesPage 472, 5 3 2 𝜃0 (deg); 𝑘𝜃 (kJ
mol−1)

all

cross bond-
bond

angles 3 3 𝑟1𝑒, 𝑟2𝑒 (nm);
𝑘𝑟𝑟′ ((kJ
mol−1nm−2)

cross bond-
angle

angles 3 4 𝑟1𝑒, 𝑟2𝑒, 𝑟3𝑒
(nm); 𝑘𝑟𝜃 ((kJ
mol−1nm−2)

Urey-Bradley anglesPage 472, 5 3 5 𝜃0 (deg); 𝑘𝜃 (kJ
mol−1rad−2);
𝑟13 (nm);
𝑘𝑈𝐵 ((kJ
mol−1nm−2)

all

quartic angle anglesPage 472, 5 3 6 𝜃0 (deg);
𝐶𝑖=0,1,2,3,4 (kJ
mol−1rad−𝑖)

tabulated angle angles 3 8 table number
(≥ 0); 𝑘 (kJ
mol−1)

𝑘

linear angle angles 3 9 𝑎0; 𝑘𝑙𝑖𝑛 ((kJ
mol−1nm−2)

all

restricted
bending
potential

angles 3 10 𝜃0 (deg); 𝑘𝜃 (kJ
mol−1)

proper dihedral dihedrals 4 1 𝜑𝑠 (deg); 𝑘𝜑 (kJ
mol−1); multi-
plicity

𝜑, 𝑘

improper dihe-
dral

dihedrals 4 2 𝜉0 (deg); 𝑘𝜉 (kJ
mol−1rad−2)

all

continues on next page

5.6. Topologies 470

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Table 5.14 – continued from previous page

Name of inter-
action

Topology file
directive

num. atoms1 func. type2 Order of pa-
rameters and
their units

use in F.E.?3

Ryckaert-
Bellemans
dihedral

dihedrals 4 3 𝐶0, 𝐶1, 𝐶2,
𝐶3, 𝐶4, 𝐶5 (kJ
mol−1)

all

periodic im-
proper dihedral

dihedrals 4 4 𝜑𝑠 (deg); 𝑘𝜑 (kJ
mol−1); multi-
plicity

𝜑, 𝑘

Fourier dihe-
dral

dihedrals 4 5 𝐶1, 𝐶2, 𝐶3, 𝐶4,
𝐶5 (kJ mol−1)

all

tabulated dihe-
dral

dihedrals 4 8 table number
(≥ 0); 𝑘 (kJ
mol−1)

𝑘

proper dihedral
(multiple)

dihedrals 4 9 𝜑𝑠 (deg); 𝑘𝜑 (kJ
mol−1); multi-
plicity

𝜑, 𝑘

restricted dihe-
dral

dihedrals 4 10 𝜑0 (deg); 𝑘𝜑 (kJ
mol−1)

combined
bending-torsion
potential

dihedrals 4 11 𝑘𝜑 (kJ mol−1);
𝑎0, 𝑎1, 𝑎2, 𝑎3,
𝑎4

exclusions exclusions 1 one or more
atom indices

constraint constraintsPage 472, 42 1 𝑏0 (nm) all
con-
straintPage 472, 6

constraints 2 2 𝑏0 (nm) all

SETTLE settles 1 1 𝑑OH, 𝑑HH (nm)
1-body virtual
site

virtual_-
sites1

2 1

2-body virtual
site

virtual_-
sites2

3 1 𝑎 ()

2-body virtual
site (fd)

virtual_-
sites2

3 2 𝑑 (nm)

3-body virtual
site

virtual_-
sites3

4 1 𝑎, 𝑏 ()

3-body virtual
site (fd)

virtual_-
sites3

4 2 𝑎 (); 𝑑 (nm)

3-body virtual
site (fad)

virtual_-
sites3

4 3 𝜃 (deg); 𝑑 (nm)

3-body virtual
site (out)

virtual_-
sites3

4 4 𝑎, 𝑏 (); 𝑐
(nm−1)

4-body virtual
site (fdn)

virtual_-
sites4

5 2 𝑎, 𝑏 (); 𝑐 (nm)

N-body virtual
site (COG)

virtual_-
sitesn

1 1 one or more
constructing
atom indices

N-body virtual
site (COM)

virtual_-
sitesn

1 2 one or more
constructing
atom indices

continues on next page

5.6. Topologies 471

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Table 5.14 – continued from previous page

Name of inter-
action

Topology file
directive

num. atoms1 func. type2 Order of pa-
rameters and
their units

use in F.E.?3

N-body virtual
site (COW)

virtual_-
sitesn

1 3

one or more
pairs consisting
of
constructing
atom index and
weight

position re-
straint

position_-
restraints

1 1 𝑘𝑥, 𝑘𝑦 , 𝑘𝑧 ((kJ
mol−1nm−2)

all

flat-bottomed
position re-
straint

position_-
restraints

1 2 𝑔, 𝑟 (nm), 𝑘 ((kJ
mol−1nm−2)

distance re-
straint

distance_-
restraints

2 1 type; label; low,
up1,2 (nm);
weight ()

dihedral re-
straint

dihedral_-
restraints

4 1 𝜑0 (deg); ∆𝜑
(deg); 𝑘dihr (kJ
mol−1rad−2)

all

orientation
restraint

orientation_-
restraints

2 1 exp.; label; 𝛼;
𝑐 (U nm𝛼; obs.
(U); weight
(U−1)

angle restraint angle_-
restraints

4 1 𝜃0 (deg); 𝑘𝑐 (kJ
mol−1); multi-
plicity

𝜃, 𝑘

angle restraint
(z)

angle_-
restraints_-
z

2 1 𝜃0 (deg); 𝑘𝑐 (kJ
mol−1); multi-
plicity

𝜃, 𝑘

Description of the file layout:

• Semicolon (;) and newline characters surround comments

• On a line ending with ∖ the newline character is ignored.

• Directives are surrounded by [and]

• The topology hierarchy (which must be followed) consists of three levels:

– the parameter level, which defines certain force-field specifications (see Table 5.13)

– the molecule level, which should contain one or more molecule definitions (see Table 5.14)

– the system level, containing only system-specific information ([system] and [molecules
])

• Items should be separated by spaces or tabs, not commas

• Atoms in molecules should be numbered consecutively starting at 1

1 The required number of atom indices for this directive
2 The index to use to select this function type
3 Indicates which of the parameters can be interpolated in free energy calculations
4 This interaction type will be used by grompp (page 190) for generating exclusions
5 This interaction type can be converted to constraints by grompp (page 190)
6 No connection, and so no exclusions, are generated for this interaction
7 The combination rule determines the type of LJ parameters, see Non-bonded parameters (page 457)

5.6. Topologies 472

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• Atoms in the same charge group must be listed consecutively

• Bonded atom type name must contain at least one non-digit character.

• The file is parsed only once, which implies that no forward references can be treated: items must be defined
before they can be used

• Exclusions can be generated from the bonds or overridden manually

• The bonded force types can be generated from the atom types or overridden per bond

• It is possible to apply multiple bonded interactions of the same type on the same atoms

• Descriptive comment lines and empty lines are highly recommended

• Starting with GROMACS version 3.1.3, all directives at the parameter level can be used multiple times and
there are no restrictions on the order, except that an atom type needs to be defined before it can be used in
other parameter definitions

• If parameters for a certain interaction are defined multiple times for the same combination of atom types the
last definition is used; starting with GROMACS version 3.1.3 grompp (page 190) generates a warning for
parameter redefinitions with different values

• Using one of the [atoms], [bonds], [pairs], [angles], etc. without having used [
moleculetype] before is meaningless and generates a warning

• Using [molecules] without having used [system] before is meaningless and generates a warn-
ing.

• After [system] the only allowed directive is [molecules]

• Using an unknown string in [] causes all the data until the next directive to be ignored and generates a
warning

Here is an example of a topology file, urea.top:

;
; Example topology file
;
; The force-field files to be included
#include "amber99.ff/forcefield.itp"

[moleculetype]
; name nrexcl
Urea 3

[atoms]
1 C 1 URE C 1 0.880229 12.01000 ; amber C type
2 O 1 URE O 2 -0.613359 16.00000 ; amber O type
3 N 1 URE N1 3 -0.923545 14.01000 ; amber N type
4 H 1 URE H11 4 0.395055 1.00800 ; amber H type
5 H 1 URE H12 5 0.395055 1.00800 ; amber H type
6 N 1 URE N2 6 -0.923545 14.01000 ; amber N type
7 H 1 URE H21 7 0.395055 1.00800 ; amber H type
8 H 1 URE H22 8 0.395055 1.00800 ; amber H type

[bonds]
1 2
1 3
1 6
3 4
3 5
6 7
6 8

(continues on next page)

5.6. Topologies 473

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

[dihedrals]
; ai aj ak al funct definition

2 1 3 4 9
2 1 3 5 9
2 1 6 7 9
2 1 6 8 9
3 1 6 7 9
3 1 6 8 9
6 1 3 4 9
6 1 3 5 9

[dihedrals]
3 6 1 2 4
1 4 3 5 4
1 7 6 8 4

[position_restraints]
; you wouldn't normally use this for a molecule like Urea,
; but we include it here for didactic purposes
; ai funct fc

1 1 1000 1000 1000 ; Restrain to a point
2 1 1000 0 1000 ; Restrain to a line (Y-axis)
3 1 1000 0 0 ; Restrain to a plane (Y-Z-plane)

[dihedral_restraints]
; ai aj ak al type phi dphi fc

3 6 1 2 1 180 0 10
1 4 3 5 1 180 0 10

; Include TIP3P water topology
#include "amber99.ff/tip3p.itp"

[system]
Urea in Water

[molecules]
;molecule name nr.
Urea 1
SOL 1000

Here follows the explanatory text.

#include “amber99.ff/forcefield.itp” : this includes the information for the force field you are using, including
bonded and non-bonded parameters. This example uses the AMBER99 force field, but your simulation may use
a different force field. grompp (page 190) will automatically go and find this file and copy-and-paste its content.
That content can be seen in share/top/amber99.ff/forcefield.itp}, and it is

#define _FF_AMBER
#define _FF_AMBER99

[defaults]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ
1 2 yes 0.5 0.8333

#include "ffnonbonded.itp"
#include "ffbonded.itp"

5.6. Topologies 474

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The two #define statements set up the conditions so that future parts of the topology can know that the AMBER
99 force field is in use.

[defaults] :

• nbfunc is the non-bonded function type. Use 1 (Lennard-Jones) or 2 (Buckingham)

• comb-rule is the number of the combination rule (see Non-bonded parameters (page 457)).

• gen-pairs is for pair generation. The default is ‘no’, i.e. get 1-4 parameters from the pairtypes list.
When parameters are not present in the list, stop with a fatal error. Setting ‘yes’ generates 1-4 parameters
that are not present in the pair list from normal Lennard-Jones parameters using fudgeLJ

• fudgeLJ is the factor by which to multiply Lennard-Jones 1-4 interactions, default 1

• fudgeQQ is the factor by which to multiply electrostatic 1-4 interactions, default 1

• 𝑁 is the power for the repulsion term in a 6-𝑁 potential (with nonbonded-type Lennard-Jones only), starting
with GROMACS version 4.5, grompp (page 215) also reads and applies 𝑁 , for values not equal to 12
tabulated interaction functions are used (in older version you would have to use user tabulated interactions).

Note that gen-pairs, fudgeLJ, fudgeQQ, and 𝑁 are optional. fudgeLJ is only used when generate pairs
is set to ‘yes’, and fudgeQQ is always used. However, if you want to specify 𝑁 you need to give a value for the
other parameters as well.

Then some other #include statements add in the large amount of data needed to describe the rest of the force
field. We will skip these and return to urea.top. There we will see

[moleculetype] : defines the name of your molecule in this top (page 492) and nrexcl = 3 stands for excluding
non-bonded interactions between atoms that are no further than 3 bonds away.

[atoms] : defines the molecule, where nr and type are fixed, the rest is user defined. So atom can be named as
you like, cgnr made larger or smaller (if possible, the total charge of a charge group should be zero), and charges
can be changed here too.

[bonds] : no comment.

[pairs] : LJ and Coulomb 1-4 interactions

[angles] : no comment

[dihedrals] : in this case there are 9 proper dihedrals (funct = 1), 3 improper (funct = 4) and no Ryckaert-
Bellemans type dihedrals. If you want to include Ryckaert-Bellemans type dihedrals in a topology, do the follow-
ing (in case of e.g. decane):

[dihedrals]
; ai aj ak al funct c0 c1 c2

1 2 3 4 3
2 3 4 5 3

In the original implementation of the potential for alkanes 131 (page 582) no 1-4 interactions were used, which
means that in order to implement that particular force field you need to remove the 1-4 interactions from the [
pairs] section of your topology. In most modern force fields, like OPLS/AA or Amber the rules are different,
and the Ryckaert-Bellemans potential is used as a cosine series in combination with 1-4 interactions.

[position_restraints] : harmonically restrain the selected particles to reference positions (Position restraints
(page 422)). The reference positions are read from a separate coordinate file by grompp (page 190).

[dihedral_restraints] : restrain selected dihedrals to a reference value. The implementation of dihedral re-
straints is described in section Dihedral restraints (page 424) of the manual. The parameters specified in the
[dihedral_restraints] directive are as follows:

• type has only one possible value which is 1

• phi is the value of 𝜑0 in (5.196) and (5.197) of the manual.

• dphi is the value of ∆𝜑 in (5.197) of the manual.

• fc is the force constant 𝑘𝑑𝑖ℎ𝑟 in (5.197) of the manual.

5.6. Topologies 475

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

#include “tip3p.itp” : includes a topology file that was already constructed (see section Molecule.itp file
(page 476)).

[system] : title of your system, user-defined

[molecules] : this defines the total number of (sub)molecules in your system that are defined in this top
(page 492). In this example file, it stands for 1 urea molecule dissolved in 1000 water molecules. The
molecule type SOL is defined in the tip3p.itp file. Each name here must correspond to a name given with [
moleculetype] earlier in the topology. The order of the blocks of molecule types and the numbers of such
molecules must match the coordinate file that accompanies the topology when supplied to grompp (page 190).
The blocks of molecules do not need to be contiguous, but some tools (e.g. genion (page 188)) may act only on
the first or last such block of a particular molecule type. Also, these blocks have nothing to do with the definition
of groups (see sec. The group concept (page 364) and sec. Using Groups (page 551)).

Molecule.itp file

If you construct a topology file you will use frequently (like the water molecule, tip3p.itp, which is already
constructed for you) it is good to make a molecule.itp file. This only lists the information of one particular
molecule and allows you to re-use the [moleculetype] in multiple systems without re-invoking pdb2gmx
(page 235) or manually copying and pasting. An example urea.itp follows:

[moleculetype]
; molname nrexcl
URE 3

[atoms]
1 C 1 URE C 1 0.880229 12.01000 ; amber C type

...
8 H 1 URE H22 8 0.395055 1.00800 ; amber H type

[bonds]
1 2

...
6 8

[dihedrals]
; ai aj ak al funct definition

2 1 3 4 9
...

6 1 3 5 9
[dihedrals]

3 6 1 2 4
1 4 3 5 4
1 7 6 8 4

Using itp (page 487) files results in a very short top (page 492) file:

;
; Example topology file
;
; The force field files to be included
#include "amber99.ff/forcefield.itp"

#include "urea.itp"

; Include TIP3P water topology
#include "amber99/tip3p.itp"

[system]
(continues on next page)

5.6. Topologies 476

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

Urea in Water

[molecules]
;molecule name nr.
Urea 1
SOL 1000

Ifdef statements

A very powerful feature in GROMACS is the use of #ifdef statements in your top (page 492) file. By making
use of this statement, and associated #define statements like were seen in amber99.ff/forcefield.itp
earlier, different parameters for one molecule can be used in the same top (page 492) file. An example is given
for TFE, where there is an option to use different charges on the atoms: charges derived by De Loof et al. 132
(page 582) or by Van Buuren and Berendsen 133 (page 582). In fact, you can use much of the functionality of the
C preprocessor, cpp, because grompp (page 190) contains similar pre-processing functions to scan the file. The
way to make use of the #ifdef option is as follows:

• either use the option define = -DDeLoof in the mdp (page 488) file (containing grompp (page 190)
input parameters), or use the line #define DeLoof early in your top (page 492) or itp (page 487) file;
and

• put the #ifdef statements in your top (page 492), as shown below:

...

[atoms]
; nr type resnr residu atom cgnr charge

→˓mass
#ifdef DeLoof
; Use Charges from DeLoof

1 C 1 TFE C 1 0.74
2 F 1 TFE F 1 -0.25
3 F 1 TFE F 1 -0.25
4 F 1 TFE F 1 -0.25
5 CH2 1 TFE CH2 1 0.25
6 OA 1 TFE OA 1 -0.65
7 HO 1 TFE HO 1 0.41

#else
; Use Charges from VanBuuren

1 C 1 TFE C 1 0.59
2 F 1 TFE F 1 -0.2
3 F 1 TFE F 1 -0.2
4 F 1 TFE F 1 -0.2
5 CH2 1 TFE CH2 1 0.26
6 OA 1 TFE OA 1 -0.55
7 HO 1 TFE HO 1 0.3

#endif

[bonds]
; ai aj funct c0 c1

6 7 1 1.000000e-01 3.138000e+05
1 2 1 1.360000e-01 4.184000e+05
1 3 1 1.360000e-01 4.184000e+05
1 4 1 1.360000e-01 4.184000e+05

(continues on next page)

5.6. Topologies 477

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

1 5 1 1.530000e-01 3.347000e+05
5 6 1 1.430000e-01 3.347000e+05

...

This mechanism is used by pdb2gmx (page 235) to implement optional position restraints (Position restraints
(page 422)) by #include-ing an itp (page 487) file whose contents will be meaningful only if a particular
#define is set (and spelled correctly!)

Topologies for free energy calculations

Free energy differences between two systems, A and B, can be calculated as described in sec. Free energy cal-
culations (page 395). Systems A and B are described by topologies consisting of the same number of molecules
with the same number of atoms. Masses and non-bonded interactions can be perturbed by adding B parameters
under the [atoms] directive. Bonded interactions can be perturbed by adding B parameters to the bonded
types or the bonded interactions. The parameters that can be perturbed are listed in Tables 5.13 and 5.14. The
𝜆-dependence of the interactions is described in section sec. Free energy interactions (page 432). The bonded
parameters that are used (on the line of the bonded interaction definition, or the ones looked up on atom types in
the bonded type lists) is explained in Table 5.15. In most cases, things should work intuitively. When the A and B
atom types in a bonded interaction are not all identical and parameters are not present for the B-state, either on the
line or in the bonded types, grompp (page 190) uses the A-state parameters and issues a warning. For free energy
calculations, all or no parameters for topology B (𝜆 = 1) should be added on the same line, after the normal
parameters, in the same order as the normal parameters. From GROMACS 4.6 onward, if 𝜆 is treated as a vector,
then the bonded-lambdas component controls all bonded terms that are not explicitly labeled as restraints.
Restrain terms are controlled by the restraint-lambdas component.

Table 5.15: The bonded parameters that are used for free energy topolo-
gies, on the line of the bonded interaction definition or looked up in the
bond types section based on atom types. A and B indicate the parameters
used for state A and B respectively, + and − indicate the (non-)presence
of parameters in the topology, x indicates that the presence has no influ-
ence.

B-state
atom
types
all identi-
cal to
A-state
atom
types

parameters
on line

parameters in | parameters in bonded types |
bonded types of A atoms | of B atoms

expected
message

A B A B A B

yes +AB − x x
yes +A +B x x
yes − − − − error
yes − − +AB −
yes − − +A +B
no +AB − x x x x warning
no +A +B x x x x
no − − − − x x error
no − − +AB − − − warning
no − − +A +B − − warning
no − − +A x +B −
no − − +A x • +B

Below is an example of a topology which changes from 200 propanols to 200 pentanes using the GROMOS-96

5.6. Topologies 478

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

force field.

; Include force field parameters
#include "gromos43a1.ff/forcefield.itp"

[moleculetype]
; Name nrexcl
PropPent 3

[atoms]
; nr type resnr residue atom cgnr charge mass typeB chargeB massB

1 H 1 PROP PH 1 0.398 1.008 CH3 0.0 15.035
2 OA 1 PROP PO 1 -0.548 15.9994 CH2 0.0 14.027
3 CH2 1 PROP PC1 1 0.150 14.027 CH2 0.0 14.027
4 CH2 1 PROP PC2 2 0.000 14.027
5 CH3 1 PROP PC3 2 0.000 15.035

[bonds]
; ai aj funct par_A par_B

1 2 2 gb_1 gb_26
2 3 2 gb_17 gb_26
3 4 2 gb_26 gb_26
4 5 2 gb_26

[pairs]
; ai aj funct

1 4 1
2 5 1

[angles]
; ai aj ak funct par_A par_B

1 2 3 2 ga_11 ga_14
2 3 4 2 ga_14 ga_14
3 4 5 2 ga_14 ga_14

[dihedrals]
; ai aj ak al funct par_A par_B

1 2 3 4 1 gd_12 gd_17
2 3 4 5 1 gd_17 gd_17

[system]
; Name
Propanol to Pentane

[molecules]
; Compound #mols
PropPent 200

Atoms that are not perturbed, PC2 and PC3, do not need B-state parameter specifications, since the B parameters
will be copied from the A parameters. Bonded interactions between atoms that are not perturbed do not need B
parameter specifications, as is the case for the last bond in the example topology. Topologies using the OPLS/AA
force field need no bonded parameters at all, since both the A and B parameters are determined by the atom types.
Non-bonded interactions involving one or two perturbed atoms use the free-energy perturbation functional forms.
Non-bonded interactions between two non-perturbed atoms use the normal functional forms. This means that
when, for instance, only the charge of a particle is perturbed, its Lennard-Jones interactions will also be affected
when lambda is not equal to zero or one.

Note that this topology uses the GROMOS-96 force field, in which the bonded interactions are not determined
by the atom types. The bonded interaction strings are converted by the C-preprocessor. The force-field parameter

5.6. Topologies 479

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

files contain lines like:

#define gb_26 0.1530 7.1500e+06

#define gd_17 0.000 5.86 3

Constraint forces

The constraint force between two atoms in one molecule can be calculated with the free energy perturbation code
by adding a constraint between the two atoms, with a different length in the A and B topology. When the B
length is 1 nm longer than the A length and lambda is kept constant at zero, the derivative of the Hamiltonian
with respect to lambda is the constraint force. For constraints between molecules, the pull code can be used, see
sec. Collective variables: the pull code (page 500). Below is an example for calculating the constraint force at
0.7 nm between two methanes in water, by combining the two methanes into one “molecule.” Note that the
definition of a “molecule” in GROMACS does not necessarily correspond to the chemical definition of a
molecule. In GROMACS, a “molecule” can be defined as any group of atoms that one wishes to consider
simultaneously. The added constraint is of function type 2, which means that it is not used for generating
exclusions (see sec. Exclusions (page 460)). Note that the constraint free energy term is included in the derivative
term, and is specifically included in the bonded-lambdas component. However, the free energy for changing
constraints is not included in the potential energy differences used for BAR and MBAR, as this requires
reevaluating the energy at each of the constraint components. This functionality is planned for later versions.

; Include force-field parameters
#include "gromos43a1.ff/forcefield.itp"

[moleculetype]
; Name nrexcl
Methanes 1

[atoms]
; nr type resnr residu atom cgnr charge mass

1 CH4 1 CH4 C1 1 0 16.043
2 CH4 1 CH4 C2 2 0 16.043

[constraints]
; ai aj funct length_A length_B

1 2 2 0.7 1.7

#include "gromos43a1.ff/spc.itp"

[system]
; Name
Methanes in Water

[molecules]
; Compound #mols
Methanes 1
SOL 2002

5.6. Topologies 480

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Coordinate file

Files with the gro (page 486) file extension contain a molecular structure in GROMOS-87 format. A sample piece
is included below:

MD of 2 waters, reformat step, PA aug-91
6
1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791
1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180
2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244
1.82060 1.82060 1.82060

This format is fixed, i.e. all columns are in a fixed position. If you want to read such a file in your own program
without using the GROMACS libraries you can use the following formats:

C-format: “%5i%5s%5s%5i%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f”

Or to be more precise, with title etc. it looks like this:

"%s\n", Title
"%5d\n", natoms
for (i=0; (i<natoms); i++) {

"%5d%-5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f\n",
residuenr,residuename,atomname,atomnr,x,y,z,vx,vy,vz

}
"%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f%10.5f\n",
box[X][X],box[Y][Y],box[Z][Z],
box[X][Y],box[X][Z],box[Y][X],box[Y][Z],box[Z][X],box[Z][Y]

Fortran format: (i5,2a5,i5,3f8.3,3f8.4)

So confin.gro is the GROMACS coordinate file and is almost the same as the GROMOS-87 file (for GROMOS
users: when used with ntx=7). The only difference is the box for which GROMACS uses a tensor, not a vector.

5.6.7 Force field organization

Force-field files

Many force fields are available by default. Force fields are detected by the presence of <name>.ff directories in
the $GMXLIB/share/gromacs/top sub-directory and/or the working directory. The information regarding
the location of the force field files is printed by pdb2gmx (page 235) so you can easily keep track of which version
of a force field is being called, in case you have made modifications in one location or another. The force fields
included with GROMACS are:

• AMBER03 protein, nucleic AMBER94 (Duan et al., J. Comp. Chem. 24, 1999-2012, 2003)

• AMBER94 force field (Cornell et al., JACS 117, 5179-5197, 1995)

• AMBER96 protein, nucleic AMBER94 (Kollman et al., Acc. Chem. Res. 29, 461-469, 1996)

• AMBER99 protein, nucleic AMBER94 (Wang et al., J. Comp. Chem. 21, 1049-1074, 2000)

• AMBER99SB protein, nucleic AMBER94 (Hornak et al., Proteins 65, 712-725, 2006)

• AMBER99SB-ILDN protein, nucleic AMBER94 (Lindorff-Larsen et al., Proteins 78, 1950-58, 2010)

• AMBERGS force field (Garcia & Sanbonmatsu, PNAS 99, 2782-2787, 2002)

• CHARMM27 all-atom force field (CHARM22 plus CMAP for proteins)

5.6. Topologies 481

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• GROMOS96 43a1 force field

• GROMOS96 43a2 force field (improved alkane dihedrals)

• GROMOS96 45a3 force field (Schuler JCC 2001 22 1205)

• GROMOS96 53a5 force field (JCC 2004 vol 25 pag 1656)

• GROMOS96 53a6 force field (JCC 2004 vol 25 pag 1656)

• GROMOS96 54a7 force field (Eur. Biophys. J. (2011), 40„ 843-856, DOI: 10.1007/s00249-011-0700-9)

• OPLS-AA/L all-atom force field (2001 aminoacid dihedrals)

A force field is included at the beginning of a topology file with an #include statement followed by <name>.
ff/forcefield.itp. This statement includes the force-field file, which, in turn, may include other force-field
files. All the force fields are organized in the same way. An example of the amber99.ff/forcefield.itp
was shown in Topology file (page 468).

For each force field, there several files which are only used by pdb2gmx (page 235). These are: residue databases
(rtp (page 491)) the hydrogen database (hdb (page 487)), two termini databases (.n.tdb and .c.tdb, see)
and the atom type database (atp (page 485)), which contains only the masses. Other optional files are described
in sec. pdb2gmx input files (page 461).

Changing force-field parameters

If one wants to change the parameters of few bonded interactions in a molecule, this is most easily accomplished
by typing the parameters behind the definition of the bonded interaction directly in the top (page 492) file under the
[moleculetype] section (see Topology file (page 468) for the format and units). If one wants to change the
parameters for all instances of a certain interaction one can change them in the force-field file or add a new [??
?types] section after including the force field. When parameters for a certain interaction are defined multiple
times, the last definition is used. As of GROMACS version 3.1.3, a warning is generated when parameters are
redefined with a different value. Changing the Lennard-Jones parameters of an atom type is not recommended,
because in the GROMOS force fields the Lennard-Jones parameters for several combinations of atom types are
not generated according to the standard combination rules. Such combinations (and possibly others that do follow
the combination rules) are defined in the [nonbond_params] section, and changing the Lennard-Jones
parameters of an atom type has no effect on these combinations.

Adding atom types

As of GROMACS version 3.1.3, atom types can be added in an extra [atomtypes] section after the inclusion
of the normal force field. After the definition of the new atom type(s), additional non-bonded and pair parameters
can be defined. In pre-3.1.3 versions of GROMACS, the new atom types needed to be added in the [atomtypes
] section of the force-field files, because all non-bonded parameters above the last [atomtypes] section
would be overwritten using the standard combination rules.

5.6. Topologies 482

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.7 File formats

5.7.1 Summary of file formats

Parameter files

mdp (page 488)
run parameters, input for gmx grompp (page 190) and gmx convert-tpr (page 146)

m2p (page 487)
input for gmx xpm2ps (page 300)

Structure files

gro (page 486)
GROMACS format

g96 (page 486)
GROMOS-96 format

pdb (page 490)
brookhaven Protein DataBank format

Structure+mass(db): tpr (page 494), gro (page 486), g96 (page 486), or pdb (page 490)
Structure and mass input for analysis tools. When gro or pdb is used approximate masses will be read from
the mass database.

Topology files

top (page 492)
system topology (ascii)

itp (page 487)
include topology (ascii)

rtp (page 491)
residue topology (ascii)

ndx (page 489)
index file (ascii)

n2t (page 490)
atom naming definition (ascii)

atp (page 485)
atom type library (ascii)

r2b (page 492)
residue to building block mapping (ascii)

arn (page 485)
atom renaming database (ascii)

hdb (page 487)
hydrogen atom database (ascii)

vsd (page 495)
virtual site database (ascii)

tdb (page 492)
termini database (ascii)

5.7. File formats 483

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Run Input files

tpr (page 494)
system topology, parameters, coordinates and velocities (binary, portable)

Trajectory files

tng (page 492)
Any kind of data (compressed, portable, any precision)

trr (page 494)
x, v and f (binary, full precision, portable)

xtc (page 496)
x only (compressed, portable, any precision)

gro (page 486)
x and v (ascii, any precision)

g96 (page 486)
x only (ascii, fixed high precision)

pdb (page 490)
x only (ascii, reduced precision)

Formats for full-precision data:
tng (page 492) or trr (page 494)

Generic trajectory formats:
tng (page 492), xtc (page 496), trr (page 494), gro (page 486), g96 (page 486), or pdb (page 490)

Energy files

ene (page 485)
energies, temperature, pressure, box size, density and virials (binary)

edr (page 485)
energies, temperature, pressure, box size, density and virials (binary, portable)

Generic energy formats:
edr (page 485) or ene (page 485)

Other files

dat (page 485)
generic, preferred for input

edi (page 485)
essential dynamics constraints input for gmx mdrun (page 215)

eps (page 486)
Encapsulated Postscript

log (page 487)
log file

mtx (page 489)
binary matrix data

out (page 490)
generic, preferred for output

tex (page 492)
LaTeX input

5.7. File formats 484

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

xpm (page 495)
ascii matrix data, use gmx xpm2ps (page 300) to convert to eps (page 486)

xvg (page 497)
xvgr input

5.7.2 File format details

atp

The atp file contains general information about atom types, like the atom number and the mass in atomic mass
units.

arn

The arn file allows the renaming of atoms from their force field names to the names as defined by IUPAC/PDB, to
allow easier visualization and identification.

cpt

The cpt file extension stands for portable checkpoint file. The complete state of the simulation is stored in the
checkpoint file, including extended thermostat/barostat variables, random number states and NMR time averaged
data. With domain decomposition also the some decomposition setup information is stored.

See also gmx mdrun (page 215).

dat

Files with the dat file extension contain generic input or output. As it is not possible to categorize all data file
formats, GROMACS has a generic file format called dat of which no format is given.

edi

Files with the edi file extension contain information for gmx mdrun (page 215) to run Molecular Dynamics with
Essential Dynamics constraints. It used to be possible to generate those through the options provided in the WHAT
IF program.

edr

The edr file extension stands for portable energy file. The energies are stored using the xdr protocol.

See also gmx energy (page 177).

ene

The ene file extension stands for binary energy file. It holds the energies as generated during your gmx mdrun
(page 215).

The file can be transformed to a portable energy file (portable across hardware platforms), the edr (page 485) file
using the program gmx eneconv (page 174).

See also gmx energy (page 177).

5.7. File formats 485

https://swift.cmbi.umcn.nl/whatif/
https://swift.cmbi.umcn.nl/whatif/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

eps

The eps file format is not a special GROMACS format, but just a variant of the standard PostScript(tm). A sample
eps file as generated by the gmx xpm2ps (page 300) program is included below. It shows the secondary structure
of a peptide as a function of time.

g96

A file with the g96 extension can be a GROMOS-96 initial/final configuration file or a coordinate trajectory file
or a combination of both. The file is fixed format, all floats are written as 15.9 (files can get huge). GROMACS
supports the following data blocks in the given order:

• Header block:

– TITLE (mandatory)

• Frame blocks:

– TIMESTEP (optional)

– POSITION/POSITIONRED (mandatory)

– VELOCITY/VELOCITYRED (optional)

– BOX (optional)

See the GROMOS-96 manual for a complete description of the blocks.

Note that all GROMACS programs can read compressed or g-zipped files.

gro

Files with the gro file extension contain a molecular structure in Gromos87 format. gro files can be used as
trajectory by simply concatenating files. An attempt will be made to read a time value from the title string in each
frame, which should be preceded by ‘t=’, as in the sample below.

A sample piece is included below:

MD of 2 waters, t= 0.0
6
1WATER OW1 1 0.126 1.624 1.679 0.1227 -0.0580 0.0434
1WATER HW2 2 0.190 1.661 1.747 0.8085 0.3191 -0.7791
1WATER HW3 3 0.177 1.568 1.613 -0.9045 -2.6469 1.3180
2WATER OW1 4 1.275 0.053 0.622 0.2519 0.3140 -0.1734
2WATER HW2 5 1.337 0.002 0.680 -1.0641 -1.1349 0.0257
2WATER HW3 6 1.326 0.120 0.568 1.9427 -0.8216 -0.0244
1.82060 1.82060 1.82060

Lines contain the following information (top to bottom):

• title string (free format string, optional time in ps after ‘t=’)

• number of atoms (free format integer)

• one line for each atom (fixed format, see below)

• box vectors (free format, space separated reals), values: v1(x) v2(y) v3(z) v1(y) v1(z) v2(x) v2(z) v3(x)
v3(y), the last 6 values may be omitted (they will be set to zero). GROMACS only supports boxes with
v1(y)=v1(z)=v2(z)=0.

5.7. File formats 486

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

This format is fixed, ie. all columns are in a fixed position. Optionally (for now only yet with trjconv) you can
write gro files with any number of decimal places, the format will then be n+5 positions with n decimal places
(n+1 for velocities) in stead of 8 with 3 (with 4 for velocities). Upon reading, the precision will be inferred from
the distance between the decimal points (which will be n+5). Columns contain the following information (from
left to right):

• residue number (5 positions, integer)

• residue name (5 characters)

• atom name (5 characters)

• atom number (5 positions, integer)

• position (in nm, x y z in 3 columns, each 8 positions with 3 decimal places)

• velocity (in nm/ps (or km/s), x y z in 3 columns, each 8 positions with 4 decimal places)

Note that separate molecules or ions (e.g. water or Cl-) are regarded as residues. If you want to write such a file
in your own program without using the GROMACS libraries you can use the following formats:

C format
"%5d%-5s%5s%5d%8.3f%8.3f%8.3f%8.4f%8.4f%8.4f"

Fortran format
(i5,2a5,i5,3f8.3,3f8.4)

Pascal format
This is left as an exercise for the user

Note that this is the format for writing, as in the above example fields may be written without spaces, and therefore
can not be read with the same format statement in C.

hdb

The hdb file extension stands for hydrogen database Such a file is needed by gmx pdb2gmx (page 235) when
building hydrogen atoms that were either originally missing, or that were removed with -ignh.

itp

The itp file extension stands for include topology. These files are included in topology files (with the top (page 492)
extension).

log

Logfiles are generated by some GROMACS programs and are usually in human-readable format. Use more
logfile.

m2p

The m2p file format contains input options for the gmx xpm2ps (page 300) program. All of these options are very
easy to comprehend when you look at the PostScript(tm) output from gmx xpm2ps (page 300).

; Command line options of xpm2ps override the parameters in this file
black&white = no ; Obsolete
titlefont = Times-Roman ; A PostScript Font
titlefontsize = 20 ; Font size (pt)
legend = yes ; Show the legend
legendfont = Times-Roman ; A PostScript Font
legendlabel = ; Used when there is none in the .

(continues on next page)

5.7. File formats 487

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

→˓xpm
legend2label = ; Used when merging two xpm's
legendfontsize = 14 ; Font size (pt)
xbox = 2.0 ; x-size of a matrix element
ybox = 2.0 ; y-size of a matrix element
matrixspacing = 20.0 ; Space between 2 matrices
xoffset = 0.0 ; Between matrix and bounding box
yoffset = 0.0 ; Between matrix and bounding box
x-major = 20 ; Major ticks on x axis every ..

→˓frames
x-minor = 5 ; Id. Minor ticks
x-firstmajor = 0 ; First frame for major tick
x-majorat0 = no ; Major tick at first frame
x-majorticklen = 8.0 ; x-majorticklength
x-minorticklen = 4.0 ; x-minorticklength
x-label = ; Used when there is none in the .

→˓xpm
x-fontsize = 16 ; Font size (pt)
x-font = Times-Roman ; A PostScript Font
x-tickfontsize = 10 ; Font size (pt)
x-tickfont = Helvetica ; A PostScript Font
y-major = 20
y-minor = 5
y-firstmajor = 0
y-majorat0 = no
y-majorticklen = 8.0
y-minorticklen = 4.0
y-label =
y-fontsize = 16
y-font = Times-Roman
y-tickfontsize = 10
y-tickfont = Helvetica

mdp

See the user guide for a detailed description of the options.

Below is a sample mdp file. The ordering of the items is not important, but if you enter the same thing twice, the
last is used (gmx grompp (page 190) gives you a note when overriding values). Dashes and underscores on the
left hand side are ignored.

The values of the options are values for a 1 nanosecond MD run of a protein in a box of water.

Note: The parameters chosen (e.g., short-range cutoffs) depend on the force field being used.

integrator = md
dt = 0.002
nsteps = 500000

nstlog = 5000
nstenergy = 5000
nstxout-compressed = 5000

continuation = yes
constraints = all-bonds
constraint-algorithm = lincs

(continues on next page)

5.7. File formats 488

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

cutoff-scheme = Verlet

coulombtype = PME
rcoulomb = 1.0

vdwtype = Cut-off
rvdw = 1.0
DispCorr = EnerPres

tcoupl = V-rescale
tc-grps = Protein SOL
tau-t = 0.1 0.1
ref-t = 300 300

pcoupl = Parrinello-Rahman
tau-p = 2.0
compressibility = 4.5e-5
ref-p = 1.0

With this input gmx grompp (page 190) will produce a commented file with the default name mdout.mdp. That
file will contain the above options, as well as all other options not explicitly set, showing their default values.

The mdp sample above was generated using mdpeditor. That tool can help generating mdp files according to best
practices based on simple instructions.

mtx

Files with the mtx file extension contain a matrix. The file format is identical to the trr (page 494) format.
Currently this file format is only used for hessian matrices, which are produced with gmx mdrun (page 215) and
read by gmx nmeig (page 224).

ndx

The GROMACS index file (usually called index.ndx) contains some user definable sets of atoms. The file can be
read by most analysis programs and by the preprocessor (gmx grompp (page 190)). Most of these programs create
default index groups when no index file is supplied, so you only need to make an index file when you need special
groups.

First the group name is written between square brackets. The following atom numbers may be spread out over as
many lines as you like. The atom numbering starts at 1.

An example file is here:

[Oxygen]
1 4 7
[Hydrogen]
2 3 5 6
8 9

There are two groups, and total nine atoms. The first group Oxygen has 3 elements. The second group Hydrogen
has 6 elements.

An index file generation tool is available: gmx make_ndx (page 213).

5.7. File formats 489

https://pypi.org/project/mdpeditor/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

n2t

This GROMACS file can be used to perform primitive translations between atom names found in structure files
and the corresponding atom types. This is mostly useful for using utilities such as gmx x2top (page 299), but users
should be aware that the knowledge in this file is extremely limited.

An example file (share/top/gromos53a5.ff/atomname2type.n2t) is here:

H H 0.408 1.008 1 O 0.1
O OA -0.674 15.9994 2 C 0.14 H 0.1
C CH3 0.000 15.035 1 C 0.15
C CH0 0.266 12.011 4 C 0.15 C 0.15 C 0.15 O 0.14

A short description of the file format follows:

• Column 1: Elemental symbol of the atom/first character in the atom name.

• Column 2: The atom type to be assigned.

• Column 3: The charge to be assigned.

• Column 4: The mass of the atom.

• Column 5: The number N of other atoms to which this atom is bonded. The number of fields that follow are
related to this number; for each atom, an elemental symbol and the reference distance for its bond length.

• Columns 6-onward: The elemental symbols and reference bond lengths for N connections (column 5) to the
atom being assigned parameters (column 1). The reference bond lengths have a tolerance of +/- 10% from
the value specified in this file. Any bond outside this tolerance will not be recognized as being connected to
the atom being assigned parameters.

out

Files with the out file extension contain generic output. As it is not possible to categorize all data file formats,
GROMACS has a generic file format called out of which no format is given.

pdb

Files with the pdb (page 490) extension are molecular structure files in the protein databank file format. The
protein databank file format describes the positions of atoms in a molecular structure. Coordinates are read from
the ATOM and HETATM records, until the file ends or an ENDMDL record is encountered. GROMACS programs
can read and write a simulation box in the CRYST1 entry. The pdb format can also be used as a trajectory format:
several structures, separated by ENDMDL, can be read from or written to one file.

Example

A pdb file should look like this:

ATOM 1 H1 LYS 1 14.260 6.590 34.480 1.00 0.00
ATOM 2 H2 LYS 1 13.760 5.000 34.340 1.00 0.00
ATOM 3 N LYS 1 14.090 5.850 33.800 1.00 0.00
ATOM 4 H3 LYS 1 14.920 5.560 33.270 1.00 0.00
...
...

5.7. File formats 490

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

rtp

The rtp file extension stands for residue topology. Such a file is needed by gmx pdb2gmx (page 235) to make a
GROMACS topology for a protein contained in a pdb (page 490) file. The file contains the default interaction type
for the 4 bonded interactions and residue entries, which consist of atoms and optionally bonds, angles dihedrals
and impropers. Parameters can be added to bonds, angles, dihedrals and impropers, these parameters override the
standard parameters in the itp (page 487) files. This should only be used in special cases. Instead of parameters a
string can be added for each bonded interaction, the string is copied to the top (page 492) file, this is used for the
GROMOS96 forcefield.

gmx pdb2gmx (page 235) automatically generates all angles, this means that the [angles] field is only useful
for overriding itp (page 487) parameters.

gmx pdb2gmx (page 235) automatically generates one proper dihedral for every rotatable bond, preferably on
heavy atoms. When the [dihedrals] field is used, no other dihedrals will be generated for the bonds corre-
sponding to the specified dihedrals. It is possible to put more than one dihedral on a rotatable bond.

gmx pdb2gmx (page 235) sets the number exclusions to 3, which means that interactions between atoms connected
by at most 3 bonds are excluded. Pair interactions are generated for all pairs of atoms which are separated by 3
bonds (except pairs of hydrogens). When more interactions need to be excluded, or some pair interactions should
not be generated, an [exclusions] field can be added, followed by pairs of atom names on separate lines. All
non-bonded and pair interactions between these atoms will be excluded.

A sample is included below.

[bondedtypes] ; mandatory
; bonds angles dihedrals impropers

1 1 1 2 ; mandatory

[GLY] ; mandatory

[atoms] ; mandatory
; name type charge chargegroup

N N -0.280 0
H H 0.280 0

CA CH2 0.000 1
C C 0.380 2
O O -0.380 2

[bonds] ; optional
;atom1 atom2 b0 kb

N H
N CA

CA C
C O

-C N

[exclusions] ; optional
;atom1 atom2

[angles] ; optional
;atom1 atom2 atom3 th0 cth

[dihedrals] ; optional
;atom1 atom2 atom3 atom4 phi0 cp mult

[impropers] ; optional
;atom1 atom2 atom3 atom4 q0 cq

N -C CA H
(continues on next page)

5.7. File formats 491

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

-C -CA N -O

[ZN]
[atoms]

ZN ZN 2.000 0

r2b

The r2b file translates the residue names for residues that have different names in different force fields, or have
different names depending on their protonation states.

tdb

tdb files contain the information about amino acid termini that can be placed at the end of a polypeptide chain.

tex

We use LaTeX for document processing. Although the input is not so user friendly, it has some advantages over
word processors.

• LaTeX knows a lot about formatting, probably much more than you.

• The input is clear, you always know what you are doing

• It makes anything from letters to a thesis

• Much more. . .

tng

Files with the .tng file extension can contain all kinds of data related to the trajectory of a simulation. For
example, it might contain coordinates, velocities, forces and/or energies. Various mdp (page 488) file options
control which of these are written by gmx mdrun (page 215), whether data is written with compression, and how
lossy that compression can be. This file is in portable binary format and can be read with gmx dump (page 169).

gmx dump (page 169) -f traj.tng

or if you’re not such a fast reader:

gmx dump -f traj.tng | less

You can also get a quick look in the contents of the file (number of frames etc.) using:

gmx check (page 134) -f traj.tng

top

The top file extension stands for topology. It is an ascii file which is read by gmx grompp (page 190) which
processes it and creates a binary topology (tpr (page 494) file).

A sample file is included below:

5.7. File formats 492

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

;
; Example topology file
;
[defaults]
; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ

1 1 no 1.0 1.0

; The force field files to be included
#include "rt41c5.itp"

[moleculetype]
; name nrexcl
Urea 3

[atoms]
; nr type resnr residu atom cgnr charge

1 C 1 UREA C1 1 0.683
2 O 1 UREA O2 1 -0.683
3 NT 1 UREA N3 2 -0.622
4 H 1 UREA H4 2 0.346
5 H 1 UREA H5 2 0.276
6 NT 1 UREA N6 3 -0.622
7 H 1 UREA H7 3 0.346
8 H 1 UREA H8 3 0.276

[bonds]
; ai aj funct c0 c1

3 4 1 1.000000e-01 3.744680e+05
3 5 1 1.000000e-01 3.744680e+05
6 7 1 1.000000e-01 3.744680e+05
6 8 1 1.000000e-01 3.744680e+05
1 2 1 1.230000e-01 5.020800e+05
1 3 1 1.330000e-01 3.765600e+05
1 6 1 1.330000e-01 3.765600e+05

[pairs]
; ai aj funct c0 c1

2 4 1 0.000000e+00 0.000000e+00
2 5 1 0.000000e+00 0.000000e+00
2 7 1 0.000000e+00 0.000000e+00
2 8 1 0.000000e+00 0.000000e+00
3 7 1 0.000000e+00 0.000000e+00
3 8 1 0.000000e+00 0.000000e+00
4 6 1 0.000000e+00 0.000000e+00
5 6 1 0.000000e+00 0.000000e+00

[angles]
; ai aj ak funct c0 c1

1 3 4 1 1.200000e+02 2.928800e+02
1 3 5 1 1.200000e+02 2.928800e+02
4 3 5 1 1.200000e+02 3.347200e+02
1 6 7 1 1.200000e+02 2.928800e+02
1 6 8 1 1.200000e+02 2.928800e+02
7 6 8 1 1.200000e+02 3.347200e+02
2 1 3 1 1.215000e+02 5.020800e+02
2 1 6 1 1.215000e+02 5.020800e+02
3 1 6 1 1.170000e+02 5.020800e+02

(continues on next page)

5.7. File formats 493

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

[dihedrals]
; ai aj ak al funct c0 c1 c2

2 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 4 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
6 1 3 5 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 7 1 1.800000e+02 3.347200e+01 2.000000e+00
2 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00
3 1 6 8 1 1.800000e+02 3.347200e+01 2.000000e+00

[dihedrals]
; ai aj ak al funct c0 c1

3 4 5 1 2 0.000000e+00 1.673600e+02
6 7 8 1 2 0.000000e+00 1.673600e+02
1 3 6 2 2 0.000000e+00 1.673600e+02

; Include SPC water topology
#include "spc.itp"

[system]
Urea in Water

[molecules]
Urea 1
SOL 1000

tpr

The tpr file extension stands for portable binary run input file. This file contains the starting structure of your
simulation, the molecular topology and all the simulation parameters. Because this file is in binary format it
cannot be read with a normal editor. To read a portable binary run input file type:

gmx dump (page 169) -s topol.tpr

or if you’re not such a fast reader:

gmx dump -s topol.tpr | less

You can also compare two tpr files using:

gmx check (page 134) -s1 top1 -s2 top2 | less

trr

Files with the trr file extension contain the trajectory of a simulation. In this file all the coordinates, velocities,
forces and energies are printed as you told GROMACS in your mdp file. This file is in portable binary format and
can be read with gmx dump (page 169):

gmx dump -f traj.trr

or if you’re not such a fast reader:

gmx dump -f traj.trr | less

You can also get a quick look in the contents of the file (number of frames etc.) using:

5.7. File formats 494

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

% gmx check (page 134) -f traj.trr

vsd

The vsd file contains the information on how to place virtual sites on a number of different molecules in a force
field.

xdr

GROMACS uses the XDR file format to store things like coordinate files internally.

xpm

The GROMACS xpm file format is compatible with the XPixMap format and is used for storing matrix data.
Thus GROMACS xpm files can be viewed directly with programs like XV. Alternatively, they can be imported
into GIMP and scaled to 300 DPI, using strong antialiasing for font and graphics. The first matrix data line in
an xpm file corresponds to the last matrix row. In addition to the XPixMap format, GROMACS xpm files may
contain extra fields. The information in these fields is used when converting an xpm file to EPS with gmx xpm2ps
(page 300). The optional extra field are:

• Before the gv_xpm declaration: title, legend, x-label, y-label and type, all followed
by a string. The legend field determines the legend title. The type field must be followed by
"continuous" or "discrete", this determines which type of legend will be drawn in an EPS file,
the default type is continuous.

• The xpm colormap entries may be followed by a string, which is a label for that color.

• Between the colormap and the matrix data, the fields x-axis and/or y-axis may be present followed by
the tick-marks for that axis.

The example GROMACS xpm file below contains all the extra fields. The C-comment delimiters and the colon in
the extra fields are optional.

/* XPM */
/* This matrix is generated by gmx rms. */
/* title: "Backbone RMSD matrix" */
/* legend: "RMSD (nm)" */
/* x-label: "Time (ps)" */
/* y-label: "Time (ps)" */
/* type: "Continuous" */
static char * gv_xpm[] = {
"13 13 6 1",
"A c #FFFFFF " /* "0" */,
"B c #CCCCCC " /* "0.0399" */,
"C c #999999 " /* "0.0798" */,
"D c #666666 " /* "0.12" */,
"E c #333333 " /* "0.16" */,
"F c #000000 " /* "0.2" */,
/* x-axis: 0 40 80 120 160 200 240 280 320 360 400 440 480 */
/* y-axis: 0 40 80 120 160 200 240 280 320 360 400 440 480 */
"FEDDDDCCCCCBA",
"FEDDDCCCCBBAB",
"FEDDDCCCCBABC",
"FDDDDCCCCABBC",
"EDDCCCCBACCCC",
"EDCCCCBABCCCC",
"EDCCCBABCCCCC",

(continues on next page)

5.7. File formats 495

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

"EDCCBABCCCCCD",
"EDCCABCCCDDDD",
"ECCACCCCCDDDD",
"ECACCCCCDDDDD",
"DACCDDDDDDEEE",
"ADEEEEEEEFFFF"

xtc

The xtc format is a portable format for trajectories. It uses the xdr routines for writing and reading data which
was created for the Unix NFS system. The trajectories are written using a reduced precision algorithm which
works in the following way: the coordinates (in nm) are multiplied by a scale factor, typically 1000, so that you
have coordinates in pm. These are rounded to integer values. Then several other tricks are performed, for instance
making use of the fact that atoms close in sequence are usually close in space too (e.g. a water molecule). To this
end, the xdr library is extended with a special routine to write 3-D float coordinates. The routine was originally
written by Frans van Hoesel as part of an Europort project. An updated version of it can be obtained through this
link.

All the data is stored using calls to xdr routines.

int magic
A magic number, for the current file version its value is 1995.

int natoms
The number of atoms in the trajectory.

int step
The simulation step.

float time
The simulation time.

float box[3][3]
The computational box which is stored as a set of three basis vectors, to allow for triclinic PBC. For a
rectangular box the box edges are stored on the diagonal of the matrix.

3dfcoord x[natoms]
The coordinates themselves stored in reduced precision. Please note that when the number of atoms is
smaller than 9 no reduced precision is used.

Using xtc in your C++ programs

It is possible to write your own analysis tools to take advantage of the compressed .xtc format files: see the
template.cpp file in the share/gromacs/template directory of your installation for an example and
https://manual.gromacs.org/current/doxygen/html-full/page_analysistemplate.xhtml for documentation.

To read and write xtc files the following routines are available via xtcio.h:

/* All functions return 1 if successful, 0 otherwise */

struct t_fileio* open_xtc(const char* filename, const char* mode);
/* Open a file for xdr I/O */

void close_xtc(struct t_fileio* fio);
/* Close the file for xdr I/O */

int read_first_xtc(struct t_fileio* fio,
int* natoms,

(continues on next page)

5.7. File formats 496

https://github.com/Pappulab/xdrf
https://github.com/Pappulab/xdrf
https://manual.gromacs.org/current/doxygen/html-full/page_analysistemplate.xhtml

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

int64_t* step,
real* time,
matrix box,
rvec** x,
real* prec,
gmx_bool* bOK);

/* Open xtc file, read xtc file first time, allocate memory for x */

int read_next_xtc(struct t_fileio* fio, int natoms, int64_t* step, real*
→˓time, matrix box, rvec* x, real* prec, gmx_bool* bOK);
/* Read subsequent frames */

int write_xtc(struct t_fileio* fio, int natoms, int64_t step, real time,
→˓const rvec* box, const rvec* x, real prec);
/* Write a frame to xtc file */

To use the library function include "gromacs/fileio/xtcio.h" in your file and link with -lgromacs.

xvg

Almost all output from GROMACS analysis tools is ready as input for Grace, formerly known as Xmgr. We use
Grace, because it is very flexible, and it is also free software. It produces PostScript(tm) output, which is very
suitable for inclusion in eg. LaTeX documents, but also for other word processors.

A sample Grace session with GROMACS data is shown below:

5.7. File formats 497

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.8 Special Topics

This section covers some of the more specialized topics concerning the use of GROMACS for specific scientific
problems.

5.8.1 Free energy implementation

For free energy calculations, there are two things that must be specified; the end states, and the pathway connecting
the end states. The end states can be specified in two ways. The most straightforward is through the specification
of end states in the topology file. Most potential forms support both an 𝐴 state and a 𝐵 state. Whenever both
states are specified, the 𝐴 state corresponds to the initial free energy state, and the 𝐵 state corresponds to the final
state.

In some cases, the end state can also be defined in some cases without altering the topology, solely through the
mdp (page 488) file, through the use of the couple-moltype, couple-lambda0, couple-lambda1,
and couple-intramol mdp (page 488) keywords. Any molecule type selected in couple-moltype will
automatically have a𝐵 state implicitly constructed (and the𝐴 state redefined) according to the couple-lambda
keywords. couple-lambda0 and couple-lambda1 define the non-bonded parameters that are present in
the 𝐴 state (couple-lambda0) and the 𝐵 state (couple-lambda1). The choices are q, vdw, and vdw-q;
these indicate the Coulombic, van der Waals, or both parameters that are turned on in the respective state.

Once the end states are defined, then the path between the end states has to be defined. This path is defined solely
in the .mdp file. Starting in 4.6, 𝜆 is a vector of components, with Coulombic, van der Waals, bonded, restraint,
and mass components all able to be adjusted independently. This makes it possible to turn off the Coulombic
term linearly, and then the van der Waals using soft core, all in the same simulation. This is especially useful for
replica exchange or expanded ensemble simulations, where it is important to sample all the way from interacting
to non-interacting states in the same simulation to improve sampling.

fep-lambdas is the default array of 𝜆 values ranging from 0 to 1. All of the other lambda arrays use the
values in this array if they are not specified. The previous behavior, where the pathway is controlled by a single 𝜆
variable, can be preserved by using only fep-lambdas to define the pathway.

Fig. 5.37: Separate 𝜆 values for Coulomb, van-der-Waals and restraint interactions.

5.8. Special Topics 498

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fig. 5.37 shows an example of different lambda arrays. There, first the Coulombic terms are reduced, then the
van der Waals terms, changing bonded at the same time rate as the van der Waals, but changing the restraints
throughout the first two-thirds of the simulation. The corresponding 𝜆 vector is given here:

coul-lambdas = 0.0 0.2 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
vdw-lambdas = 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.7 0.8 1.0
bonded-lambdas = 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.7 0.8 1.0
restraint-lambdas = 0.0 0.0 0.1 0.2 0.3 0.5 0.7 1.0 1.0 1.0

This is also equivalent to:

fep-lambdas = 0.0 0.0 0.0 0.0 0.4 0.5 0.6 0.7 0.8 1.0
coul-lambdas = 0.0 0.2 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0
restraint-lambdas = 0.0 0.0 0.1 0.2 0.3 0.5 0.7 1.0 1.0 1.0

The fep-lambda array, in this case, is being used as the default to fill in the bonded and van der Waals 𝜆 arrays.
Usually, it’s best to fill in all arrays explicitly, just to make sure things are properly assigned.

If you want to turn on only restraints going from 𝐴 to 𝐵, then it would be:

restraint-lambdas = 0.0 0.1 0.2 0.4 0.6 1.0

and all of the other components of the 𝜆 vector would be left in the 𝐴 state.

To compute free energies with a vector 𝜆 using thermodynamic integration, then the TI equation becomes vector
equation:

∆𝐹 =

∫︁
⟨∇𝐻⟩ · 𝑑�⃗� (5.300)

or for finite differences:

∆𝐹 ≈
∫︁ ∑︁

⟨∇𝐻⟩ ·∆𝜆 (5.301)

The external pymbar script can compute this integral automatically from the GROMACS dhdl.xvg output.

5.8.2 Potential of mean force

A potential of mean force (PMF) is a potential that is obtained by integrating the mean force from an ensemble of
configurations. In GROMACS, there are several different methods to calculate the mean force. Each method has
its limitations, which are listed below.

• pull code: between the centers of mass of molecules or groups of molecules.

• AWH code: currently acts on coordinates provided by the pull code or the free-energy lambda parameter.

• free-energy code with harmonic bonds or constraints: between single atoms.

• free-energy code with position restraints: changing the conformation of a relatively immobile group of
atoms.

• pull code in limited cases: between groups of atoms that are part of a larger molecule for which the bonds
are constrained with SHAKE or LINCS. If the pull group if relatively large, the pull code can be used.

The pull and free-energy code a described in more detail in the following two sections.

5.8. Special Topics 499

https://SimTK.org/home/pymbar

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Entropic effects

When a distance between two atoms or the centers of mass of two groups is constrained or restrained, there will
be a purely entropic contribution to the PMF due to the rotation of the two groups 134 (page 583). For a system
of two non-interacting masses the potential of mean force is:

𝑉𝑝𝑚𝑓 (𝑟) = −(𝑛𝑐 − 1)𝑘𝐵𝑇 log(𝑟) (5.302)

where 𝑛𝑐 is the number of dimensions in which the constraint works (i.e. 𝑛𝑐 = 3 for a normal constraint and
𝑛𝑐 = 1 when only the 𝑧-direction is constrained). Whether one needs to correct for this contribution depends
on what the PMF should represent. When one wants to pull a substrate into a protein, this entropic term indeed
contributes to the work to get the substrate into the protein. But when calculating a PMF between two solutes in
a solvent, for the purpose of simulating without solvent, the entropic contribution should be removed. Note that
this term can be significant; when at 300K the distance is halved, the contribution is 3.5 kJ mol−1.

5.8.3 Non-equilibrium pulling

When the distance between two groups is changed continuously, work is applied to the system, which means
that the system is no longer in equilibrium. Although in the limit of very slow pulling the system is again in
equilibrium, for many systems this limit is not reachable within reasonable computational time. However, one
can use the Jarzynski relation 135 (page 583) to obtain the equilibrium free-energy difference ∆𝐺 between two
distances from many non-equilibrium simulations:

∆𝐺𝐴𝐵 = −𝑘𝐵𝑇 log
⟨︀
𝑒−𝛽𝑊𝐴𝐵

⟩︀
𝐴

(5.303)

where 𝑊𝐴𝐵 is the work performed to force the system along one path from state A to B, the angular bracket
denotes averaging over a canonical ensemble of the initial state A and 𝛽 = 1/𝑘𝐵𝑇 .

5.8.4 Collective variables: the pull code

The pull code applies forces or constraints on collective variables (sometimes referred to as reaction coordinates).
The basic collective pull coordinates are a distance, angle and dihedral angle between centers of mass of groups
atoms, the so-called “pull groups”. More complex collective variables can be defined using The transformation
pull coordinate (page 503). A pull group can be part of one or more pull coordinates. Furthermore, a coordinate
can also operate on a single group and an absolute reference position in space. The distance between a pair of
groups can be determined in 1, 2 or 3 dimensions, or can be along a user-defined vector. The reference distance
can be constant or can change linearly with time. Normally all atoms are weighted by their mass, but an additional
weighting factor can also be used.

V

zz link spring

rup

Fig. 5.38: Schematic picture of pulling a lipid out of a lipid bilayer with umbrella pulling. 𝑉𝑟𝑢𝑝 is the velocity at
which the spring is retracted, 𝑍𝑙𝑖𝑛𝑘 is the atom to which the spring is attached and 𝑍𝑠𝑝𝑟𝑖𝑛𝑔 is the location of the
spring.

Several different pull types, i.e. ways to apply the pull force, are supported, and in all cases the reference distance
can be constant or linearly changing with time.

5.8. Special Topics 500

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

1. Umbrella pulling A harmonic potential is applied between the centers of mass of two groups. Thus, the
force is proportional to the displacement.

2. Constraint pulling The distance between the centers of mass of two groups is constrained. The constraint
force can be written to a file. This method uses the SHAKE algorithm but only needs 1 iteration to be exact
if only two groups are constrained.

3. Constant force pulling A constant force is applied between the centers of mass of two groups. Thus, the
potential is linear. In this case there is no reference distance of pull rate.

4. Flat bottom pulling Like umbrella pulling, but the potential and force are zero for coordi-
nate values below (pull-coord?-type = flat-bottom) or above (pull-coord?-type =
flat-bottom-high) a reference value. This is useful for restraining e.g. the distance between two
molecules to a certain region.

5. External potential This takes the potential acting on the reaction coordinate from another module. Cur-
rent only the Accelerated Weight Histogram method (see sec. Adaptive biasing with AWH (page 505)) is
supported, which provides adaptive biasing of pull coordinates.

In addition, there are different types of reaction coordinates, so-called pull geometries. These are set with the mdp
(page 488) option pull-coord?-geometry.

Definition of the center of mass

In GROMACS, there are three ways to define the center of mass of a group. The standard way is a “plain” center
of mass, possibly with additional weighting factors. With periodic boundary conditions it is no longer possible
to uniquely define the center of mass of a group of atoms. Therefore, a reference atom is used. For determining
the center of mass, for all other atoms in the group, the closest periodic image to the reference atom is used. This
uniquely defines the center of mass. By default, the middle (determined by the order in the topology) atom is used
as a reference atom, but the user can also select any other atom if it would be closer to center of the group.

When there are large pull groups, such as a lipid bilayer, pull-pbc-ref-prev-step-com can be used to
avoid potential large movements of the center of mass in case that atoms in the pull group move so much that
the reference atom is too far from the intended center of mass. With this option enabled the center of mass from
the previous step is used, instead of the position of the reference atom, to determine the reference position. The
position of the reference atom is still used for the first step. For large pull groups it is important to select a reference
atom that is close to the intended center of mass, i.e. do not use pull-group?-pbcatom = 0.

For a layered system, for instance a lipid bilayer, it may be of interest to calculate the PMF of a lipid as function
of its distance from the whole bilayer. The whole bilayer can be taken as reference group in that case, but
it might also be of interest to define the reaction coordinate for the PMF more locally. The mdp (page 488)
option pull-coord?-geometry = cylinder does not use all the atoms of the reference group, but instead
dynamically only those within a cylinder with radius pull-cylinder-r around the pull vector going through
the pull group. This only works for distances defined in one dimension, and the cylinder is oriented with its long
axis along this one dimension. To avoid jumps in the pull force, contributions of atoms are weighted as a function
of distance (in addition to the mass weighting), for atom 𝑖:

𝑤𝑖(𝑟𝑖 < 𝑟cyl) = 1− 2

(︂
𝑟𝑖
𝑟cyl

)︂2

+

(︂
𝑟𝑖
𝑟cyl

)︂4

𝑤𝑖(𝑟𝑖 ≥ 𝑟cyl) = 0

(5.304)

Note that the radial dependence on the weight causes a radial force on both cylinder group and the other pull
group:

𝐹 radial
𝑖 (𝑟𝑖 < 𝑟cyl) = 𝐹 pull𝑎𝑖

1∑︀
𝑖 𝑤𝑖

4

𝑟4cyl
𝑟𝑖(𝑟

2
𝑖 − 𝑟2cyl)

𝐹 radial
𝑖 (𝑟𝑖 ≥ 𝑟cyl) = 0

(5.305)

where 𝐹 pull is the pull force working between the groups and 𝑎𝑖 is the axial distance of atom 𝑖 to the center of
mass of the cylinder group. This is an undesirable, but unavoidable effect. To minimize this effect, the cylinder

5.8. Special Topics 501

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

c

cd

cd

Fig. 5.39: Comparison of a plain center of mass reference group versus a cylinder reference group applied to
interface systems. C is the reference group. The circles represent the center of mass of two groups plus the
reference group, 𝑑𝑐 is the reference distance.

radius should be chosen sufficiently large. The effective mass is 0.47 times that of a cylinder with uniform weights
and equal to the mass of uniform cylinder of 0.79 times the radius.

For a group of molecules in a periodic system, a plain reference group might not be well-defined. An example
is a water slab that is connected periodically in 𝑥 and 𝑦, but has two liquid-vapor interfaces along 𝑧. In such a
setup, water molecules can evaporate from the liquid and they will move through the vapor, through the periodic
boundary, to the other interface. Such a system is inherently periodic and there is no proper way of defining a
“plain” center of mass along 𝑧. A proper solution is to using a cosine shaped weighting profile for all atoms in
the reference group. The profile is a cosine with a single period in the unit cell. Its phase is optimized to give the
maximum sum of weights, including mass weighting. This provides a unique and continuous reference position
that is nearly identical to the plain center of mass position in case all atoms are all within a half of the unit-cell
length. See ref 136 (page 583) for details.

When relative weights 𝑤𝑖 are used during the calculations, either by supplying weights in the input or due to
cylinder geometry or due to cosine weighting, the weights need to be scaled to conserve momentum:

𝑤′
𝑖 = 𝑤𝑖

𝑁∑︁
𝑗=1

𝑤𝑗 𝑚𝑗

⧸︃
𝑁∑︁
𝑗=1

𝑤2
𝑗 𝑚𝑗 (5.306)

where 𝑚𝑗 is the mass of atom 𝑗 of the group. The mass of the group, required for calculating the constraint force,
is:

𝑀 =

𝑁∑︁
𝑖=1

𝑤′
𝑖𝑚𝑖 (5.307)

The definition of the weighted center of mass is:

r𝑐𝑜𝑚 =

𝑁∑︁
𝑖=1

𝑤′
𝑖𝑚𝑖 r𝑖

⧸︃
𝑀 (5.308)

From the centers of mass the AFM, constraint, or umbrella force F𝑐𝑜𝑚 on each group can be calculated. The force
on the center of mass of a group is redistributed to the atoms as follows:

F𝑖 =
𝑤′

𝑖𝑚𝑖

𝑀
F𝑐𝑜𝑚 (5.309)

5.8. Special Topics 502

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Definition of the pull direction

The most common setup is to pull along the direction of the vector containing the two pull groups, this is selected
with pull-coord?-geometry = distance. You might want to pull along a certain vector instead, which
is selected with pull-coord?-geometry = direction. But this can cause unwanted torque forces in
the system, unless you pull against a reference group with (nearly) fixed orientation, e.g. a membrane protein
embedded in a membrane along x/y while pulling along z. If your reference group does not have a fixed orientation,
you should probably use pull-coord?-geometry = direction-relative, see Fig. 5.40. Since the
potential now depends on the coordinates of two additional groups defining the orientation, the torque forces will
work on these two groups.

3

4

dp

2

1

Fig. 5.40: The pull setup for geometry direction-relative. The “normal” pull groups are 1 and 2. Groups
3 and 4 define the pull direction and thus the direction of the normal pull forces (red). This leads to reaction forces
(blue) on groups 3 and 4, which are perpendicular to the pull direction. Their magnitude is given by the “normal”
pull force times the ratio of 𝑑𝑝 and the distance between groups 3 and 4.

Definition of the angle and dihedral pull geometries

Four pull groups are required for pull-coord?-geometry = angle. In the same way as for geometries
with two groups, each consecutive pair of groups 𝑖 and 𝑖 + 1 define a vector connecting the COMs of groups 𝑖
and 𝑖 + 1. The angle is defined as the angle between the two resulting vectors. E.g., the mdp (page 488) option
pull-coord?-groups = 1 2 2 4 defines the angle between the vector from the COM of group 1 to the
COM of group 2 and the vector from the COM of group 2 to the COM of group 4. The angle takes values in
the closed interval [0, 180] deg. For pull-coord?-geometry = angle-axis the angle is defined with
respect to a reference axis given by pull-coord?-vec and only two groups need to be given. The dihedral
geometry requires six pull groups. These pair up in the same way as described above and so define three vectors.
The dihedral angle is defined as the angle between the two planes spanned by the two first and the two last vectors.
Equivalently, the dihedral angle can be seen as the angle between the first and the third vector when these vectors
are projected onto a plane normal to the second vector (the axis vector). As an example, consider a dihedral angle
involving four groups: 1, 5, 8 and 9. Here, the mdp (page 488) option pull-coord?-groups = 8 1 1 5
5 9 specifies the three vectors that define the dihedral angle: the first vector is the COM distance vector from
group 8 to 1, the second vector is the COM distance vector from group 1 to 5, and the third vector is the COM
distance vector from group 5 to 9. The dihedral angle takes values in the interval (-180, 180] deg and has periodic
boundaries.

The transformation pull coordinate

The transformation pull coordinate is a “meta” pull coordinate that can be used to define more complex collective
variables. It can transform one or more other pull coordinates, as well as time, using an arbitrary mathematical
expression. This is a powerful tool for generating complex collective variables. A simple example is a contact
coordinate using a non-linear transformation of a distance. More complex examples are a (non-)linear combination
of two or more pull coordinates or a sum of contacts.

Typically, the force constant for pull coordinate(s) the transformation coordinates acts on should be zero. This
avoids unintended addition of direct forces on the pull coordinate(s) to the indirect forces from the transition pull
coordinate. This is not a requirement, but having both a direct and indirect, from the tranformation coordinate,

5.8. Special Topics 503

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

force working on them is almost never desirable. If the transformation is a linear combination of multiple dis-
tances, it is useful to normalize the coefficients such that the transformation coordinate also has units of nanometer.
That makes both the choice of the force constant and the interpretation easier.

Here are two examples of pull sections of the mdp (page 488) input that use a tranformation coordinate setups.
The first is a contact reaction coordinate that is 1 at contact and 0 at larger distances:

pull = yes
pull-ngroups = 2
pull-ncoords = 2

pull-group1-name = groupA
pull-group2-name = groupB

pull-coord1-type = umbrella
pull-coord1-geometry = distance
pull-coord1-groups = 1 2
pull-coord1-dim = Y Y Y
pull-coord1-k = 0 ; avoid forces working directly on this

→˓distance

pull-coord2-type = umbrella
pull-coord2-geometry = transformation
pull-coord2-expression = 1/(1 + exp(50*(x1 - 1.8*0.3))) ; x1 refers to

→˓the value of coord1
pull-coord2-init = 1 ; this restrains the distance to having

→˓the contact
pull-coord2-k = 100

The second example is an average of two distances:

pull = yes
pull-ngroups = 4
pull-ncoords = 3

pull-group1-name = groupA
pull-group2-name = groupB
pull-group3-name = groupC
pull-group4-name = groupD

pull-coord1-type = umbrella
pull-coord1-geometry = distance
pull-coord1-groups = 1 2
pull-coord1-dim = Y Y Y
pull-coord1-k = 0 ; avoid forces working directly on this

→˓distance

pull-coord2-type = umbrella
pull-coord2-geometry = distance
pull-coord2-groups = 3 4
pull-coord2-dim = Y Y Y
pull-coord2-k = 0 ; avoid forces working directly on this

→˓distance

pull-coord3-type = umbrella
pull-coord3-geometry = transformation
pull-coord3-expression = 0.5*(x1 + x2) ; x1 and x2 refer to the value

→˓of coord1 and coord2
(continues on next page)

5.8. Special Topics 504

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

pull-coord3-init = 0.8 ; restrains the average distance to 0.8
→˓nm
pull-coord3-k = 1000

Limitations

There is one theoretical limitation: strictly speaking, constraint forces can only be calculated between groups that
are not connected by constraints to the rest of the system. If a group contains part of a molecule of which the
bond lengths are constrained, the pull constraint and LINCS or SHAKE bond constraint algorithms should be
iterated simultaneously. This is not done in GROMACS. This means that for simulations with constraints
= all-bonds in the mdp (page 488) file pulling is, strictly speaking, limited to whole molecules or groups of
molecules. In some cases this limitation can be avoided by using the free energy code, see sec. Calculating a PMF
using the free-energy code (page 528). In practice, the errors caused by not iterating the two constraint algorithms
can be negligible when the pull group consists of a large amount of atoms and/or the pull force is small. In such
cases, the constraint correction displacement of the pull group is small compared to the bond lengths.

5.8.5 Adaptive biasing with AWH

The accelerated weight histogram method 185 (page 585) 137 (page 583) calculates the PMF along a reaction
coordinate by adding an adaptively determined biasing potential. AWH flattens free energy barriers along the
reaction coordinate by applying a history-dependent potential to the system that “fills up” free energy minima.
This is similar in spirit to other adaptive biasing potential methods, e.g. the Wang-Landau 138 (page 583), local
elevation 139 (page 583) and metadynamics 140 (page 583) methods. The initial sampling stage of AWH makes
the method robust against the choice of input parameters. Furthermore, the target distribution along the reaction
coordinate may be chosen freely.

Basics of the method

The AWH method can act on two different types of reaction coordinates. It can work directly on a discrete reaction
coordinate 𝜆 in case this is the free-energy coupling parameter 187 (page 585). And it can act on reaction coordi-
nates that are (continuous) functions of the coordinates: 𝜉(𝑥). In this case AWH acts on a reference coordinate 𝜆
which takes discrete values and is coupled to 𝜉(𝑥) using an umbrella function𝑄. We will now describe the method
for the most general case. When acting directly on 𝜆, the function 𝑄 is zero. The fundamentals of the method are
based on the connection between atom coordinates and 𝜆 and are established through the extended ensemble 68
(page 580),

𝑃 (𝑥, 𝜆) =
1

𝒵
𝑒𝑔(𝜆)−𝑄(𝜉(𝑥),𝜆)−𝑉 (𝑥), (5.310)

where 𝑔(𝜆) is a bias function (a free variable) and 𝑉 (𝑥) is the unbiased potential energy of the system. The
distribution along 𝜆 can be tuned to be any predefined target distribution 𝜌(𝜆) (often chosen to be flat) by choosing
𝑔(𝜆) wisely. This is evident from

𝑃 (𝜆) =

∫︁
𝑃 (𝑥, 𝜆)𝑑𝑥 =

1

𝒵
𝑒𝑔(𝜆)

∫︁
𝑒−𝑄(𝜉(𝑥),𝜆)−𝑉 (𝑥)𝑑𝑥 ≡ 1

𝒵
𝑒𝑔(𝜆)−𝐹 (𝜆), (5.311)

where 𝐹 (𝜆) is the free energy

𝐹 (𝜆) = − ln

∫︁
𝑒−𝑄(𝜉(𝑥),𝜆)−𝑉 (𝑥)𝑑𝑥. (5.312)

The reaction coordinate 𝜉(𝑥) is commonly coupled to 𝜆 with a harmonic potential

𝑄(𝜉, 𝜆) =
1

2
𝛽𝑘(𝜉 − 𝜆)2, (5.313)

5.8. Special Topics 505

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

so that for large force constants 𝑘, 𝜉 ≈ 𝜆. Note the use of dimensionless energies for compatibility with previously
published work. Units of energy are obtained by multiplication with 𝑘𝐵𝑇 = 1/𝛽. In the simulation, 𝜆 samples
the user-defined sampling interval 𝐼 .

Being the convolution of the PMF with the Gaussian defined by the harmonic potential, 𝐹 (𝜆) is a smoothened
version of the PMF. (5.311) shows that in order to obtain 𝑃 (𝜆) = 𝜌(𝜆), 𝐹 (𝜆) needs to be determined accurately.
Thus, AWH adaptively calculates 𝐹 (𝜆) and simultaneously converges 𝑃 (𝜆) toward 𝜌(𝜆).

For a multidimensional reaction coordinate 𝜉, the sampling interval is the Cartesian product 𝐼 = Π𝜇𝐼𝜇 (a rectan-
gular domain).

N.b., it is not yet possible to use AWH for alchemical transformations that involve perturbed masses or constraints.

The free energy update

AWH is initialized with an estimate of the free energy 𝐹0(𝜆). At regular time intervals this estimate is updated
using data collected in between the updates. At update 𝑛, the applied bias 𝑔𝑛(𝜆) is a function of the current free
energy estimate 𝐹𝑛(𝜆) and target distribution 𝜌𝑛(𝜆),

𝑔𝑛(𝜆) = ln 𝜌𝑛(𝜆) + 𝐹𝑛(𝜆), (5.314)

which is consistent with (5.311). Note that also the target distribution may be updated during the simulation (see
examples in section Choice of target distribution (page 510)). Substituting this choice of 𝑔 = 𝑔𝑛 back into (5.311)
yields the simple free energy update

∆𝐹𝑛(𝜆) = 𝐹 (𝜆)− 𝐹𝑛(𝜆) = − ln
𝑃𝑛(𝜆)

𝜌𝑛(𝜆)
, (5.315)

which would yield a better estimate 𝐹𝑛+1 = 𝐹𝑛 + ∆𝐹𝑛, assuming 𝑃𝑛(𝜆) can be measured accurately. AWH
estimates 𝑃𝑛(𝜆) by regularly calculating the conditional distribution

𝜔𝑛(𝜆|𝑥) ≡ 𝑃𝑛(𝜆|𝑥) =
𝑒𝑔𝑛(𝜆)−𝑄(𝜉(𝑥),𝜆)∑︀
𝜆′ 𝑒𝑔𝑛(𝜆

′)−𝑄(𝜉(𝑥),𝜆′)
. (5.316)

Accumulating these probability weights yields
∑︀

𝑡 𝜔(𝜆|𝑥(𝑡)) ∼ 𝑃𝑛(𝜆), where
∫︀
𝑃𝑛(𝜆|𝑥)𝑃𝑛(𝑥)𝑑𝑥 = 𝑃𝑛(𝜆) has

been used. The 𝜔𝑛(𝜆|𝑥) weights are thus the samples of the AWH method. With the limited amount of sampling
one has in practice, update scheme (5.315) yields very noisy results. AWH instead applies a free energy update
that has the same form but which can be applied repeatedly with limited and localized sampling,

∆𝐹𝑛 = − ln
𝑊𝑛(𝜆) +

∑︀
𝑡 𝜔𝑛(𝜆|𝑥(𝑡))

𝑊𝑛(𝜆) +
∑︀

𝑡 𝜌𝑛(𝜆))
. (5.317)

Here 𝑊𝑛(𝜆) is the reference weight histogram representing prior sampling. The update for 𝑊 (𝜆), disregarding
the initial stage (see section The initial stage (page 509)), is

𝑊𝑛+1(𝜆) =𝑊𝑛(𝜆) +
∑︁
𝑡

𝜌𝑛(𝜆). (5.318)

Thus, the weight histogram equals the targeted, “ideal” history of samples. There are two important things to
note about the free energy update. First, sampling is driven away from oversampled, currently local regions. For
such 𝜆 values, 𝜔𝑛(𝜆) > 𝜌𝑛(𝜆) and ∆𝐹𝑛(𝜆) < 0, which by (5.314) implies ∆𝑔𝑛(𝜆) < 0 (assuming ∆𝜌𝑛 ≡ 0).
Thus, the probability to sample 𝜆 decreases after the update (see (5.311)). Secondly, the normalization of the
histogram 𝑁𝑛 =

∑︀
𝜆𝑊𝑛(𝜆), determines the update size |∆𝐹 (𝜆)|. For instance, for a single sample 𝜔(𝜆|𝑥), and

using a harmonic potential (:see (5.313)), the shape of the update is approximately a Gaussian function of width
𝜎 = 1/

√
𝛽𝑘 and height ∝ 1/𝑁𝑛 137 (page 583),

|∆𝐹𝑛(𝜆)| ∝
1

𝑁𝑛
𝑒−

1
2𝛽𝑘(𝜉(𝑥)−𝜆)2 . (5.319)

When directly controlling the lambda state of the system, the shape of the update is instead

|∆𝐹𝑛(𝜆)| ∝
1

𝑁𝑛
𝑃𝑛(𝜆|𝑥). (5.320)

5.8. Special Topics 506

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Therefore, in both cases, as samples accumulate in 𝑊 (𝜆) and 𝑁𝑛 grows, the updates get smaller, allowing for the
free energy to converge.

Note that quantity of interest to the user is not 𝐹 (𝜆) but the PMF Φ(𝜉). Φ(𝜉) is extracted by reweighting samples
𝜉(𝑡) on the fly 137 (page 583) (see also section Reweighting and combining biased data (page 512)) and will
converge at the same rate as 𝐹 (𝜆), see Fig. 5.41. The PMF will be written to output (see section Limitations
(page 513)).

Applying the bias to the system

The bias potential can be applied to the system in two ways. Either by applying a harmonic potential cen-
tered at 𝜆(𝑡), which is sampled using (rejection-free) Monte-Carlo sampling from the conditional distribution
𝜔𝑛(𝜆|𝑥(𝑡)) = 𝑃𝑛(𝜆|𝑥(𝑡)), see (5.316). This is also called Gibbs sampling or independence sampling. Alterna-
tively, and by default in the code, the following convolved bias potential can be applied,

𝑈𝑛(𝜉) = − ln

∫︁
𝑒𝑔𝑛(𝜆)−𝑄(𝜉,𝜆)𝑑𝜆. (5.321)

These two approaches are equivalent in the sense that they give rise to the same biased probabilities 𝑃𝑛(𝑥)
(cf. (5.310)) while the dynamics are clearly different in the two cases. This choice does not affect the internals of
the AWH algorithm, only what force and potential AWH returns to the MD engine.

Along a bias dimension directly controlling the 𝜆 state of the system, such as when controlling free energy per-
turbations, the Monte-Carlo sampling alternative is always used, even if a convolved bias potential is chosen to be
used along the other dimensions (if there are more than one).

0 Tim e

R
e

a
ct

io
n

 c
o

o
rd

in
a

te
 ξ

Init ial stage Final stage

ξ(t) Sam pling interval

Fig. 5.41: AWH evolution in time for a Brownian particle in a double-well potential. The reaction coordinate 𝜉(𝑡)
traverses the sampling interval multiple times in the initial stage before exiting and entering the final stage. In the
final stage, the dynamics of 𝜉 becomes increasingly diffusive.

5.8. Special Topics 507

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0 Tim e

U
p

d
a

te
 s

iz
e

 1
/N

1/ (N0γ
m)

∼1/ t

1/ N(t)

Fig. 5.42: In the final stage, the dynamics of 𝜉 becomes increasingly diffusive. The times of covering are shown as
×-markers of different colors. At these times the free energy update size ∼ 1/𝑁 , where𝑁 is the size of the weight
histogram, is decreased by scaling 𝑁 by a factor of 𝛾 = 3 (note that the default value of 𝛾 is 2 since GROMACS
2024).

0 Tim e

Lo
g

 o
f

sa
m

p
le

 w
e

ig
h

t,
 l

ns

ln(1/ γ)

slope ∝ ln[(N + ∆ N)/ N]

lns(t)

Fig. 5.43: In the final stage, 𝑁 grows at the sampling rate and thus 1/𝑁 ∼ 1/𝑡. The exit from the final stage is
determined on the fly by ensuring that the effective sample weight 𝑠 of data collected in the final stage exceeds
that of initial stage data (note that ln 𝑠(𝑡) is plotted).

5.8. Special Topics 508

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

React ion coordinate ξ

P
M

F
 Φ

(ξ
)

1
0

 k
B

T

Exact PMF

1st covering

2nd

3rd

Fig. 5.44: An estimate of the PMF is also extracted from the simulation (bottom right), which after exiting the
initial stage should estimate global free energy differences fairly accurately.

The initial stage

Initially, when the bias potential is far from optimal, samples will be highly correlated. In such cases, letting
𝑊 (𝜆) accumulate samples as prescribed by (5.318), entails a too rapid decay of the free energy update size. This
motivates splitting the simulation into an initial stage where the weight histogram grows according to a more
restrictive and robust protocol, and a final stage where the weight histogram grows linearly at the sampling rate
((5.318)). The AWH initial stage takes inspiration from the well-known Wang-Landau algorithm 138 (page 583),
although there are differences in the details.

In the initial stage the update size is kept constant (by keeping 𝑁𝑛 constant) until a transition across the sampling
interval has been detected, a “covering”. For the definition of a covering, see (5.322) below. After a covering has
occurred, 𝑁𝑛 is scaled up by a constant “growth factor” 𝛾, which by default has the value of 2. Thus, in the initial
stage 𝑁𝑛 is set dynamically as 𝑁𝑛 = 𝛾𝑚𝑁0, where 𝑚 is the number of coverings. Since the update size scales as
1/𝑁 ((5.319)) this leads to a close to exponential decay of the update size in the initial stage, see Fig. 5.41.

The update size directly determines the rate of change of 𝐹𝑛(𝜆) and hence, from (5.314), also the rate of change
of the bias funcion 𝑔𝑛(𝜆) Thus initially, when 𝑁𝑛 is kept small and updates large, the system will be driven
along the reaction coordinate by the constantly fluctuating bias. If 𝑁0 is set small enough, the first transition will
typically be fast because of the large update size and will quickly give a first rough estimate of the free energy.
The second transition, using 𝑁1 = 𝛾𝑁0 refines this estimate further. Thus, rather than very carefully filling free
energy minima using a small initial update size, the sampling interval is sweeped back-and-forth multiple times,
using a wide range of update sizes, see Fig. 5.41. This way, the initial stage also makes AWH robust against the
choice of 𝑁0.

5.8. Special Topics 509

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The covering criterion

In the general case of a multidimensional reaction coordinate 𝜆 = (𝜆𝜇), the sampling interval 𝐼 is considered
covered when all dimensions have been covered. A dimension 𝑑 is covered if all points 𝜆𝜇 in the one-dimensional
sampling interval 𝐼𝜇 have been “visited”. Finally, a point 𝜆𝜇 ∈ 𝐼𝜇 has been visited if there is at least one point
𝜆* ∈ 𝐼 with 𝜆*𝜇 = 𝜆𝜇 that since the last covering has accumulated probability weight corresponding to the peak
of a multidimensional Gaussian distribution

∆𝑊 (𝜆*) ≥ 𝑤peak ≡
∏︁
𝜇

∆𝜆𝜇√
2𝜋𝜎𝑘

. (5.322)

Here, ∆𝜆𝜇 is the point spacing of the discretized 𝐼𝜇 and 𝜎𝑘 = 1/
√︀
𝛽𝑘𝜇 (where 𝑘𝜇 is the force constant) is the

Gaussian width.

Exit from the initial stage

For longer times, when major free energy barriers have largely been flattened by the converging bias potential, the
histogram 𝑊 (𝜆) should grow at the actual sampling rate and the initial stage needs to be exited 141 (page 583).
There are multiple reasonable (heuristic) ways of determining when this transition should take place. One option
is to postulate that the number of samples in the weight histogram 𝑁𝑛 should never exceed the actual number of
collected samples, and exit the initial stage when this condition breaks 137 (page 583). In the initial stage, 𝑁
grows close to exponentially while the collected number of samples grows linearly, so an exit will surely occur
eventually. Here we instead apply an exit criterion based on the observation that “artificially” keeping 𝑁 constant
while continuing to collect samples corresponds to scaling down the relative weight of old samples relative to new
ones. Similarly, the subsequent scaling up of 𝑁 by a factor 𝛾 corresponds to scaling up the weight of old data.
Briefly, the exit criterion is devised such that the weight of a sample collected after the initial stage is always larger
or equal to the weight of a sample collected during the initial stage, see Fig. 5.41. This is consistent with scaling
down early, noisy data.

The initial stage exit criterion will now be described in detail. We start out at the beginning of a covering stage,
so that 𝑁 has just been scaled by 𝛾 and is now kept constant. Thus, the first sample of this stage has the weight
𝑠 = 1/𝛾 relative to the last sample of the previous covering stage. We assume that ∆𝑁 samples are collected and
added to 𝑊 for each update . To keep 𝑁 constant, 𝑊 needs to be scaled down by a factor 𝑁/(𝑁 + ∆𝑁) after
every update. Equivalently, this means that new data is scaled up relative to old data by the inverse factor. Thus,
after ∆𝑛 updates a new sample has the relative weight 𝑠 = (1/𝛾)[(𝑁𝑛 + ∆𝑁)/𝑁𝑛]

Δ𝑛. Now assume covering
occurs at this time. To continue to the next covering stage, 𝑁 should be scaled by 𝛾, which corresponds to again
multiplying 𝑠 by 1/𝛾. If at this point 𝑠 ≥ 𝛾, then after rescaling 𝑠 ≥ 1; i.e. overall the relative weight of a new
sample relative to an old sample is still growing fast. If on the contrary 𝑠 < 𝛾, and this defines the exit from the
initial stage, then the initial stage is over and from now 𝑁 simply grows at the sampling rate (see (5.318)). To
really ensure that 𝑠 ≥ 1 holds before exiting, so that samples after the exit have at least the sample weight of older
samples, the last covering stage is extended by a sufficient number of updates.

Choice of target distribution

The target distribution 𝜌(𝜆) is traditionally chosen to be uniform

𝜌const(𝜆) = const. (5.323)

This choice exactly flattens 𝐹 (𝜆) in user-defined sampling interval 𝐼 . Generally, 𝜌(𝜆) = 0, 𝜆 /∈ 𝐼 . In certain cases
other choices may be preferable. For instance, in the multidimensional case the rectangular sampling interval is
likely to contain regions of very high free energy, e.g. where atoms are clashing. To exclude such regions, 𝜌(𝜆)
can specified by the following function of the free energy

𝜌cut(𝜆) ∝
1

1 + 𝑒𝐹 (𝜆)−𝐹cut
, (5.324)

where 𝐹cut is a free energy cutoff (relative to min𝜆 𝐹 (𝜆)). Thus, regions of the sampling interval where
𝐹 (𝜆) > 𝐹cut will be exponentially suppressed (in a smooth fashion). Alternatively, very high free energy regions

5.8. Special Topics 510

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

could be avoided while still flattening more moderate free energy barriers by targeting a Boltzmann distribution
corresponding to scaling 𝛽 = 1/𝑘𝐵𝑇 by a factor 0 < 𝑠𝛽 < 1,

𝜌Boltz(𝜆) ∝ 𝑒−𝑠𝛽𝐹 (𝜆), (5.325)

The parameter 𝑠𝛽 determines to what degree the free energy landscape is flattened; the lower 𝑠𝛽 , the flatter. Note
that both 𝜌cut(𝜆) and 𝜌Boltz(𝜆) depend on 𝐹 (𝜆), which needs to be substituted by the current best estimate 𝐹𝑛(𝜆).
Thus, the target distribution is also updated (consistently with (5.314)).

There is in fact an alternative approach to obtaining 𝜌Boltz(𝜆) as the limiting target distribution in AWH, which
is particular in the way the weight histogram 𝑊 (𝜆) and the target distribution 𝜌 are updated and coupled to
each other. This yields an evolution of the bias potential which is very similar to that of well-tempered metady-
namics 142 (page 583), see 137 (page 583) for details. Because of the popularity and success of well-tempered
metadynamics, this is a special case worth considering. In this case 𝜌 is a function of the reference weight his-
togram

𝜌Boltz,loc(𝜆) ∝𝑊 (𝜆), (5.326)

and the update of the weight histogram is modified (cf. (5.318))

𝑊𝑛+1(𝜆) =𝑊𝑛(𝜆) + 𝑠𝛽
∑︁
𝑡

𝜔(𝜆|𝑥(𝑡)). (5.327)

Thus, here the weight histogram equals the real history of samples, but scaled by 𝑠𝛽 . This target distribution is
called local Boltzmann since 𝑊 is only modified locally, where sampling has taken place. We see that when
𝑠𝛽 ≈ 0 the histogram essentially does not grow and the size of the free energy update will stay at a constant value
(as in the original formulation of metadynamics). Thus, the free energy estimate will not converge, but continue
to fluctuate around the correct value. This illustrates the inherent coupling between the convergence and choice
of target distribution for this special choice of target. Furthermore note that when using 𝜌 = 𝜌Boltz,loc there is
no initial stage (section The initial stage (page 509)). The rescaling of the weight histogram applied in the initial
stage is a global operation, which is incompatible 𝜌Boltz,loc only depending locally on the sampling history.

The target distribution can also be modulated by arbitrary probability weights

𝜌(𝜆) = 𝜌0(𝜆)𝑤user(𝜆). (5.328)

where 𝑤user(𝜆) is provided by user data and in principle 𝜌0(𝜆) can be any of the target distributions mentioned
above.

Lastly, it is possible to automatically scale the target distribution (𝜌0(𝜆)) based on the AWH friction metric (see
section The friction metric (page 513)). This implies scaling the target distribution by the square root of the friction
metric (see (5.333)),

𝜌(𝜆) = 𝜌0(𝜆)𝑤user(𝜆)
√︁

det 𝜂𝜇𝜈(𝜆), (5.329)

where 𝑤user(𝜆) can be uniform and sqrt{deteta_{munu}(lambda)} is the square root of the friction metric. This
scaling of the target distribution, increasing the relative sampling of regions with slower diffusion, should generally
lower the statistical error of the estimated free energy landscape.

This modification is only applied after leaving the initial stage (section The initial stage (page 509)), if applicable,
and is performed when updating the target distribution, typically when also updating the free energy. The scaling
is based on the relative difference of the local friction metric compared to the average friction metric (of points
that have a non-zero friction metric).

If any histograms have not been sampled enough to have a friction metric they will be scaled by the av-
erage friction metric, i.e., practically unscaled. Insufficient sampling can result in a too low, but still non-
zero, friction metric. To address that, the scaling down of the target distribution (relative scaling < 1) is
based on the local sampling of each point, so that the target distribution of points that have not been sampled
much yet will be almost unaffected. Furthermore, the scaling can be limited by a maximum scaling factor
(awh1-target-metric-scaling-limit (page 67)). The lower limit of the scaling is the inverse of the
maximum scaling factor.

More information about this scaling can be found in 194 (page 585).

5.8. Special Topics 511

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Scaling the target distribution based on the friction metric can be combined with Boltzmann or Local-Boltzmann
target distributions. However, this is generally not recommended, due to the risk of feedback loops between the
two adaptive update mechanisms.

Multiple independent or sharing biases

Multiple independent bias potentials may be applied within one simulation. This only makes sense if the biased
coordinates 𝜉(1), 𝜉(2), . . . evolve essentially independently from one another. A typical example of this would be
when applying an independent bias to each monomer of a protein. Furthermore, multiple AWH simulations can
be launched in parallel, each with a (set of) independent biases.

If the defined sampling interval is large relative to the diffusion time of the reaction coordinate, traversing the
sampling interval multiple times as is required by the initial stage (section The initial stage (page 509)) may take
an infeasible mount of simulation time. In these cases it could be advantageous to parallelize the work and have a
group of multiple “walkers” 𝜉(𝑖)(𝑡) share a single bias potential. This can be achieved by collecting samples from
all 𝜉(𝑖) of the same sharing group into a single histogram and update a common free energy estimate. Samples can
be shared between walkers within the simulation and/or between multiple simulations. However, currently only
sharing between simulations is supported in the code while all biases within a simulation are independent.

Note that when attempting to shorten the simulation time by using bias-sharing walkers, care must be taken
to ensure the simulations are still long enough to properly explore and equilibrate all regions of the sampling
interval. To begin, the walkers in a group should be decorrelated and distributed approximately according to the
target distribution before starting to refine the free energy. This can be achieved e.g. by “equilibrating” the shared
weight histogram before letting it grow; for instance, 𝑊 (𝜆)/𝑁 ≈ 𝜌(𝜆) with some tolerance.

Furthermore, the “covering” or transition criterion of the initial stage should to be generalized to detect when
the sampling interval has been collectively traversed. One alternative is to just use the same criterion as for a
single walker (but now with more samples), see (5.322). However, in contrast to the single walker case this
does not ensure that any real transitions across the sampling interval has taken place; in principle all walkers
could be sampling only very locally and still cover the whole interval. Just as with a standard umbrella sampling
procedure, the free energy may appear to be converged while in reality simulations sampling closeby 𝜆 values are
sampling disconnected regions of phase space. A stricter criterion, which helps avoid such issues, is to require
that before a simulation marks a point 𝜆𝜇 along dimension 𝜇 as visited, and shares this with the other walkers,
also all points within a certain diameter 𝐷cover should have been visited (i.e. fulfill (5.322)). Increasing 𝐷cover

increases robustness, but may slow down convergence. For the maximum value of 𝐷cover, equal to the length
of the sampling interval, the sampling interval is considered covered when at least one walker has independently
traversed the sampling interval.

In practice biases are shared by setting awh-share-multisim (page 65) to true and awh1-share-group
(page 67) (for bias 1) to a non-zero value. Here, bias 1 will be shared between simulations that have the same
share group value. Sharing can be different for bias 1, 2, etc. (although there are few use cases where this is
useful). Technically there are no restrictions on sharing, apart from that biases that are shared need to have the
same number of grid points and the update intervals should match. Note that biases can not be shared within a
simulation. The latter could be useful, especially for multimeric proteins, but this is more difficult to implement.

Reweighting and combining biased data

Often one may want to, post-simulation, calculate the unbiased PMF Φ(𝑢) of another variable 𝑢(𝑥). Φ(𝑢) can
be estimated using 𝜉-biased data by reweighting (“unbiasing”) the trajectory using the bias potential 𝑈𝑛(𝑡), see
(5.321). Essentially, one bins the biased data along 𝑢 and removes the effect of 𝑈𝑛(𝑡) by dividing the weight of
samples 𝑢(𝑡) by 𝑒−𝑈𝑛(𝑡)(𝜉(𝑡)),

Φ̂(𝑢) = − ln
∑︁
𝑡

1𝑢(𝑢(𝑡))𝑒
𝑈𝑛(𝑡)(𝜉(𝑡)𝒵𝑛(𝑡). (5.330)

Here the indicator function 1𝑢 denotes the binning procedure: 1𝑢(𝑢′) = 1 if 𝑢′ falls into the bin labeled by 𝑢 and
0 otherwise. The normalization factor 𝒵𝑛 =

∫︀
𝑒−Φ(𝜉)−𝑈𝑛(𝜉)𝑑𝜉 is the partition function of the extended ensemble.

As can be seen 𝒵𝑛 depends on Φ(𝜉), the PMF of the (biased) reaction coordinate 𝜉 (which is calculated and
written to file by the AWH simulation). It is advisable to use only final stage data in the reweighting procedure

5.8. Special Topics 512

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

due to the rapid change of the bias potential during the initial stage. If one would include initial stage data, one
should use the sample weights that are inferred by the repeated rescaling of the histogram in the initial stage,
for the sake of consistency. Initial stage samples would then in any case be heavily scaled down relative to final
stage samples. Note that (5.330) can also be used to combine data from multiple simulations (by adding another
sum also over the trajectory set). Furthermore, when multiple independent AWH biases have generated a set of
PMF estimates {Φ̂(𝑖)(𝜉)}, a combined best estimate Φ̂(𝜉) can be obtained by applying self-consistent exponential
averaging. More details on this procedure and a derivation of (5.330) (using slightly different notation) can be
found in 143 (page 583).

The friction metric

During the AWH simulation, the following time-integrated force correlation function is calculated,

𝜂𝜇𝜈(𝜆) = 𝛽

∫︁ ∞

0

⟨𝛿ℱ𝜇(𝑥(𝑡), 𝜆)𝛿ℱ𝜈(𝑥(0), 𝜆)𝜔(𝜆|𝑥(𝑡))𝜔(𝜆|𝑥(0))⟩
⟨𝜔2(𝜆|𝑥)⟩

𝑑𝑡. (5.331)

Here ℱ𝜇(𝑥, 𝜆) = 𝑘𝜇(𝜉𝜇(𝑥) − 𝜆𝜇) is the force along dimension 𝜇 from an harmonic potential centered at 𝜆 and
𝛿ℱ𝜇(𝑥, 𝜆) = ℱ𝜇(𝑥, 𝜆) − ⟨ℱ𝜇(𝑥, 𝜆)⟩ is the deviation of the force. The factors 𝜔(𝜆|𝑥(𝑡)), see (5.316), reweight
the samples. 𝜂𝜇𝜈(𝜆) is a friction tensor 186 (page 585) and 144 (page 583). The diffusion matrix, on the flattened
landscape, is equal to 𝑘𝐵𝑇 times the inverse of the friction metrix tensor:

D(𝜆) = 𝑘𝐵𝑇𝜂
−1(𝜆). (5.332)

A measure of sampling (in)efficiency at each 𝜆 is given by

𝜂
1
2 (𝜆) =

√︁
det 𝜂𝜇𝜈(𝜆). (5.333)

A large value of 𝜂
1
2 (𝜆) indicates slow dynamics and long correlation times, which may require more sampling.

Limitations

The only real limitation of the AWH implementation, apart from the not uncommon practical issue that the method
might not converge sufficiently fast, is a limit on the maximum free energy difference. This limit is set to 700𝑘𝐵𝑇 ,
because 𝑒700 is close to the maximum value that can be accurately represented by a double-precision floating-point
value. For physical reaction coordinates, this is not a limit in practice. This does limit the range of applications
for alchemical coordinates. For instance, hydration free-energies of divalent cations with a pair of monovalent
anions can exceed this limit. The limit can also be exceeded when decoupling large molecules from solvent, but
this often coincides with the limit where the sampling becomes problematic.

Usage

AWH stores data in the energy file (edr (page 485)) with a frequency set by the user. The data – the PMF, the
convolved bias, distributions of the 𝜆 and 𝜉 coordinates, etc. – can be extracted after the simulation using the gmx
awh (page 130) tool. Furthermore, the trajectory of the reaction coordinate 𝜉(𝑡) is printed to the pull output file
pullx.xvg. The log file (log (page 487)) also contains information; check for messages starting with “awh”, they
will tell you about covering and potential sampling issues.

5.8. Special Topics 513

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Setting the initial update size

The initial value of the weight histogram size 𝑁 sets the initial update size (and the rate of change of the bias).
When 𝑁 is kept constant, like in the initial stage, the average variance of the free energy scales as 𝜀2 ∼ 1/(𝑁𝐷)
137 (page 583), for a simple model system with constant diffusion 𝐷 along the reaction coordinate. This provides
a ballpark estimate used by AWH to initialize 𝑁 in terms of more meaningful quantities

1

𝑁0
=

1

𝑁0(𝜀0, 𝐷)
= ∆𝑡sample max

𝑑

2𝐷𝑑

𝐿2
𝑑

𝜀20 (5.334)

where 𝐿𝑑 is the length of the interval and 𝐷𝑑 is the diffusion constant along dimension 𝑑 of the AWH bias. For
one dimension, 𝐿2/2𝐷 is the average time to diffuse over a distance of 𝐿. We then takes the maximum crossing
time over all dimensions involved in the bias. Essentially, this formula tells us that a slower system (small 𝐷)
requires more samples (larger 𝑁0) to attain the same level of accuracy (𝜀0) at a given sampling rate. Conversely,
for a system of given diffusion, how to choose the initial biasing rate depends on how good the initial accuracy is.
Both the initial error 𝜀0 and the diffusion 𝐷 only need to be roughly estimated or guessed. In the typical case, one
would only tweak the 𝐷 parameter, and use a default value for 𝜀0. For good convergence, 𝐷 should be chosen as
large as possible (while maintaining a stable system) giving large initial bias updates and fast initial transitions.
Choosing 𝐷 too small can lead to slow initial convergence. It may be a good idea to run a short trial simulation
and after the first covering check the maximum free energy difference of the PMF estimate. If this is much larger
than the expected magnitude of the free energy barriers that should be crossed, then the system is probably being
pulled too hard and 𝐷 should be decreased. An accurate estimate of the diffusion can be obtained from an AWH
simulation with the gmx awh (page 130) tool. 𝜀0 on the other hand, should be a rough estimate of the initial error.

Estimating errors

As with any adaptive method, estimating errors for AWH is difficult from data of a single simulation only. We
are looking into methods to do this. For now, the only safe way to estimate errors is to run multiple completely
independent simulations and compute a standard error estimate. Note that for the simulations to be really inde-
pendent, they should start from different, equilibrated states along the reaction coordinate(s). In practice, this is
often difficult to achieve, in particular in the common case that you only know the starting state along the reaction
coordinate. The exit from the initial phase of AWH is designed such that, in most cases, such systematic errors are
as small as the noise when exiting the initial phase, but it cannot be excluded that some effects are still present.

Tips for efficient sampling

The force constant 𝑘 should be larger than the curvature of the PMF landscape. If this is not the case, the dis-
tributions of the reaction coordinate 𝜉 and the reference coordinate 𝜆, will differ significantly and warnings will
be printed in the log file. One can choose 𝑘 as large as the time step supports. This will necessarily increase the
number of points of the discretized sampling interval 𝐼 . In general however, it should not affect the performance
of the simulation noticeably because the AWH update is implemented such that only sampled points are accessed
at free energy update time.

For an alchemical free-energy dimension, AWH accesses all 𝜆 points at every sampling step. Because the number
of 𝜆 points is usually far below 100, there is no significant cost to this in the AWH method itself. However, foreign
energy differences need to be computed for every 𝜆 value used, which can become somewhat costly.

As with any method, the choice of reaction coordinate(s) is critical. If a single reaction coordinate does not suf-
fice, identifying a second reaction coordinate and sampling the two-dimensional landscape may help. In this case,
using a target distribution with a free energy cutoff (see (5.324)) might be required to avoid sampling uninterest-
ing regions of very high free energy. Obtaining accurate free energies for reaction coordinates of much higher
dimensionality than 3 or possibly 4 is generally not feasible.

Monitoring the transition rate of 𝜉(𝑡), across the sampling interval is also advisable. For reliable statistics (e.g.
when reweighting the trajectory as described in section Reweighting and combining biased data (page 512)), one
would generally want to observe at least a few transitions after having exited the initial stage. Furthermore, if the
dynamics of the reaction coordinate suddenly changes, this may be a sign of e.g. a reaction coordinate problem.

Difficult regions of sampling may also be detected by calculating the friction tensor 𝜂𝜇𝜈(𝜆) in the sampling
interval, see section The friction metric (page 513). 𝜂𝜇𝜈(𝜆) as well as the sampling efficiency measure 𝜂

1
2 (𝜆)

5.8. Special Topics 514

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

((5.333)) are written to the energy file and can be extracted with gmx awh (page 130). A high peak in 𝜂
1
2 (𝜆)

indicates that this region requires longer time to sample properly.

5.8.6 Enforced Rotation

This module can be used to enforce the rotation of a group of atoms, as e.g. a protein subunit. There are a variety
of rotation potentials, among them complex ones that allow flexible adaptations of both the rotated subunit as well
as the local rotation axis during the simulation. An example application can be found in ref. 145 (page 583).

Fig. 5.45: Comparison of fixed and flexible axis rotation. A: Rotating the sketched shape inside the white tubular
cavity can create artifacts when a fixed rotation axis (dashed) is used. More realistically, the shape would revolve
like a flexible pipe-cleaner (dotted) inside the bearing (gray). B: Fixed rotation around an axis v with a pivot point
specified by the vector u. C: Subdividing the rotating fragment into slabs with separate rotation axes (↑) and pivot
points (∙) for each slab allows for flexibility. The distance between two slabs with indices 𝑛 and 𝑛+ 1 is ∆𝑥.

Fixed Axis Rotation

Stationary Axis with an Isotropic Potential

In the fixed axis approach (see Fig. 5.45 B), torque on a group of 𝑁 atoms with positions x𝑖 (denoted “rotation
group”) is applied by rotating a reference set of atomic positions – usually their initial positions y0

𝑖 – at a constant
angular velocity 𝜔 around an axis defined by a direction vector v̂ and a pivot point u. To that aim, each atom with
position x𝑖 is attracted by a “virtual spring” potential to its moving reference position y𝑖 = Ω(𝑡)(y0

𝑖 − u), where
Ω(𝑡) is a matrix that describes the rotation around the axis. In the simplest case, the “springs” are described by a
harmonic potential,

𝑉 iso =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖

[︀
Ω(𝑡)(y0

𝑖 − u)− (x𝑖 − u)
]︀2 (5.335)

with optional mass-weighted prefactors 𝑤𝑖 = 𝑁 𝑚𝑖/𝑀 with total mass 𝑀 =
∑︀𝑁

𝑖=1𝑚𝑖. The rotation matrix Ω(𝑡)
is

Ω(𝑡) =

⎛⎝ cos𝜔𝑡+ 𝑣2𝑥 𝜉 𝑣𝑥𝑣𝑦 𝜉 − 𝑣𝑧 sin𝜔𝑡 𝑣𝑥𝑣𝑧 𝜉 + 𝑣𝑦 sin𝜔𝑡
𝑣𝑥𝑣𝑦 𝜉 + 𝑣𝑧 sin𝜔𝑡 cos𝜔𝑡+ 𝑣2𝑦 𝜉 𝑣𝑦𝑣𝑧 𝜉 − 𝑣𝑥 sin𝜔𝑡
𝑣𝑥𝑣𝑧 𝜉 − 𝑣𝑦 sin𝜔𝑡 𝑣𝑦𝑣𝑧 𝜉 + 𝑣𝑥 sin𝜔𝑡 cos𝜔𝑡+ 𝑣2𝑧 𝜉

⎞⎠ (5.336)

where 𝑣𝑥, 𝑣𝑦 , and 𝑣𝑧 are the components of the normalized rotation vector v̂, and 𝜉 := 1−cos(𝜔𝑡). As illustrated
in Fig. 5.46 A for a single atom 𝑗, the rotation matrix Ω(𝑡) operates on the initial reference positions y0

𝑗 = x𝑗(𝑡0)
of atom 𝑗 at 𝑡 = 𝑡0. At a later time 𝑡, the reference position has rotated away from its initial place (along the blue
dashed line), resulting in the force

Fiso
𝑗 = −∇𝑗 𝑉

iso = 𝑘 𝑤𝑗

[︀
Ω(𝑡)(y0

𝑗 − u)− (x𝑗 − u)
]︀

(5.337)

which is directed towards the reference position.

5.8. Special Topics 515

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

V rm, V flexV iso

V rm2, V flex2 (ε′ = 0.01 nm2)V rm2, V flex2 (ε′ = 0 nm2)

Fig. 5.46: Selection of different rotation potentials and definition of notation. All four potentials 𝑉 (color coded)
are shown for a single atom at position x𝑗(𝑡). A: Isotropic potential 𝑉 iso, B: radial motion potential 𝑉 rm and
flexible potential 𝑉 flex, C–D: radial motion2 potential 𝑉 rm2 and flexible2 potential 𝑉 flex2 for 𝜖′=0nm2 (C) and
𝜖′=0.01nm2 (D). The rotation axis is perpendicular to the plane and marked by ⊗. The light gray contours indicate
Boltzmann factors 𝑒−𝑉/(𝑘𝐵𝑇) in the x𝑗-plane for 𝑇 = 300K and 𝑘=200kJ/(mol · nm2). The green arrow shows
the direction of the force F𝑗 acting on atom 𝑗; the blue dashed line indicates the motion of the reference position.

5.8. Special Topics 516

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Pivot-Free Isotropic Potential

Instead of a fixed pivot vector u this potential uses the center of mass x𝑐 of the rotation group as pivot for the
rotation axis,

x𝑐 =
1

𝑀

𝑁∑︁
𝑖=1

𝑚𝑖x𝑖andy0
𝑐 =

1

𝑀

𝑁∑︁
𝑖=1

𝑚𝑖y
0
𝑖 , (5.338)

which yields the “pivot-free” isotropic potential

𝑉 iso−pf =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖

[︀
Ω(𝑡)(y0

𝑖 − y0
𝑐)− (x𝑖 − x𝑐)

]︀2
, (5.339)

with forces

Fiso−pf
𝑗 = 𝑘 𝑤𝑗

[︀
Ω(𝑡)(y0

𝑗 − y0
𝑐)− (x𝑗 − x𝑐)

]︀
. (5.340)

Without mass-weighting, the pivot x𝑐 is the geometrical center of the group.

Parallel Motion Potential Variant

The forces generated by the isotropic potentials (eqns. (5.335) and (5.339)) also contain components parallel to
the rotation axis and thereby restrain motions along the axis of either the whole rotation group (in case of 𝑉 iso) or
within the rotation group, in case of 𝑉 iso−pf .

For cases where unrestrained motion along the axis is preferred, we have implemented a “parallel motion” variant
by eliminating all components parallel to the rotation axis for the potential. This is achieved by projecting the
distance vectors between reference and actual positions

r𝑖 = Ω(𝑡)(y0
𝑖 − u)− (x𝑖 − u) (5.341)

onto the plane perpendicular to the rotation vector,

r⊥𝑖 := r𝑖 − (r𝑖 · v̂)v̂ (5.342)

yielding

𝑉 pm =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖(r
⊥
𝑖)

2

=
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖

{︀
Ω(𝑡)(y0

𝑖 − u)− (x𝑖 − u)

−
{︀[︀
Ω(𝑡)(y0

𝑖 − u)− (x𝑖 − u)
]︀
· v̂
}︀
v̂
}︀2

and similarly

Fpm
𝑗 = 𝑘 𝑤𝑗 r

⊥
𝑗 (5.343)

Pivot-Free Parallel Motion Potential

Replacing in eqn. (5.343) the fixed pivot u by the center of mass xc yields the pivot-free variant of the parallel
motion potential. With

s𝑖 = Ω(𝑡)(y0
𝑖 − y0

𝑐)− (x𝑖 − x𝑐) (5.344)

the respective potential and forces are

𝑉 pm−pf =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖(s
⊥
𝑖)

2 (5.345)

Fpm−pf
𝑗 = 𝑘 𝑤𝑗 s

⊥
𝑗 (5.346)

5.8. Special Topics 517

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Radial Motion Potential

In the above variants, the minimum of the rotation potential is either a single point at the reference position y𝑖 (for
the isotropic potentials) or a single line through y𝑖 parallel to the rotation axis (for the parallel motion potentials).
As a result, radial forces restrict radial motions of the atoms. The two subsequent types of rotation potentials, 𝑉 rm

and 𝑉 rm2, drastically reduce or even eliminate this effect. The first variant, 𝑉 rm (Fig. 5.46 B), eliminates all force
components parallel to the vector connecting the reference atom and the rotation axis,

𝑉 rm =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖 [p𝑖 · (x𝑖 − u)]
2
, (5.347)

with

p𝑖 :=
v̂ ×Ω(𝑡)(y0

𝑖 − u)

‖v̂ ×Ω(𝑡)(y0
𝑖 − u)‖

. (5.348)

This variant depends only on the distance p𝑖 · (x𝑖 −u) of atom 𝑖 from the plane spanned by v̂ and Ω(𝑡)(y0
𝑖 −u).

The resulting force is

Frm
𝑗 = −𝑘 𝑤𝑗 [p𝑗 · (x𝑗 − u)] p𝑗 . (5.349)

Pivot-Free Radial Motion Potential

Proceeding similar to the pivot-free isotropic potential yields a pivot-free version of the above potential. With

q𝑖 :=
v̂ ×Ω(𝑡)(y0

𝑖 − y0
𝑐)

‖v̂ ×Ω(𝑡)(y0
𝑖 − y0

𝑐)‖
, (5.350)

the potential and force for the pivot-free variant of the radial motion potential read

𝑉 rm−pf =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖 [q𝑖 · (x𝑖 − x𝑐)]
2
, (5.351)

Frm−pf
𝑗 = −𝑘 𝑤𝑗 [q𝑗 · (x𝑗 − x𝑐)] q𝑗 + 𝑘

𝑚𝑗

𝑀

𝑁∑︁
𝑖=1

𝑤𝑖 [q𝑖 · (x𝑖 − x𝑐)] q𝑖 . (5.352)

Radial Motion 2 Alternative Potential

As seen in Fig. 5.46 B, the force resulting from 𝑉 rm still contains a small, second-order radial component. In most
cases, this perturbation is tolerable; if not, the following alternative, 𝑉 rm2, fully eliminates the radial contribution
to the force, as depicted in Fig. 5.46 C,

𝑉 rm2 =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖

[︀
(v̂ × (x𝑖 − u)) ·Ω(𝑡)(y0

𝑖 − u)
]︀2

‖v̂ × (x𝑖 − u)‖2 + 𝜖′
, (5.353)

where a small parameter 𝜖′ has been introduced to avoid singularities. For 𝜖′=0nm2, the equipotential planes are
spanned by x𝑖 − u and v̂, yielding a force perpendicular to x𝑖 − u, thus not contracting or expanding structural
parts that moved away from or toward the rotation axis.

Choosing a small positive 𝜖′ (e.g., 𝜖′=0.01nm2, Fig. 5.46 D) in the denominator of eqn. (5.353) yields a well-
defined potential and continuous forces also close to the rotation axis, which is not the case for 𝜖′=0nm2 (Fig.
5.46 C). With

r𝑖 := Ω(𝑡)(y0
𝑖 − u)

s𝑖 :=
v̂ × (x𝑖 − u)

‖v̂ × (x𝑖 − u)‖
≡ Ψ𝑖 v̂ × (x𝑖 − u)

Ψ*
𝑖 :=

1

‖v̂ × (x𝑖 − u)‖2 + 𝜖′

(5.354)

5.8. Special Topics 518

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

the force on atom 𝑗 reads

Frm2
𝑗 = −𝑘

{︃
𝑤𝑗 (s𝑗 · r𝑗)

[︃
Ψ*
𝑗

Ψ𝑗
r𝑗 −

Ψ*2
𝑗

Ψ3
𝑗

(s𝑗 · r𝑗)s𝑗

]︃}︃
× v̂. (5.355)

Pivot-Free Radial Motion 2 Potential

The pivot-free variant of the above potential is

𝑉 rm2−pf =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖

[︀
(v̂ × (x𝑖 − x𝑐)) ·Ω(𝑡)(y0

𝑖 − y𝑐)
]︀2

‖v̂ × (x𝑖 − x𝑐)‖2 + 𝜖′
. (5.356)

With

r𝑖 := Ω(𝑡)(y0
𝑖 − y𝑐)

s𝑖 :=
v̂ × (x𝑖 − x𝑐)

‖v̂ × (x𝑖 − x𝑐)‖
≡ Ψ𝑖 v̂ × (x𝑖 − x𝑐)

Ψ*
𝑖 :=

1

‖v̂ × (x𝑖 − x𝑐)‖2 + 𝜖′

(5.357)

the force on atom 𝑗 reads

F𝑗
rm2−pf = −𝑘

{︃
𝑤𝑗 (s𝑗 · r𝑗)

[︃
Ψ*
𝑗

Ψ𝑗
r𝑗 −

Ψ*2
𝑗

Ψ3
𝑗

(s𝑗 · r𝑗)s𝑗

]︃}︃
× v̂

+𝑘
𝑚𝑗

𝑀

{︃
𝑁∑︁
𝑖=1

𝑤𝑖 (s𝑖 · r𝑖)
[︂
Ψ*

𝑖

Ψ𝑖
r𝑖 −

Ψ*2
𝑖

Ψ3
𝑖

(s𝑖 · r𝑖) s𝑖
]︂}︃

× v̂ .

Flexible Axis Rotation

As sketched in Fig. 5.45 A–B, the rigid body behavior of the fixed axis rotation scheme is a drawback for many
applications. In particular, deformations of the rotation group are suppressed when the equilibrium atom positions
directly depend on the reference positions. To avoid this limitation, eqns. (5.351) and (5.356) will now be gener-
alized towards a “flexible axis” as sketched in Fig. 5.45 C. This will be achieved by subdividing the rotation group
into a set of equidistant slabs perpendicular to the rotation vector, and by applying a separate rotation potential to
each of these slabs. Fig. 5.45 C shows the midplanes of the slabs as dotted straight lines and the centers as thick
black dots.

To avoid discontinuities in the potential and in the forces, we define “soft slabs” by weighing the contributions of
each slab 𝑛 to the total potential function 𝑉 flex by a Gaussian function

𝑔𝑛(x𝑖) = Γ exp
(︂
−𝛽

2
𝑛(x𝑖)

2𝜎2

)︂
, (5.358)

centered at the midplane of the 𝑛th slab. Here 𝜎 is the width of the Gaussian function, ∆𝑥 the distance between
adjacent slabs, and

𝛽𝑛(x𝑖) := x𝑖 · v̂ − 𝑛∆𝑥 . (5.359)

A most convenient choice is 𝜎 = 0.7∆𝑥 and

1/Γ =
∑︁
𝑛∈𝑍

exp
(︂
−
(𝑛− 1

4)
2

2 · 0.72

)︂
≈ 1.75464 , (5.360)

which yields a nearly constant sum, essentially independent of x𝑖 (dashed line in Fig. 5.47), i.e.,∑︁
𝑛∈𝑍

𝑔𝑛(x𝑖) = 1 + 𝜖(x𝑖) , (5.361)

5.8. Special Topics 519

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fig. 5.47: Gaussian functions 𝑔𝑛 centered at 𝑛∆𝑥 for a slab distance ∆𝑥 = 1.5 nm and 𝑛 ≥ −2. Gaussian
function 𝑔0 is highlighted in bold; the dashed line depicts the sum of the shown Gaussian functions.

with |𝜖(x𝑖)| < 1.3 ·10−4. This choice also implies that the individual contributions to the force from the slabs add
up to unity such that no further normalization is required.

To each slab center x𝑛
𝑐 , all atoms contribute by their Gaussian-weighted (optionally also mass-weighted) position

vectors 𝑔𝑛(x𝑖)x𝑖. The instantaneous slab centers x𝑛
𝑐 are calculated from the current positions x𝑖,

x𝑛
𝑐 =

∑︀𝑁
𝑖=1 𝑔𝑛(x𝑖)𝑚𝑖 x𝑖∑︀𝑁
𝑖=1 𝑔𝑛(x𝑖)𝑚𝑖

, (5.362)

while the reference centers y𝑛
𝑐 are calculated from the reference positions y0

𝑖 ,

y𝑛
𝑐 =

∑︀𝑁
𝑖=1 𝑔𝑛(y

0
𝑖)𝑚𝑖 y

0
𝑖∑︀𝑁

𝑖=1 𝑔𝑛(y
0
𝑖)𝑚𝑖

. (5.363)

Due to the rapid decay of 𝑔𝑛, each slab will essentially involve contributions from atoms located within ≈ 3∆𝑥
from the slab center only.

Flexible Axis Potential

We consider two flexible axis variants. For the first variant, the slab segmentation procedure with Gaussian
weighting is applied to the radial motion potential (eqn. (5.351) / Fig. 5.46 B), yielding as the contribution of slab
𝑛

𝑉 𝑛 =
𝑘

2

𝑁∑︁
𝑖=1

𝑤𝑖 𝑔𝑛(x𝑖) [q
𝑛
𝑖 · (x𝑖 − x𝑛

𝑐)]
2
, (5.364)

and a total potential function

𝑉 flex =
∑︁
𝑛

𝑉 𝑛 . (5.365)

Note that the global center of mass x𝑐 used in eqn. (5.351) is now replaced by x𝑛
𝑐 , the center of mass of the slab.

With

q𝑛
𝑖 :=

v̂ ×Ω(𝑡)(y0
𝑖 − y𝑛

𝑐)

‖v̂ ×Ω(𝑡)(y0
𝑖 − y𝑛

𝑐)‖
𝑏𝑛𝑖 := q𝑛

𝑖 · (x𝑖 − x𝑛
𝑐) ,

(5.366)

the resulting force on atom 𝑗 reads

Fflex
𝑗 = − 𝑘 𝑤𝑗

∑︁
𝑛

𝑔𝑛(x𝑗) 𝑏
𝑛
𝑗

{︂
q𝑛
𝑗 − 𝑏𝑛𝑗

𝛽𝑛(x𝑗)

2𝜎2
v̂

}︂

+ 𝑘𝑚𝑗

∑︁
𝑛

𝑔𝑛(x𝑗)∑︀
ℎ 𝑔𝑛(xℎ)

𝑁∑︁
𝑖=1

𝑤𝑖 𝑔𝑛(x𝑖) 𝑏
𝑛
𝑖

{︂
q𝑛
𝑖 − 𝛽𝑛(x𝑗)

𝜎2
[q𝑛

𝑖 · (x𝑗 − x𝑛
𝑐)] v̂

}︂
.

5.8. Special Topics 520

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Note that for 𝑉 flex, as defined, the slabs are fixed in space and so are the reference centers y𝑛
𝑐 . If during the

simulation the rotation group moves too far in v direction, it may enter a region where – due to the lack of nearby
reference positions – no reference slab centers are defined, rendering the potential evaluation impossible. We
therefore have included a slightly modified version of this potential that avoids this problem by attaching the
midplane of slab 𝑛 = 0 to the center of mass of the rotation group, yielding slabs that move with the rotation
group. This is achieved by subtracting the center of mass x𝑐 of the group from the positions,

x̃𝑖 = x𝑖 − x𝑐 , and ỹ0
𝑖 = y0

𝑖 − y0
𝑐 , (5.367)

such that

𝑉 flex−t =
𝑘

2

∑︁
𝑛

𝑁∑︁
𝑖=1

𝑤𝑖 𝑔𝑛(x̃𝑖)

[︂
v̂ ×Ω(𝑡)(ỹ0

𝑖 − ỹ𝑛
𝑐)

‖v̂ ×Ω(𝑡)(ỹ0
𝑖 − ỹ𝑛

𝑐)‖
· (x̃𝑖 − x̃𝑛

𝑐)

]︂2
. (5.368)

To simplify the force derivation, and for efficiency reasons, we here assume x𝑐 to be constant, and thus 𝜕x𝑐/𝜕𝑥 =
𝜕x𝑐/𝜕𝑦 = 𝜕x𝑐/𝜕𝑧 = 0. The resulting force error is small (of order 𝑂(1/𝑁) or 𝑂(𝑚𝑗/𝑀) if mass-weighting
is applied) and can therefore be tolerated. With this assumption, the forces Fflex−t have the same form as eqn.
(5.367).

Flexible Axis 2 Alternative Potential

In this second variant, slab segmentation is applied to 𝑉 rm2 (eqn. (5.356)), resulting in a flexible axis potential
without radial force contributions (Fig. 5.46 C),

𝑉 flex2 =
𝑘

2

𝑁∑︁
𝑖=1

∑︁
𝑛

𝑤𝑖 𝑔𝑛(x𝑖)

[︀
(v̂ × (x𝑖 − x𝑛

𝑐)) ·Ω(𝑡)(y0
𝑖 − y𝑛

𝑐)
]︀2

‖v̂ × (x𝑖 − x𝑛
𝑐)‖2 + 𝜖′

(5.369)

With

r𝑛𝑖 := Ω(𝑡)(y0
𝑖 − y𝑛

𝑐)

s𝑛𝑖 :=
v̂ × (x𝑖 − x𝑛

𝑐)

‖v̂ × (x𝑖 − x𝑛
𝑐)‖

≡ 𝜓𝑖 v̂ × (x𝑖 − x𝑛
𝑐)

𝜓*
𝑖 :=

1

‖v̂ × (x𝑖 − x𝑛
𝑐)‖2 + 𝜖′

𝑊𝑛
𝑗 :=

𝑔𝑛(x𝑗)𝑚𝑗∑︀
ℎ 𝑔𝑛(xℎ)𝑚ℎ

S𝑛 :=

𝑁∑︁
𝑖=1

𝑤𝑖 𝑔𝑛(x𝑖) (s
𝑛
𝑖 · r𝑛𝑖)

[︂
𝜓*
𝑖

𝜓𝑖
r𝑛𝑖 − 𝜓*2

𝑖

𝜓3
𝑖

(s𝑛𝑖 · r𝑛𝑖) s𝑛𝑖
]︂

(5.370)

the force on atom 𝑗 reads

F𝑗
flex2 = −𝑘

{︃∑︁
𝑛

𝑤𝑗 𝑔𝑛(x𝑗) (s
𝑛
𝑗 · r𝑛𝑗)

[︃
𝜓*
𝑗

𝜓𝑗
r𝑛𝑗 −

𝜓*2
𝑗

𝜓3
𝑗

(s𝑛𝑗 · r𝑛𝑗) s𝑛𝑗

]︃}︃
× v̂

+𝑘

{︃∑︁
𝑛

𝑊𝑛
𝑗 S𝑛

}︃
× v̂ − 𝑘

{︃∑︁
𝑛

𝑊𝑛
𝑗

𝛽𝑛(x𝑗)

𝜎2

1

𝜓𝑗
s𝑛𝑗 · S𝑛

}︃
v̂

+
𝑘

2

{︃∑︁
𝑛

𝑤𝑗 𝑔𝑛(x𝑗)
𝛽𝑛(x𝑗)

𝜎2

𝜓*
𝑗

𝜓2
𝑗

(s𝑛𝑗 · r𝑛𝑗)2
}︃
v̂.

Applying transformation (5.367) yields a “translation-tolerant” version of the flexible2 potential, 𝑉 flex2−t. Again,
assuming that 𝜕x𝑐/𝜕𝑥, 𝜕x𝑐/𝜕𝑦, 𝜕x𝑐/𝜕𝑧 are small, the resulting equations for 𝑉 flex2−t and Fflex2−t are similar
to those of 𝑉 flex2 and Fflex2.

5.8. Special Topics 521

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Usage

To apply enforced rotation, the particles 𝑖 that are to be subjected to one of the rotation potentials are defined via
index groups rot-group0, rot-group1, etc., in the mdp (page 488) input file. The reference positions y0

𝑖

are read from a special trr (page 494) file provided to grompp (page 190). If no such file is found, x𝑖(𝑡 = 0)
are used as reference positions and written to trr (page 494) such that they can be used for subsequent setups.
All parameters of the potentials such as 𝑘, 𝜖′, etc. (Table 5.16) are provided as mdp (page 488) parameters;
rot-type selects the type of the potential. The option rot-massw allows to choose whether or not to use
mass-weighted averaging. For the flexible potentials, a cutoff value 𝑔min

𝑛 (typically 𝑔min
𝑛 = 0.001) makes sure

that only significant contributions to 𝑉 and F are evaluated, i.e. terms with 𝑔𝑛(x) < 𝑔min
𝑛 are omitted. Table 5.17

summarizes observables that are written to additional output files and which are described below.

Table 5.16: Parameters used by the various rotation potentials. x indicate
which parameter is actually used for a given potential

parameter 𝑘 v̂ u 𝜔 𝜖′ ∆𝑥 𝑔min
𝑛

mdp (page 488) input variable name k vec pivot rate eps slab-
dist

min-
gauss

unit kJ
mol·nm2 - nm ∘/ps nm2 nm -

fixed axis potentials: eqn.
isotropic Viso (5.335) x x x x - - -
— pivot-free Viso−pf (5.339) x x - x - - -
parallel mo-
tion

Vpm (5.343) x x x x - - -

— pivot-free Vpm−pf (5.345) x x - x - - -
radial motion Vrm (5.347) x x x x - - -
— pivot-free Vrm−pf (5.351) x x - x - - -
radial motion
2

Vrm2 (5.353) x x x x x - -

— pivot-free Vrm2−pf (5.356) x x - x x - -
flexible axis potentials: eqn.
flexible Vflex (5.365) x x - x - x x
— transl. tol Vflex−t (5.368) x x - x - x x
flexible 2 Vflex2 (5.369) x x - x x x x
— transl. tol Vflex2−t - x x - x x x x

Table 5.17: Quantities recorded in output files during enforced rotation
simulations. All slab-wise data is written every nstsout steps, other
rotation data every nstrout steps.

quantity unit equation output file fixed flexible

𝑉 (𝑡) kJ/mol see Table 5.16 rotation x x
𝜃ref(𝑡) degrees 𝜃ref(𝑡) = 𝜔𝑡 rotation x x
𝜃av(𝑡) degrees (5.371) rotation x -
𝜃fit(𝑡), 𝜃fit(𝑡, 𝑛) degrees (5.373) rotangles - x
y0(𝑛), x0(𝑡, 𝑛) nm (5.362),(5.363) rotslabs - x
𝜏(𝑡) kJ/mol (5.374) rotation x -
𝜏(𝑡, 𝑛) kJ/mol (5.374) rottorque - x

5.8. Special Topics 522

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Angle of Rotation Groups: Fixed Axis

For fixed axis rotation, the average angle 𝜃av(𝑡) of the group relative to the reference group is determined via the
distance-weighted angular deviation of all rotation group atoms from their reference positions,

𝜃av =

𝑁∑︁
𝑖=1

𝑟𝑖 𝜃𝑖

⧸︃
𝑁∑︁
𝑖=1

𝑟𝑖 . (5.371)

Here, 𝑟𝑖 is the distance of the reference position to the rotation axis, and the difference angles 𝜃𝑖 are determined
from the atomic positions, projected onto a plane perpendicular to the rotation axis through pivot point u (see eqn.
(5.342) for the definition of ⊥),

cos 𝜃𝑖 =
(y𝑖 − u)⊥ · (x𝑖 − u)⊥

‖(y𝑖 − u)⊥ · (x𝑖 − u)⊥‖
. (5.372)

The sign of 𝜃av is chosen such that 𝜃av > 0 if the actual structure rotates ahead of the reference.

Angle of Rotation Groups: Flexible Axis

For flexible axis rotation, two outputs are provided, the angle of the entire rotation group, and separate angles
for the segments in the slabs. The angle of the entire rotation group is determined by an RMSD fit of x𝑖 to the
reference positions y0

𝑖 at 𝑡 = 0, yielding 𝜃fit as the angle by which the reference has to be rotated around v̂ for the
optimal fit,

RMSD
(︀
x𝑖, Ω(𝜃fit)y

0
𝑖

)︀ !
= min . (5.373)

To determine the local angle for each slab 𝑛, both reference and actual positions are weighted with the Gaussian
function of slab 𝑛, and 𝜃fit(𝑡, 𝑛) is calculated as in eqn. (5.373) from the Gaussian-weighted positions.

For all angles, the mdp (page 488) input option rot-fit-method controls whether a normal RMSD fit is
performed or whether for the fit each position x𝑖 is put at the same distance to the rotation axis as its reference
counterpart y0

𝑖 . In the latter case, the RMSD measures only angular differences, not radial ones.

Angle Determination by Searching the Energy Minimum

Alternatively, for rot-fit-method = potential, the angle of the rotation group is determined as the angle
for which the rotation potential energy is minimal. Therefore, the used rotation potential is additionally evaluated
for a set of angles around the current reference angle. In this case, the rotangles.log output file contains the
values of the rotation potential at the chosen set of angles, while rotation.xvg lists the angle with minimal
potential energy.

Torque

The torque 𝜏(𝑡) exerted by the rotation potential is calculated for fixed axis rotation via

𝜏(𝑡) =

𝑁∑︁
𝑖=1

r𝑖(𝑡)× f⊥𝑖 (𝑡), (5.374)

where r𝑖(𝑡) is the distance vector from the rotation axis to x𝑖(𝑡) and f⊥𝑖 (𝑡) is the force component perpendicular
to r𝑖(𝑡) and v̂. For flexible axis rotation, torques 𝜏𝑛 are calculated for each slab using the local rotation axis of the
slab and the Gaussian-weighted positions.

5.8. Special Topics 523

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.8.7 Electric fields

A pulsed and oscillating electric field can be applied according to:

𝐸(𝑡) = 𝐸0 exp

[︂
− (𝑡− 𝑡0)

2

2𝜎2

]︂
cos [𝜔(𝑡− 𝑡0)] (5.375)

where 𝐸0 is the field strength, the angular frequency 𝜔 = 2𝜋𝑐/𝜆, 𝑡0 is the time at of the peak in the field strength
and 𝜎 is the width of the pulse. Special cases occur when 𝜎 = 0 (non-pulsed field) and for 𝜔 is 0 (static field). See
electric-field-x (page 79) for more details.

This simulated laser-pulse was applied to simulations of melting ice 146 (page 583). A pulsed electric field may
look like Fig. 5.48. In the supporting information of that paper the impact of an applied electric field on a system
under periodic boundary conditions is analyzed. It is described that the effective electric field under PBC is larger
than the applied field, by a factor depending on the size of the box and the dielectric properties of molecules in
the box. For a system with static dielectric properties this factor can be corrected for. But for a system where
the dielectric varies over time, for example a membrane protein with a pore that opens and closes during the
simulation, this way of applying an electric field is not useful. In such cases one can use the computational
electrophysiology protocol described in the next section (sec. Computational Electrophysiology (page 525)).

0 0.5 1 1.5 2
Time (ps)

-2

-1

0

1

2

El
ec

tri
c

fie
ld

 (V
/n

m
)

Fig. 5.48: A simulated laser pulse in GROMACS.

Electric fields are applied when the following options are specified in the grompp (page 190) mdp (page 488) file.
You specify, in order, 𝐸0, 𝜔, 𝑡0 and 𝜎:

electric-field-x = 0.04 0 0 0

yields a static field with 𝐸0 = 0.04 V/nm in the X-direction. In contrast,

electric-field-x = 2.0 150 5 0

yields an oscillating electric field with 𝐸0 = 2 V/nm, 𝜔 = 150/ps and 𝑡0 = 5 ps. Finally

electric-field-x = 2.0 150 5 1

yields an pulsed-oscillating electric field with 𝐸0 = 2 V/nm, 𝜔 = 150/ps and 𝑡0 = 5 ps and 𝜎 = 1 ps. Read more in
ref. 146 (page 583). Note that the input file format is changed from the undocumented older version. A figure like
Fig. 5.48 may be produced by passing the -field option to gmx mdrun (page 215).

5.8. Special Topics 524

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Boundary conditions

In a finite, non-periodic system with plain Coulomb interactions, the application of an electric field is straightfor-
ward and one could define a potential energy. But in most cases periodic systems are used. This is problematic, as
dipoles will align with the field and build a net dipole in one periodic image. The interactions between this dipole
and all its periodic images is a conditionally convergent sum. This leads to the, somewhat strange, effect that the
boundary condition at infinity affects the energy of the system and the sampled conformations.

By default, Ewald type electrostatics methods will give a conducting boundary condition. This means that there
is no penalty to building up a net dipole. This does not correspond to the situation of putting an electric field on
a finite amount of material in an experiment. In fact, the electric field applied in the simulation is larger than that
applied to a finite amount of material by a factor of the dielectric constant of the system, which can be rather large.
One can correct for this by lowering the applied electric field by the dielectric constant.

When using Ewald type electrostatics, one can directly obtain the correct average polarization in an electric field
by using insulating boundary conditions by setting epsilon-surface to 1. A disadvantage of this is that the
fluctuations of the polarization are suppressed by a factor corresponding to the dielectric constant, at least when
the simulated system is supposed to represent a small part of the total system. In practice, insulating boundary
conditions can usually not be used, as this is only supported when each molecule is a single update group so
molecules are not broken over periodic boundary conditions.

Another issue of periodic boundary conditions is that one can not define a potential energy when charged molecules
are present. It would be possible when all molecules are neutral, but in GROMACS this is not done as this would
require keeping track of periodic images of parts of molecules. When there are charged molecules in a liquid, a
constant electric field will lead to non-equilibrium simulation where the charged molecules move along the field.

It might seem that one can avoid part of these issues by avoiding full-range electrostatics and using reaction-field
electrostatics instead. But, apart from the issues with ignoring long-range interactions, there are still similar issues
in that the response to the electric field depends on the dielectric permittivity used for the reaction field.

5.8.8 Computational Electrophysiology

The Computational Electrophysiology (CompEL) protocol 147 (page 583) allows the simulation of ion flux
through membrane channels, driven by transmembrane potentials or ion concentration gradients. Just as in real
cells, CompEL establishes transmembrane potentials by sustaining a small imbalance of charges ∆𝑞 across the
membrane, which gives rise to a potential difference ∆𝑈 according to the membrane capacitance:

∆𝑈 = ∆𝑞/𝐶𝑚𝑒𝑚𝑏𝑟𝑎𝑛𝑒 (5.376)

The transmembrane electric field and concentration gradients are controlled by mdp (page 488) options, which
allow the user to set reference counts for the ions on either side of the membrane. If a difference between the
actual and the reference numbers persists over a certain time span, specified by the user, a number of ion/water
pairs are exchanged between the compartments until the reference numbers are restored. Alongside the calculation
of channel conductance and ion selectivity, CompEL simulations also enable determination of the channel reversal
potential, an important characteristic obtained in electrophysiology experiments.

In a CompEL setup, the simulation system is divided into two compartments A and B with independent ion
concentrations. This is best achieved by using double bilayer systems with a copy (or copies) of the channel/pore
of interest in each bilayer (Fig. 5.49 A, B). If the channel axes point in the same direction, channel flux is observed
simultaneously at positive and negative potentials in this way, which is for instance important for studying channel
rectification.

The potential difference ∆𝑈 across the membrane is easily calculated with the gmx potential (page 240) utility.
By this, the potential drop along 𝑧 or the pore axis is exactly known in each time interval of the simulation (Fig.
5.49 C). Type and number of ions 𝑛𝑖 of charge 𝑞𝑖, traversing the channel in the simulation, are written to the
swapions.xvg output file, from which the average channel conductance 𝐺 in each interval ∆𝑡 is determined by:

𝐺 =

∑︀
𝑖 𝑛𝑖𝑞𝑖

∆𝑡∆𝑈
. (5.377)

The ion selectivity is calculated as the number flux ratio of different species. Best results are obtained by averaging
these values over several overlapping time intervals.

5.8. Special Topics 525

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

B

B

A B C
U [V]

z

A

0 0.4 0.8

2 nm

qref

4 e
8 e

12 e

0 e

U

channel 1

channel 0

0

+1.0

-1.0

of
fs

et
 A

Fig. 5.49: Typical double-membrane setup for CompEL simulations (A, B). Ion/water molecule exchanges will
be performed as needed between the two light blue volumes around the dotted black lines (A). Plot (C) shows the
potential difference ∆𝑈 resulting from the selected charge imbalance ∆𝑞𝑟𝑒𝑓 between the compartments.

The calculation of reversal potentials is best achieved using a small set of simulations in which a given transmem-
brane concentration gradient is complemented with small ion imbalances of varying magnitude. For example, if
one compartment contains 1M salt and the other 0.1M, and given charge neutrality otherwise, a set of simulations
with ∆𝑞 = 0 𝑒, ∆𝑞 = 2 𝑒, ∆𝑞 = 4 𝑒 could be used. Fitting a straight line through the current-voltage relationship
of all obtained 𝐼-𝑈 pairs near zero current will then yield 𝑈𝑟𝑒𝑣 .

Usage

The following mdp (page 488) options control the CompEL protocol:

swapcoords = Z ; Swap positions: no, X, Y, Z
swap-frequency = 100 ; Swap attempt frequency

Choose Z if your membrane is in the 𝑥𝑦-plane (Fig. 5.49). Ions will be exchanged between compartments de-
pending on their 𝑧-positions alone. swap-frequency determines how often a swap attempt will be made. This
step requires that the positions of the split groups, the ions, and possibly the solvent molecules are communicated
between the parallel processes, so if chosen too small it can decrease the simulation performance. The Position
swapping entry in the cycle and time accounting table at the end of the md.log file summarizes the amount of
runtime spent in the swap module.

split-group0 = channel0 ; Defines compartment boundary
split-group1 = channel1 ; Defines other compartment boundary
massw-split0 = no ; use mass-weighted center?
massw-split1 = no

split-group0 and split-group1 are two index groups that define the boundaries between the two com-
partments, which are usually the centers of the channels. If massw-split0 or massw-split1 are set to yes,
the center of mass of each index group is used as boundary, here in 𝑧-direction. Otherwise, the geometrical centers
will be used (× in Fig. 5.49 A). If, such as here, a membrane channel is selected as split group, the center of the
channel will define the dividing plane between the compartments (dashed horizontal lines). All index groups must
be defined in the index file.

If, to restore the requested ion counts, an ion from one compartment has to be exchanged with a water

5.8. Special Topics 526

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

molecule from the other compartment, then those molecules are swapped which have the largest distance to the
compartment-defining boundaries (dashed horizontal lines). Depending on the ion concentration, this effectively
results in exchanges of molecules between the light blue volumes. If a channel is very asymmetric in 𝑧-direction
and would extend into one of the swap volumes, one can offset the swap exchange plane with the bulk-offset
parameter. A value of 0.0 means no offset 𝑏, values −1.0 < 𝑏 < 0 move the swap exchange plane closer to the
lower, values 0 < 𝑏 < 1.0 closer to the upper membrane. Fig. 5.49 A (left) depicts that for the A compartment.

solvent-group = SOL ; Group containing the solvent molecules
iontypes = 3 ; Number of different ion types to control
iontype0-name = NA ; Group name of the ion type
iontype0-in-A = 51 ; Reference count of ions of type 0 in A
iontype0-in-B = 35 ; Reference count of ions of type 0 in B
iontype1-name = K
iontype1-in-A = 10
iontype1-in-B = 38
iontype2-name = CL
iontype2-in-A = -1
iontype2-in-B = -1

The group name of solvent molecules acting as exchange partners for the ions has to be set with
solvent-group. The number of different ionic species under control of the CompEL protocol is given by
the iontypes parameter, while iontype0-name gives the name of the index group containing the atoms
of this ionic species. The reference number of ions of this type can be set with the iontype0-in-A and
iontype0-in-B options for compartments A and B, respectively. Obviously, the sum of iontype0-in-A
and iontype0-in-B needs to equal the number of ions in the group defined by iontype0-name. A refer-
ence number of -1 means: use the number of ions as found at the beginning of the simulation as the reference
value.

coupl-steps = 10 ; Average over these many swap steps
threshold = 1 ; Do not swap if < threshold

If coupl-steps is set to 1, then the momentary ion distribution determines whether ions are exchanged.
coupl-steps > 1 will use the time-average of ion distributions over the selected number of attempt steps
instead. This can be useful, for example, when ions diffuse near compartment boundaries, which would lead to
numerous unproductive ion exchanges. A threshold of 1 means that a swap is performed if the average ion
count in a compartment differs by at least 1 from the requested values. Higher thresholds will lead to toleration of
larger differences. Ions are exchanged until the requested number ± the threshold is reached.

cyl0-r = 5.0 ; Split cylinder 0 radius (nm)
cyl0-up = 0.75 ; Split cylinder 0 upper extension (nm)
cyl0-down = 0.75 ; Split cylinder 0 lower extension (nm)
cyl1-r = 5.0 ; same for other channel
cyl1-up = 0.75
cyl1-down = 0.75

The cylinder options are used to define virtual geometric cylinders around the channel’s pore to track how many
ions of which type have passed each channel. Ions will be counted as having traveled through a channel according
to the definition of the channel’s cylinder radius, upper and lower extension, relative to the location of the respec-
tive split group. This will not affect the actual flux or exchange, but will provide you with the ion permeation
numbers across each of the channels. Note that an ion can only be counted as passing through a particular channel
if it is detected within the defined split cylinder in a swap step. If swap-frequency is chosen too high, a
particular ion may be detected in compartment A in one swap step, and in compartment B in the following swap
step, so it will be unclear through which of the channels it has passed.

A double-layered system for CompEL simulations can be easily prepared by duplicating an existing mem-
brane/channel MD system in the direction of the membrane normal (typically 𝑧) with gmx editconf (page 171)
-translate 0 0 <l_z>, where l_z is the box length in that direction. If you have already defined index
groups for the channel for the single-layered system, gmx make_ndx (page 213) -n index.ndx -twin will
provide you with the groups for the double-layered system.

5.8. Special Topics 527

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

To suppress large fluctuations of the membranes along the swap direction, it may be useful to apply a harmonic po-
tential (acting only in the swap dimension) between each of the two channel and/or bilayer centers using umbrella
pulling (see section Collective variables: the pull code (page 500)).

Multimeric channels

If a split group consists of more than one molecule, the correct PBC image of all molecules with respect to each
other has to be chosen such that the channel center can be correctly determined. GROMACS assumes that the
starting structure in the tpr (page 494) file has the correct PBC representation. Set the following environment
variable to check whether that is the case:

• GMX_COMPELDUMP: output the starting structure after it has been made whole to pdb (page 490) file.

5.8.9 Calculating a PMF using the free-energy code

The free-energy coupling-parameter approach (see sec. Free energy calculations (page 395)) provides several
ways to calculate potentials of mean force. A potential of mean force between two atoms can be calculated by
connecting them with a harmonic potential or a constraint. For this purpose there are special potentials that avoid
the generation of extra exclusions, see sec. Exclusions (page 460). When the position of the minimum or the
constraint length is 1 nm more in state B than in state A, the restraint or constraint force is given by 𝜕𝐻/𝜕𝜆.
The distance between the atoms can be changed as a function of 𝜆 and time by setting delta-lambda in the mdp
(page 488) file. The results should be identical (although not numerically due to the different implementations) to
the results of the pull code with umbrella sampling and constraint pulling. Unlike the pull code, the free energy
code can also handle atoms that are connected by constraints.

Potentials of mean force can also be calculated using position restraints. With position restraints, atoms can be
linked to a position in space with a harmonic potential (see Position restraints (page 422)). These positions can
be made a function of the coupling parameter 𝜆. The positions for the A and the B states are supplied to grompp
(page 190) with the -r and -rb options, respectively. One could use this approach to do targeted MD; note
that we do not encourage the use of targeted MD for proteins. A protein can be forced from one conformation
to another by using these conformations as position restraint coordinates for state A and B. One can then slowly
change 𝜆 from 0 to 1. The main drawback of this approach is that the conformational freedom of the protein is
severely limited by the position restraints, independent of the change from state A to B. Also, the protein is forced
from state A to B in an almost straight line, whereas the real pathway might be very different. An example of a
more fruitful application is a solid system or a liquid confined between walls where one wants to measure the force
required to change the separation between the boundaries or walls. Because the boundaries (or walls) already need
to be fixed, the position restraints do not limit the system in its sampling.

5.8.10 Removing fastest degrees of freedom

The maximum time step in MD simulations is limited by the smallest oscillation period that can be found in
the simulated system. Bond-stretching vibrations are in their quantum-mechanical ground state and are therefore
better represented by a constraint instead of a harmonic potential.

For the remaining degrees of freedom, the shortest oscillation period (as measured from a simulation) is 13 fs for
bond-angle vibrations involving hydrogen atoms. Taking as a guideline that with a Verlet (leap-frog) integration
scheme a minimum of 5 numerical integration steps should be performed per period of a harmonic oscillation in
order to integrate it with reasonable accuracy, the maximum time step will be about 3 fs. Disregarding these very
fast oscillations of period 13 fs, the next shortest periods are around 20 fs, which will allow a maximum time step
of about 4 fs.

Removing the bond-angle degrees of freedom from hydrogen atoms can best be done by defining them as virtual
interaction sites instead of normal atoms. Whereas a normal atom is connected to the molecule with bonds, angles
and dihedrals, a virtual site’s position is calculated from the position of three nearby heavy atoms in a predefined
manner (see also sec. Virtual interaction sites (page 440)). For the hydrogens in water and in hydroxyl, sulfhydryl,
or amine groups, no degrees of freedom can be removed, because rotational freedom should be preserved. The
only other option available to slow down these motions is to increase the mass of the hydrogen atoms at the expense
of the mass of the connected heavy atom. This will increase the moment of inertia of the water molecules and

5.8. Special Topics 528

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

the hydroxyl, sulfhydryl, or amine groups, without affecting the equilibrium properties of the system and without
affecting the dynamical properties too much. These constructions will shortly be described in sec. Hydrogen
bond-angle vibrations (page 529) and have previously been described in full detail 148 (page 583).

Using both virtual sites and modified masses, the next bottleneck is likely to be formed by the improper dihedrals
(which are used to preserve planarity or chirality of molecular groups) and the peptide dihedrals. The peptide
dihedral cannot be changed without affecting the physical behavior of the protein. The improper dihedrals that
preserve planarity mostly deal with aromatic residues. Bonds, angles, and dihedrals in these residues can also be
replaced with somewhat elaborate virtual site constructions.

All modifications described in this section can be performed using the GROMACS topology building tool
pdb2gmx (page 235). Separate options exist to increase hydrogen masses, virtualize all hydrogen atoms, or also
virtualize the aromatic rings in standard residues. Note that when all hydrogen atoms are virtualized, those inside
the aromatic residues will be virtualized as well, i.e. hydrogens in the aromatic residues are treated differently
depending on the treatment of the aromatic residues. Note further that the virtualization of aromatic rings is
deprecated.

Parameters for the virtual site constructions for the hydrogen atoms are inferred from the force-field parameters
(vis. bond lengths and angles) directly by grompp (page 190) while processing the topology file. The constructions
for the aromatic residues are based on the bond lengths and angles for the geometry as described in the force fields,
but these parameters are hard-coded into pdb2gmx (page 235) due to the complex nature of the construction needed
for a whole aromatic group.

Hydrogen bond-angle vibrations

Construction of virtual sites

D

d

α

d

BA C

0 0 0
0 0 0
1 1 1
1 1 1

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 01 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1

Fig. 5.50: The different types of virtual site constructions used for hydrogen atoms. The atoms used in the
construction of the virtual site(s) are depicted as black circles, virtual sites as gray ones. Hydrogens are smaller
than heavy atoms. A: fixed bond angle, note that here the hydrogen is not a virtual site; B: in the plane of three
atoms, with fixed distance; C: in the plane of three atoms, with fixed angle and distance; D: construction for amine
groups (-NH2 or -NH+

3), see text for details.

The goal of defining hydrogen atoms as virtual sites is to remove all high-frequency degrees of freedom from
them. In some cases, not all degrees of freedom of a hydrogen atom should be removed, e.g. in the case of
hydroxyl or amine groups the rotational freedom of the hydrogen atom(s) should be preserved. Care should be
taken that no unwanted correlations are introduced by the construction of virtual sites, e.g. bond-angle vibration
between the constructing atoms could translate into hydrogen bond-length vibration. Additionally, since virtual
sites are by definition massless, in order to preserve total system mass, the mass of each hydrogen atom that is
treated as virtual site should be added to the bonded heavy atom.

Taking into account these considerations, the hydrogen atoms in a protein naturally fall into several categories,
each requiring a different approach (see also Fig. 5.50).

• hydroxyl (-OH) or sulfhydryl (-SH) hydrogen: The only internal degree of freedom in a hydroxyl group that
can be constrained is the bending of the C-O-H angle. This angle is fixed by defining an additional bond
of appropriate length, see Fig. 5.50 A. Doing so removes the high-frequency angle bending, but leaves the
dihedral rotational freedom. The same goes for a sulfhydryl group. Note that in these cases the hydrogen is
not treated as a virtual site.

5.8. Special Topics 529

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• single amine or amide (-NH-) and aromatic hydrogens (-CH-): The position of these hydrogens cannot be
constructed from a linear combination of bond vectors, because of the flexibility of the angle between the
heavy atoms. Instead, the hydrogen atom is positioned at a fixed distance from the bonded heavy atom on
a line going through the bonded heavy atom and a point on the line through both second bonded atoms, see
Fig. 5.50 B.

• planar amine (-NH2) hydrogens: The method used for the single amide hydrogen is not well suited for
planar amine groups, because no suitable two heavy atoms can be found to define the direction of the
hydrogen atoms. Instead, the hydrogen is constructed at a fixed distance from the nitrogen atom, with a
fixed angle to the carbon atom, in the plane defined by one of the other heavy atoms, see Fig. 5.50 C.

• amine group (umbrella -NH2 or -NH+
3)* hydrogens:* Amine hydrogens with rotational freedom cannot be

constructed as virtual sites from the heavy atoms they are connected to, since this would result in loss of
the rotational freedom of the amine group. To preserve the rotational freedom while removing the hydrogen
bond-angle degrees of freedom, two “dummy masses” are constructed with the same total mass, moment of
inertia (for rotation around the C-N bond) and center of mass as the amine group. These dummy masses have
no interaction with any other atom, except for the fact that they are connected to the carbon and to each other,
resulting in a rigid triangle. From these three particles, the positions of the nitrogen and hydrogen atoms are
constructed as linear combinations of the two carbon-mass vectors and their outer product, resulting in an
amine group with rotational freedom intact, but without other internal degrees of freedom. See Fig. 5.50 D.

ε

η

ζδ

ε

γ

ε

δ ε

δ

ε
δ

γ

ζ
ε

η

εδ

γ

Phe Tyr HisTrp

ζ

ε

ζ

εδ

γ

δδ

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
1 1 1
1 1 1

0 0 0 0
0 0 0 0
1 1 1 1
1 1 1 1

0 0
0 0
1 1
1 1

0 0 0
0 0 0
1 1 1
1 1 1

0 0 0
0 0 0
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

0 0 0
0 0 0
1 1 1
1 1 1

0 0 0 0
0 0 0 0
0 0 0 0

1 1 1 1
1 1 1 1
1 1 1 1

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

Fig. 5.51: The different types of virtual site constructions used for aromatic residues. The atoms used in the con-
struction of the virtual site(s) are depicted as black circles, virtual sites as gray ones. Hydrogens are smaller than
heavy atoms. A: phenylalanine; B: tyrosine (note that the hydroxyl hydrogen is not a virtual site); C: tryptophan;
D: histidine.

Out-of-plane vibrations in aromatic groups

The planar arrangements in the side chains of the aromatic residues lends itself perfectly to a virtual-site construc-
tion, giving a perfectly planar group without the inherently unstable constraints that are necessary to keep normal
atoms in a plane. The basic approach is to define three atoms or dummy masses with constraints between them
to fix the geometry and create the rest of the atoms as simple virtual sites type (see sec. Virtual interaction sites
(page 440)) from these three. Each of the aromatic residues require a different approach:

• Phenylalanine: C𝛾 , C𝜖1, and C𝜖2 are kept as normal atoms, but with each a mass of one third the total mass
of the phenyl group. See Fig. 5.50 A.

• Tyrosine: The ring is treated identically to the phenylalanine ring. Additionally, constraints are defined
between C𝜖1, C𝜖2, and O𝜂 . The original improper dihedral angles will keep both triangles (one for the ring
and one with O𝜂) in a plane, but due to the larger moments of inertia this construction will be much more
stable. The bond-angle in the hydroxyl group will be constrained by a constraint between C𝛾 and H𝜂 . Note
that the hydrogen is not treated as a virtual site. See Fig. 5.50 B.

• Tryptophan: C𝛽 is kept as a normal atom and two dummy masses are created at the center of mass of each
of the rings, each with a mass equal to the total mass of the respective ring (C𝛿2 and C𝜖2 are each counted
half for each ring). This keeps the overall center of mass and the moment of inertia almost (but not quite)
equal to what it was. See Fig. 5.50 C.

• Histidine: C𝛾 , C𝜖1 and N𝜖2 are kept as normal atoms, but with masses redistributed such that the center of
mass of the ring is preserved. See Fig. 5.50 D.

5.8. Special Topics 530

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.8.11 Viscosity calculation

The shear viscosity is a property of liquids that can be determined easily by experiment. It is useful for parameter-
izing a force field because it is a kinetic property, while most other properties which are used for parameterization
are thermodynamic. The viscosity is also an important property, since it influences the rates of conformational
changes of molecules solvated in the liquid.

The viscosity can be calculated from an equilibrium simulation using an Einstein relation:

𝜂 =
1

2

𝑉

𝑘𝐵𝑇
lim
𝑡→∞

d
d𝑡

⟨(︂∫︁ 𝑡0+𝑡

𝑡0

𝑃𝑥𝑧(𝑡
′)d𝑡′

)︂2
⟩

𝑡0

(5.378)

This can be done with gmx energy (page 177). This method converges rather slowly 149 (page 583), and usually
hundreds of nanoseconds are needed for an accurate determination of the viscosity. The result is very dependent
on the treatment of the electrostatics. Using a (short) cut-off results in large noise on the off-diagonal pressure
elements, which can increase the calculated viscosity by an order of magnitude. It is most convenient to use the
Einstein relation. Because gmx mdrun (page 215) stores averages of quantities computed every nstcalcenergy
steps, the Einstein relation can use these averages and thus writing to energy file (nstenergy) can be done
infrequently. This avoids the overhead of very large energy files that are needed with the autocorrelation function
approach.

GROMACS also has two non-equilibrium methods for determining the viscosity. The recommended method
is to apply a shear to the system, see the next section. The viscosity can the be measured as the stress of the
corresponding off-diagonal element of the pressure tensor divided by the shear rate. This is a straightforward
procedure. The only disadvantage is that one needs to balance the cost of long simulatiosn at low shear rate due
to low signal to noise ratio to the risk of shear thinning appearing at higher shear rates. Running at multiple shear
rates might be necessary to ensure that one is in the linear regime.

The second non-equilibrium method is called “cosine acceleration”. This makes use of the fact that energy, which
is fed into system by external forces, is dissipated through viscous friction. The generated heat is removed by
coupling to a heat bath. For a Newtonian liquid adding a small force will result in a velocity gradient according to
the following equation:

𝑎𝑥(𝑧) +
𝜂

𝜌

𝜕2𝑣𝑥(𝑧)

𝜕𝑧2
= 0 (5.379)

Here we have applied an acceleration 𝑎𝑥(𝑧) in the 𝑥-direction, which is a function of the 𝑧-coordinate. In GRO-
MACS the acceleration profile is:

𝑎𝑥(𝑧) = 𝐴 cos

(︂
2𝜋𝑧

𝑙𝑧

)︂
(5.380)

where 𝑙𝑧 is the height of the box. The generated velocity profile is:

𝑣𝑥(𝑧) = 𝑉 cos

(︂
2𝜋𝑧

𝑙𝑧

)︂
(5.381)

𝑉 = 𝐴
𝜌

𝜂

(︂
𝑙𝑧
2𝜋

)︂2

(5.382)

The viscosity can be calculated from 𝐴 and 𝑉 :

𝜂 =
𝐴

𝑉
𝜌

(︂
𝑙𝑧
2𝜋

)︂2

(5.383)

In the simulation 𝑉 is defined as:

𝑉 =

𝑁∑︁
𝑖=1

𝑚𝑖𝑣𝑖,𝑥2 cos

(︂
2𝜋𝑧

𝑙𝑧

)︂
𝑁∑︁
𝑖=1

𝑚𝑖

(5.384)

5.8. Special Topics 531

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The generated velocity profile is not coupled to the heat bath. Moreover, the velocity profile is excluded from the
kinetic energy. One would like 𝑉 to be as large as possible to get good statistics. However, the shear rate should
not be so high that the system gets too far from equilibrium. The maximum shear rate occurs where the cosine is
zero, the rate being:

shmax = max
𝑧

⃒⃒⃒⃒
𝜕𝑣𝑥(𝑧)

𝜕𝑧

⃒⃒⃒⃒
= 𝐴

𝜌

𝜂

𝑙𝑧
2𝜋

(5.385)

For a simulation with: 𝜂 = 10−3 [kgm−1s−1], 𝜌 = 103[kgm−3] and 𝑙𝑧 = 2𝜋[nm], shmax = 1[psnm−1] 𝐴. This
shear rate should be smaller than one over the longest correlation time in the system. For most liquids, this will be
the rotation correlation time, which is around 10 ps. In this case, 𝐴 should be smaller than 0.1[nmps−2]. When
the shear rate is too high, the observed viscosity will be too low. Because 𝑉 is proportional to the square of the
box height, the optimal box is elongated in the 𝑧-direction. In general, a simulation length of 100 ps is enough to
obtain an accurate value for the viscosity.

The heat generated by the viscous friction is removed by coupling to a heat bath. Because this coupling is not
instantaneous the real temperature of the liquid will be slightly lower than the observed temperature. Berendsen
derived this temperature shift 31 (page 578), which can be written in terms of the shear rate as:

𝑇𝑠 =
𝜂 𝜏

2𝜌𝐶𝑣
sh2

max (5.386)

where 𝜏 is the coupling time for the Berendsen thermostat and 𝐶𝑣 is the heat capacity. Using the values of the
example above, 𝜏 = 10−13 [s] and 𝐶𝑣 = 2 · 103[J kg−1K−1], we get: 𝑇𝑠 = 25[Kps−2]sh2

max. When we want the
shear rate to be smaller than 1/10[ps−1], 𝑇𝑠 is smaller than 0.25[K], which is negligible.

Note that the system has to build up the velocity profile when starting from an equilibrium state. This build-up
time is of the order of the correlation time of the liquid.

Two quantities are written to the energy file, along with their averages and fluctuations: 𝑉 and 1/𝜂, as obtained
from ((5.383)).

5.8.12 Shear simulations

A common type of non-equilibrium simulations in fluid dynamics and rheology are shearing simulations. These
are non-equilibrium simulations where work is performed on the simulation system to achieve a shear flow. This
can be used to compute viscosities and friction and to study the effect of shear stress on conformations. In
GROMACS there are four different ways to achieve shear flow.

Groups of atoms can be given a constant acceleration, which is effectively a mass-weighted force. This will cause
such groups to move with respect to the rest of the system. Care needs to be taken to control the velocity of the
center of mass of the system. Normal center of mass motion removal can not be used, as that would affect the flow
in the system.

As GROMACS supports general triclinic unit-cell shapes, the unit cell can be deformed to set up a shear flow.
This can be achieved either by deforming the unit cell directly using the deform option in the mdp (page 488)
file, or this can be driven by applying an off-diagonal stress through pressure coupling. In the former case, one
can measure the viscosity through the stress, in the latter case through measuring the shear rate. Note that the with
the deform option, gmx mdrun (page 215) corrects the velocities of particles that are moved by a periodic vector
for the difference in flow velocity. Such a correction is not applied when using a stress to generate a flow.

For measuring the viscosity of simple liquids one can use a cosine-shaped acceleration profile, which can be
specified using the cos-acceleration option in the mdp (page 488) file. As the unit-cell does not deform,
this avoids some complications of the other methods. The viscosity is computed on the fly and reported in the
energy file.

And finally, there is the case where one wants to study the effect of walls on the flow. In particular, structured
walls are of interest, consisting of atoms that can be of any kind. In this case one wants to have walls on two sides
of the system, typically in the xy-plane close to z=0 and the box height. The flow is then driven by moving the
walls at constant speed by using a constant force. A constant force can be achieved by use of acceleration groups,
but that will not allow position restraining atoms in the walls along the direction of the shear, which is needed
for some types of walls. For the case of walls where (part of) the atoms are position restrained, a constant speed

5.8. Special Topics 532

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

can be set by using the free-energy lambda-coupling code. To achieve this, you need to supply a second, B-state,
position restraint file with the -r option of gmx grompp (page 190). If you shift the coordinates in this file by
1 nm in the direction of shear, you can set the speed of the walls with the delta-lambda option in the mdp
(page 488) file. Note that this makes lambda increase proportionally with simulation time. There is no limit on
magnitude of lambda and periodic shifts of walls are handled correctly. When the position restraint coordinates
are shifted by 1 nm, the force on the walls is given directly by 𝑑𝑉/𝑑𝜆.

A Poiseuille flow is a popular setup in experiments. Unfortunately this is difficult to achieve in simulations. The
best would be to, as in experiment, apply a pressure difference over (part of) the simulation box. But that is not
easy to set up. One can accelerate all liquid atoms, but this does not guarantee that atoms that interact directly with
the wall experience the same forces as they would in an experiment. A slightly better setup would be accelerating
only the atoms in the middle of the flow, but spatially defined acceleration groups are currently not supported in
GROMACS.

5.8.13 Tabulated interaction functions

Cubic splines for potentials

In some of the inner loops of GROMACS, look-up tables are used for computation of potential and forces. The
tables are interpolated using a cubic spline algorithm. There are separate tables for electrostatic, dispersion, and
repulsion interactions, but for the sake of caching performance these have been combined into a single array. The
cubic spline interpolation for 𝑥𝑖 ≤ 𝑥 < 𝑥𝑖+1 looks like this:

𝑉𝑠(𝑥) = 𝐴0 +𝐴1 𝜖+𝐴2 𝜖
2 +𝐴3 𝜖

3 (5.387)

where the table spacing ℎ and fraction 𝜖 are given by:

ℎ = 𝑥𝑖+1 − 𝑥𝑖

𝜖 = (𝑥− 𝑥𝑖)/ℎ
(5.388)

so that 0 ≤ 𝜖 < 1. From this, we can calculate the derivative in order to determine the forces:

−𝑉 ′
𝑠 (𝑥) = −d𝑉𝑠(𝑥)

d𝜖

d𝜖

d𝑥
= −(𝐴1 + 2𝐴2 𝜖+ 3𝐴3 𝜖

2)/ℎ (5.389)

The four coefficients are determined from the four conditions that 𝑉𝑠 and −𝑉 ′
𝑠 at both ends of each interval should

match the exact potential 𝑉 and force −𝑉 ′. This results in the following errors for each interval:

|𝑉𝑠 − 𝑉 |𝑚𝑎𝑥 = 𝑉 ′′′′ ℎ
4

384
+𝑂(ℎ5)

|𝑉 ′
𝑠 − 𝑉 ′|𝑚𝑎𝑥 = 𝑉 ′′′′ ℎ3

72
√
3
+𝑂(ℎ4)

|𝑉 ′′
𝑠 − 𝑉 ′′|𝑚𝑎𝑥 = 𝑉 ′′′′ℎ

2

12
+𝑂(ℎ3)

(5.390)

V and V’ are continuous, while V” is the first discontinuous derivative. The number of points per nanometer is
500 and 2000 for mixed- and double-precision versions of GROMACS, respectively. This means that the errors in
the potential and force will usually be smaller than the mixed precision accuracy.

GROMACS stores 𝐴0, 𝐴1, 𝐴2 and 𝐴3. The force routines get a table with these four parameters and a scaling
factor 𝑠 that is equal to the number of points per nm. (Note that ℎ is 𝑠−1). The algorithm goes a little something
like this:

1. Calculate distance vector (r𝑖𝑗) and distance 𝑟𝑖𝑗

2. Multiply 𝑟𝑖𝑗 by 𝑠 and truncate to an integer value 𝑛0 to get a table index

3. Calculate fractional component (𝜖 = 𝑠𝑟𝑖𝑗 − 𝑛0) and 𝜖2

4. Do the interpolation to calculate the potential 𝑉 and the scalar force 𝑓

5. Calculate the vector force F by multiplying 𝑓 with r𝑖𝑗

5.8. Special Topics 533

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Note that table look-up is significantly slower than computation of the most simple Lennard-Jones and Coulomb
interaction. However, it is much faster than the shifted Coulomb function used in conjunction with the PPPM
method. Finally, it is much easier to modify a table for the potential (and get a graphical representation of it) than
to modify the inner loops of the MD program.

User-specified potential functions

You can also use your own potential functions without editing the GROMACS code. The potential function should
be according to the following equation

𝑉 (𝑟𝑖𝑗) =
𝑞𝑖𝑞𝑗
4𝜋𝜖0

𝑓(𝑟𝑖𝑗) + 𝐶6 𝑔(𝑟𝑖𝑗) + 𝐶12 ℎ(𝑟𝑖𝑗) (5.391)

where 𝑓 , 𝑔, and ℎ are user defined functions. Note that if 𝑔(𝑟) represents a normal dispersion interaction, 𝑔(𝑟)
should be < 0. C6, C12 and the charges are read from the topology. Also note that combination rules are only
supported for Lennard-Jones and Buckingham, and that your tables should match the parameters in the binary
topology.

When you add the following lines in your mdp (page 488) file:

rlist = 1.0
coulombtype = User
rcoulomb = 1.0
vdwtype = User
rvdw = 1.0

mdrun (page 215) will read a single non-bonded table file, or multiple when energygrp-table is set (see
below). The name of the file(s) can be set with the mdrun (page 215) option -table. The table file should
contain seven columns of table look-up data in the order: 𝑥, 𝑓(𝑥), −𝑓 ′(𝑥), 𝑔(𝑥), −𝑔′(𝑥), ℎ(𝑥), −ℎ′(𝑥). The
𝑥 should run from 0 to 𝑟𝑐 + 1 (the value of table_extension can be changed in the mdp (page 488) file).
You can choose the spacing you like; for the standard tables GROMACS uses a spacing of 0.002 and 0.0005 nm
when you run in mixed and double precision, respectively. In this context, 𝑟𝑐 denotes the maximum of the two
cut-offs rvdw and rcoulomb (see above). These variables need not be the same (and need not be 1.0 either).
Some functions used for potentials contain a singularity at 𝑥 = 0, but since atoms are normally not closer to each
other than 0.1 nm, the function value at 𝑥 = 0 is not important. Finally, it is also possible to combine a standard
Coulomb with a modified LJ potential (or vice versa). One then specifies e.g. coulombtype = Cut-off or
coulombtype = PME, combined with vdwtype = User. The table file must always contain the 7 columns
however, and meaningful data (i.e. not zeroes) must be entered in all columns. A number of pre-built table files
can be found in the GMXLIB directory for 6-8, 6-9, 6-10, 6-11, and 6-12 Lennard-Jones potentials combined with
a normal Coulomb.

If you want to have different functional forms between different groups of atoms, this can be set through energy
groups. Different tables can be used for non-bonded interactions between different energy groups pairs through
the mdp (page 488) option energygrp-table (see details in the User Guide). Atoms that should interact
with a different potential should be put into different energy groups. Between group pairs which are not listed in
energygrp-table, the normal user tables will be used. This makes it easy to use a different functional form
between a few types of atoms.

5.8.14 Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface

In a molecular mechanics (MM) force field, the influence of electrons is expressed by empirical parameters that
are assigned on the basis of experimental data, or on the basis of results from high-level quantum chemistry
calculations. These are valid for the ground state of a given covalent structure, and the MM approximation is
usually sufficiently accurate for ground-state processes in which the overall connectivity between the atoms in
the system remains unchanged. However, for processes in which the connectivity does change, such as chemical
reactions, or processes that involve multiple electronic states, such as photochemical conversions, electrons can
no longer be ignored, and a quantum mechanical description is required for at least those parts of the system in
which the reaction takes place.

5.8. Special Topics 534

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

One approach to the simulation of chemical reactions in solution, or in enzymes, is to use a combination of
quantum mechanics (QM) and molecular mechanics (MM). The reacting parts of the system are treated quantum
mechanically, with the remainder being modeled using the force field. The current version of GROMACS provides
an interface to the popular Quantum Chemistry package CP2K 188 (page 585).

Overview

GROMACS interactions between the QM and the MM subsystems are handled using the GEEP approach as
described by Laino et al. 189 (page 585). This method of evaluating interactions between the QM and MM sub-
systems is a variant of the “electrostatic embedding” scheme. The electrostatic interactions between the electrons
of the QM region and the MM atoms and between the QM nuclei and the MM atoms are explicitly included into
the Hamiltonian for the QM subsystem:

𝐻𝑄𝑀/𝑀𝑀 = 𝐻𝑄𝑀
𝑒 −

𝑛∑︁
𝑖

𝑀∑︁
𝐽

𝑒2𝑄𝐽

4𝜋𝜖0𝑟𝑖𝐽
+

𝑁∑︁
𝐴

𝑀∑︁
𝐽

𝑒2𝑍𝐴𝑄𝐽

𝑒𝜋𝜖0𝑅𝐴𝐽
,

where 𝑛 and 𝑁 are the number of electrons and nuclei in the QM region, respectively, and 𝑀 is the number of
charged MM atoms. The first term on the right hand side is the original electronic Hamiltonian of an isolated
QM system. The first of the double sums is the total electrostatic interaction between the QM electrons and the
MM atoms. The total electrostatic interaction of the QM nuclei with the MM atoms is given by the second double
sum. An important advantage of using the CP2K/GEEP combination is that it allows evaluation of forces for both
QM-QM and QM-MM interactions, in the case of systems with periodic boundary conditions (PBC). To avoid
double accounting for electrostatic interactions and LJ, classical MM charge on the QM atoms are zeroed out as
well as LJ interactions between QM-QM atoms are excluded. It should be noted that LJ interactions between
QM-MM atoms are kept and still calculated by GROMACS. Bonded interactions between QM and MM atoms
are described at the MM level by the appropriate force-field terms. All bonds, consisting of 2 QM atoms, angles
and settles containing 2 or 3 QM atoms, dihedrals containing 3 or 4 QM atoms are excluded from the forcefield
evaluation. Broken chemical bonds between QM and MM subsystems needs to be capped in the QM calculation.
This is done within CP2K by adding a hydrogen atom to complete the valence of the QM region. The force on
this atom, which is present in the QM region only, is distributed over the two atoms of the bond. The cap atom
is usually referred to as a link atom. Within the interface all described topology modifications are performed
automatically during gmx grompp (page 190) pre-processing.

Software prerequisites

CP2K version 8.1 (or later) should be linked into GROMACS as libcp2k. For a specific installation instructions
please follow the Building with CP2K QM/MM support (page 21) guide.

Limitations in simulation techniques

The QM/MM interface limits simulations in two ways. First, no topology modifications are possible during
the simulations in the QM region. Second, interface completely ignores “B” state parameters in the topology,
making double topology setups impossible, e.g. free-energy perturbation simulations (Free energy implementation
(page 498)).

In addition it should be noted that the contribution of forces from QM/MM to the system virial are not accounted
for. The size of the effect on the pressure-coupling algorithm grows with the total summed force due to QM-MM
interactions and might produce artifacts in simulations with the NPT ensemble.

5.8. Special Topics 535

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Usage

QM/MM simulations with CP2K interface are controlled by setting mdp (page 488) file options and, in some
cases, providing an additional input file for gmx grompp (page 190) with the -qmi command-line option. All
options that are related to QM/MM simulations with CP2K are prefixed with qmmm-cp2k.

Setting qmmm-cp2k-active=true will trigger a QM/MM simulation using the whole system as QM part and
default parameters for all other options.

Choosing atoms for QM calculation

The QM part of your system is chosen with a name that corresponds to an atom group in the index file of GRO-
MACS to the qmmm-cp2k-qmgroup (page 82) option in mdp (page 488) file. The typical QM part should
consist of atoms that are interesting from the chemical point of view, i.e. part of the system where reaction hap-
pens. To make computation of the QM part feasible, it should be small and as compact as possible in a space.
DFT simulations often scale as 3rd order of the number of atoms in the QM part. This means increasing number
of atoms in the QM part by a factor of 2 will slow down the simulation by a factor of 8.

In addition user should provide total charge of your QM subsystem with qmmm-cp2k-qmcharge (page 82)
option and spin-state (multiplicity) with qmmm-cp2k-qmmultiplicity (page 83) option.

Supported QM methods

The QM method is chosen with qmmm-cp2k-qmmethod (page 82) in the mdp (page 488) file. Currently the
following QM methods are supported:

1. qmmm-cp2k-qmmethod=PBE (page 82) - DFT using PBE functional and DZVP-MOLOPT basis set.

2. qmmm-cp2k-qmmethod=BLYP (page 82) - DFT using BLYP functional and DZVP-MOLOPT basis set.

That list will be updated with a new methods once they are tested and included into the interface.

Providing your own CP2K input file

In addition it is possible to use custom external CP2K input file with qmmm-cp2k-qmmethod=INPUT (page 82)
and providing file with gmx grompp (page 190) with -qmi option. The external file will be incorporated into the
tpr (page 494) file of the simulation and are subject to the following restrictions:

1. RUN_TYPE option in the CP2K input should be equal to ENERGY_FORCE.

2. CHARGE option should be present.

3. MULTIPILICTY option should be present.

4. COORD_FILE_NAME option should be present pointing towards pdb (page 490) file.

5. Both CHARGE_EXTENDED TRUE and COORD_FILE_FORMAT PDB options should be present.

6. Incremental includes (@INCLUDE directive) are not allowed in the CP2K input file .

Changing names of CP2K files

During gmx mdrun (page 215) simulation additional files will be produced with .inp, .out and .pdb. They
contain CP2K input, CP2K output and pdb (page 490) file with point charges of MM atoms in the extended beta
field. By default all CP2K related files names will be deduced from tpr (page 494) simulation file name by adding
_cp2k suffix. In order to change it manually qmmm-cp2k-qmfilenames (page 83) option should be used.

5.8. Special Topics 536

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Output

The energy output file will contain an additional “Quantum En.” term. This is the energy that is added to the
system from the QM/MM interactions. In addition, a file containing CP2K output will appear in the simulation
directory with the .out extension.

Future developments

support of additional DFT methods will be added in the future, as well as semi-empirical and DFTB description
of the QM subsystem will be allowed. Support of the multiple time-stepping approach to speed-up simulation will
be added. Excited state simulations will be implemented with TD-DFT description of the wavefunction.

5.8.15 MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations

This section describes the coupling to a novel QM/MM interface. The Multiscale Modeling in Computational
Chemistry (MiMiC) interface combines GROMACS with the CPMD QM code. To find information about
other QM/MM implementations in GROMACS please refer to the section Hybrid Quantum-Classical simula-
tions (QM/MM) with CP2K interface (page 534). Within a QM/MM approach, typically a small part of the system
(e.g. active site of an enzyme where a chemical reaction can take place) is treated at the QM level of theory (as
we cannot neglect electronic degrees of freedom while describing some processes e.g. chemical reactions), while
the rest of the system (remainder of the protein, solvent, etc.) is described by the classical forcefield (MM).

Overview

MiMiC implements the QM/MM coupling scheme developed by the group of Prof. U. Roethlisberger described
in 180 (page 584). This additive scheme uses electrostatic embedding of the classical system within the quantum
Hamiltonian. The total QM/MM energy is calculated as a sum of subsystem contributions:

𝐸𝑡𝑜𝑡 = 𝐸𝑄𝑀 + 𝐸𝑀𝑀 + 𝐸𝑄𝑀/𝑀𝑀

The QM contribution is computed by CPMD, while the MM part is processed by GROMACS and the cross terms
are treated by the MiMiC interface. Cross terms, i.e. the terms involving simultaneously atoms from the QM
region and atoms from the MM region consist of both bonded and non-bonded interactions.

The bonded interactions are taken from the forcefield used to describe the MM part. Whenever there is a chemical
bond crossing the QM/MM boundary additional care has to be taken to handle this situation correctly. Otherwise
the QM atom involved in the cut bond is left with an unsaturated electronic orbital leading to unphysical system
behaviour. Therefore, the dangling bond has to be capped with another QM atom. There are two different options
available in CPMD for bond capping:

1. Hydrogen capping - the simplest approach is to cap the bond with a hydrogen atom, constraining its relative
position

2. Link atom pseudo-potential - this strategy uses an ad-hoc pseudo-potential developed to cap the bond. This
pseudo-potential would represent the real atom and, thus, will not require the bond constraint.

As in standard forcefields, the non-bonded contributions to 𝐸𝑄𝑀/𝑀𝑀 can be separated into van der Waals and
electrostatic contributions. The first contribution is again taken from the MM forcefield. The second part of non-
bonded interactions is handled by MiMiC within the electrostatic embedding approach. This adds additional terms
to the Hamiltonian of the system:

𝐸𝑒𝑠
𝑄𝑀/𝑀𝑀 = −

𝑁𝑚𝑚∑︁
𝑎

𝑄𝑎

∫︁
𝜌(r)

𝑟4𝑐,𝑎 − |Ra − r|4

𝑟5𝑐,𝑎 − |Ra − r|5
𝑑r+

𝑁𝑚𝑚∑︁
𝑎

𝑁𝑞𝑚∑︁
𝑛

𝑄𝑎𝑍𝑛

𝑟4𝑐,𝑎 − |Ra −Rn|4

𝑟5𝑐,𝑎 − |Ra −Rn|5

5.8. Special Topics 537

http://cpmd.org/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where𝑁𝑚𝑚 is a number of MM atoms𝑁𝑞𝑚, is the number of QM atoms and 𝑟𝑐,𝑎 is the covalent radius of the MM
atoms. The first term above corresponds to the damped Coulomb interaction between the eletronic density 𝜌(r)
of the QM region and the MM atoms. The damping is needed due to the fact that CPMD uses a plane-wave basis
set to expand the electronic wavefunction. Unlike localized basis sets, plane waves are delocalized and this may
give a rise to the so-called electron spill-out problem: positively charged MM atoms may artificially overpolarize
the electronic cloud due to the absence of quantum mechanical effects (e.g. Pauli repusion) that would normally
prevent it (in a fully quantum system). This functional form of the damped Coulomb potential from the equation
above was introduced in 180 (page 584).

Since computing the integrals in the first term above can be computational extremely expensive, MiMiC also
implements hierarchical electrostatic embedding scheme in order to mitigate the enormous computational effort
needed to compute 𝑁𝑚𝑚 integrals over the electronic grid. Within this scheme the MM atoms are grouped into
two shells according to the distance from the QM region: the short-ranged and long-ranged one. For the MM
atoms in the short-ranged shell the QM/MM interactions are calculated using the equation above. In contrast to
that, the interactions involving MM atoms from the long-ranged shell are computed using the multipolar expansion
of the QM electrostatic potential. More details about it can be found in 180 (page 584).

Application coupling model

Unlike the majority of QM/MM interfaces, MiMiC uses a loose coupling between partner codes. This means
that instead of compiling both codes into a single binary MiMiC builds separate executables for CPMD and
GROMACS. The user will then prepare the input for both codes and run them simultaneously. Each of the
codes is running using a separate pool of MPI processes and communicate the necessary data (e.g. coordinates,
energies and forces) through MPI client-server mechanism. Within MiMiC framework CPMD acts as a server and
GROMACS becomes the client.

Software prerequisites

1. GROMACS version 2019+. Newer major releases may support multiple versions of MiMiC.

2. CPMD version 4.1+.

Usage

After Building with MiMiC QM/MM support (page 21), to run a MiMiC QM/MM simulation one needs to:

1. Get and compile CPMD with MiMiC support.

2. Do a normal classical equilibration with GROMACS.

3. Create an index group representing QM atoms within GROMACS. Keep in mind that this group should also
include link atoms bound to atoms in the QM region, as they have to be treated at quantum level.

4. Prepare input for CPMD and GROMACS according to the recommendations below.

5. Run both CPMD and GROMACS as two independent instances within a single batch job.

Preparing the input file for GROMACS

In order to setup the mdp (page 488) file for a MiMiC simulation one needs to add two options:

1. integrator=mimic (page 44) to enable MiMiC workflow within GROMACS.

2. QMMM-grps=<name_of_qm_index_group> to indicate all the atoms that are going to be handled by
CPMD.

Since CPMD is going to perform the MD integration, only mdp (page 488) options relating to force calculation
and output are active.

After setting up the mdp (page 488) file one can run grompp (page 190) as usual. grompp (page 190) will set the
charges of all the QM atoms to zero to avoid double-counting of Coulomb interactions. Moreover, it will update

5.8. Special Topics 538

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

non-bonded exclusion lists to exclude LJ interactions between QM atoms (since they will be described by CPMD).
Finally, it will remove bonds between QM atoms (if present). We recommend to output the preprocessed topology
file using gmx grompp -pp <preprocessed_topology_file> as it will help to prepare the input for
CPMD in an automated way.

Preparing the input file for CPMD

This section will only describe the MiMiC-related input in CPMD - for the configuration of a DFT-related options -
please refer to the CPMD manual. After preparing the input for GROMACS and having obtained the preprocessed
topology file, simply run the Python preprocessor script provided within the MiMiC distribution to obtain MiMiC-
related part of the CPMD input file. The usage of the script is simple:

prepare-qmmm.py <index_file> <gro_file> <preprocessed_topology_file> <qm_
→˓group_name>

Be advised that for MiMiC it is crucial that the forcefield contains the data about the element number of each atom
type! If it does not provide it, the preprocessor will fail with the error:

It looks like the forcefield that you are using has no information about
→˓the element number.
The element number is needed to run QM/MM simulations.

Given all the relevant information the script will print the part of the CPMD input that is related to MiMiC. Here
is the sample output with the short descriptions of keywords that can be found in this part of CPMD input:

&MIMIC
PATHS
1
<some_absolute_path>
BOX
35.77988547402689 35.77988547402689 35.77988547402689
OVERLAPS
3
2 13 1 1
2 14 1 2
2 15 1 3
&END

&ATOMS
O
1
17.23430225802002 17.76342557295923 18.576007806615877
H
2
18.557110545368047 19.086233860307257 18.727185896598506
17.57445296048094 16.705178943080806 17.06422690678956
&END
Suggested QM box size [12.661165036045407, 13.71941166592383, 13.

→˓00131573850633]

&MIMIC section contains MiMiC settings:

PATHS indicates number of MM client codes involved in the simulation and the absolute path to each
of their respective folder. Keep in mind that this path has to point to the folder, where GROMACS is
going to be run – otherwise it will cause a deadlock in CPMD! The next line contains the number of
MM codes (1 in this case) and next 𝑁 lines contain paths to their respective working directories

BOX indicates the size of the whole simulation box in Bohr in an X Y Z format

5.8. Special Topics 539

https://www.cpmd.org/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

OVERLAPS - sets the number and IDs of atoms within GROMACS that are going to be treated by
CPMD. The format is the following:

<code_id> <atom_id_in_code> <host_code_id> <atom_id_in_that_code>

CPMD host code id is always ID 1. Therefore, in a QM/MM simulation GROMACS will have code
ID 2.

(OPTIONAL) LONG-RANGE COUPLING - enables the faster multipole coupling for atoms located
at a certain distance from the QM box

(OPTIONAL) CUTOFF DISTANCE - the next line contains the cutoff for explicit Coulomb coupling
(20 Bohr by default if LONG-RANGE COUPLING is present)

(OPTIONAL) MULTIPOLE ORDER - The next line will contain the order at which the multipolar
expansion will be truncated (default 2, maximum 20).

The &ATOMS section of CPMD input file contains all the QM atoms within the system and has a default CPMD
formatting. Please refer to the CPMD manual to adjust it to your needs(one will need to set the correct pseudo-
potential for each atom species).

Finally, the preprocessor suggests the size of the QM box where the electronic density is going to be contained.
The suggested value is not final - further adjustment by user may be required.

Running a MiMiC QM/MM simulation

In order to run the simulation, one will need to run both GROMACS and CPMD within one job. This is easily
done within the vast majority of queueing systems. For example in case of SLURM queue system one can use
two job steps within one job. Here is the example job script running a 242-node slurm job, allocating 2 nodes to
GROMACS and 240 nodes to CPMD (both codes are launched in the same folder):

#!/bin/bash -x
#SBATCH --nodes=242
#SBATCH --output=mpi-out.%j
#SBATCH --error=mpi-err.%j
#SBATCH --time=00:25:00
#SBATCH --partition=batch

*** start of job script ***

srun -N2 --ntasks-per-node=6 --cpus-per-task=4 -r0 gmx_mpi_d mdrun -deffnm
→˓mimic -ntomp 4 &
srun -N240 --ntasks-per-node=6 --cpus-per-task=4 -r2 cpmd.x benchmark.inp

→˓<path_to_pp_folder> > benchmark-240-4.out &
wait

Known Issues

OpenMPI prior to version 3.x.x has a bug preventing the usage of MiMiC completely - please use newer versions
or other MPI distributions.

With IntelMPI communication between CPMD and GROMACS may result in a deadlock in some situations. If it
happens, setting an IntelMPI-related environment variable may help:

export FI_OFI_RXM_USE_SRX=1

5.8. Special Topics 540

https://www.cpmd.org/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.8.16 Using VMD plug-ins for trajectory file I/O

GROMACS tools are able to use the plug-ins found in an existing installation of VMD in order to read and write
trajectory files in formats that are not native to GROMACS. You will be able to supply an AMBER DCD-format
trajectory filename directly to GROMACS tools, for example.

This requires a VMD installation not older than version 1.8, that your system provides the dlopen function so
that programs can determine at run time what plug-ins exist, and that you build shared libraries when building
GROMACS. CMake will find the vmd executable in your path, and from it, or the environment variable VMDDIR
at configuration or run time, locate the plug-ins. Alternatively, the VMD_PLUGIN_PATH can be used at run time
to specify a path where these plug-ins can be found. Note that these plug-ins are in a binary format, and that
format must match the architecture of the machine attempting to use them.

5.8.17 Interactive Molecular Dynamics

GROMACS supports the interactive molecular dynamics (IMD) protocol as implemented by VMD to control a
running simulation in NAMD. IMD allows to monitor a running GROMACS simulation from a VMD client.
In addition, the user can interact with the simulation by pulling on atoms, residues or fragments with a mouse
or a force-feedback device. Additional information about the GROMACS implementation and an exemplary
GROMACS IMD system can be found on this homepage.

Simulation input preparation

The GROMACS implementation allows transmission and interaction with a part of the running simulation only,
e.g. in cases where no water molecules should be transmitted or pulled. The group is specified via the mdp
(page 488) option IMD-group. When IMD-group is empty, the IMD protocol is disabled and cannot be
enabled via the switches in mdrun (page 215). To interact with the entire system, IMD-group can be set to
System. When using grompp (page 190), a gro (page 486) file to be used as VMD input is written out (-imd
switch of grompp (page 190)).

Starting the simulation

Communication between VMD and GROMACS is achieved via TCP sockets and thus enables controlling an
mdrun (page 215) running locally or on a remote cluster. The port for the connection can be specified with
the -imdport switch of mdrun (page 215), 8888 is the default. If a port number of 0 or smaller is provided,
GROMACS automatically assigns a free port to use with IMD.

Every 𝑁 steps, the mdrun (page 215) client receives the applied forces from VMD and sends the new positions
to the client. VMD permits increasing or decreasing the communication frequency interactively. By default,
the simulation starts and runs even if no IMD client is connected. This behavior is changed by the -imdwait
switch of mdrun (page 215). After startup and whenever the client has disconnected, the integration stops until
reconnection of the client. When the -imdterm switch is used, the simulation can be terminated by pressing the
stop button in VMD. This is disabled by default. Finally, to allow interacting with the simulation (i.e. pulling from
VMD) the -imdpull switch has to be used. Therefore, a simulation can only be monitored but not influenced
from the VMD client when none of -imdwait, -imdterm or -imdpull are set. However, since the IMD
protocol requires no authentication, it is not advisable to run simulations on a host directly reachable from an
insecure environment. Secure shell forwarding of TCP can be used to connect to running simulations not directly
reachable from the interacting host. Note that the IMD command line switches of mdrun (page 215) are hidden
by default and show up in the help text only with gmx mdrun (page 215) -h -hidden.

5.8. Special Topics 541

http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://www.mpinat.mpg.de/grubmueller/interactivemd

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Connecting from VMD

In VMD, first the structure corresponding to the IMD group has to be loaded (File → New Molecule). Then
the IMD connection window has to be used (Extensions → Simulation → IMD Connect (NAMD)). In the IMD
connection window, hostname and port have to be specified and followed by pressing Connect. Detach Sim
allows disconnecting without terminating the simulation, while Stop Sim ends the simulation on the next neighbor
searching step (if allowed by -imdterm).

The timestep transfer rate allows adjusting the communication frequency between simulation and IMD client.
Setting the keep rate loads every 𝑁 th frame into VMD instead of discarding them when a new one is received.
The displayed energies are in SI units in contrast to energies displayed from NAMD simulations.s

5.8.18 Embedding proteins into the membranes

GROMACS is capable of inserting the protein into pre-equilibrated lipid bilayers with minimal perturbation of
the lipids using the method, which was initially described as a ProtSqueeze technique, 157 (page 583) and later
implemented as g_membed tool 158 (page 584). Currently the functionality of g_membed is available in mdrun
as described in the user guide.

This method works by first artificially shrinking the protein in the 𝑥𝑦-plane, then it removes lipids that overlap
with that much smaller core. Then the protein atoms are gradually resized back to their initial configuration,
using normal dynamics for the rest of the system, so the lipids adapt to the protein. Further lipids are removed as
required.

5.8. Special Topics 542

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.8.19 Applying forces from three-dimensional densities

In density-guided simulations, additional forces are applied to atoms that depend on the gradient of similarity
between a simulated density and a reference density.

By applying these forces protein structures can be made to “fit” densities from, e.g., cryo electron-microscopy.
The implemented approach extends the ones described in 192 (page 585), and 193 (page 585).

Overview

The forces that are applied depend on:

• The forward model that describes how atom positions are translated into a simulated density, 𝜌sim(r).

• The similarity measure that describes how close the simulated density is to the reference density, 𝜌ref ,
𝑆[𝜌ref , 𝜌sim(r)].

• The scaling of these forces by a force constant, 𝑘.

The resulting effective potential energy is

𝑈 = 𝑈forcefield(r)− 𝑘𝑆[𝜌ref , 𝜌sim(r)] . (5.392)

The corresponding density based forces that are added during the simulation are

Fdensity = 𝑘∇r𝑆[𝜌
ref , 𝜌sim(r)] . (5.393)

This derivative decomposes into a similarity measure derivative and a simulated density model derivative, summed
over all density voxels v

Fdensity = 𝑘
∑︁
v

𝜕𝜌sim
v
𝑆[𝜌ref , 𝜌sim] · ∇r𝜌

sim
v (r) . (5.394)

Thus density-guided simulation force calculations are based on computing a simulated density and its derivative
with respect to the atom positions, as well as a density-density derivative between the simulated and the reference
density.

Usage

Density-guided simulations are controlled by setting .mdp options and providing a reference density map as a file
additional to the .tpr.

All options that are related to density-guided simulations are prefixed with density-guided-simulation.

Setting density-guided-simulation-active = yes will trigger density-guided simulations with de-
fault parameters that will cause atoms to move into the reference density.

The simulated density and its force contribution

Atoms are spread onto the regular three-dimensional lattice of the reference density. For spreading the atoms onto
the grid, the discrete Gauss transform is used. The simulated density from atoms at positions ri at a voxel with
coordinates v is

𝜌v =
∑︁
𝑖

𝐴𝑖
1

√
2𝜋

3
𝜎3

exp[− (ri − v)2

2𝜎2
] . (5.395)

Where 𝐴𝑖 is an amplitude that is determined per atom type and may be the atom mass, partial charge, or unity for
all atoms.

The width of the Gaussian spreading function is determined by 𝜎. It is not recommended to use a spreading width
that is smaller than the grid spacing of the reference density.

5.8. Special Topics 543

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The factor for the density force is then

∇𝑟𝜌
sim
v (r) =

∑︁
𝑖

−𝐴𝑖
(ri − v)

𝜎

1
√
2𝜋

3
𝜎3

exp[− (ri − v)2

2𝜎2
] . (5.396)

The density similarity measure and its force contribution

There are multiple valid similarity measures between the reference density and the simulated density, each moti-
vated by the experimental source of the reference density data. For the density-guided simulations in GROMACS,
the following measures are provided:

The inner product of the simulated density,

𝑆inner−product[𝜌
ref , 𝜌sim] =

1

𝑁voxel

𝑁voxel∑︁
𝑣=1

𝜌ref𝑣 𝜌sim𝑣 . (5.397)

The negative relative entropy between two densities,

𝑆relative−entropy[𝜌
ref , 𝜌sim] =

𝑁voxel∑︁
𝑣=1,𝜌ref>0,𝜌sim>0

𝜌ref [log(𝜌sim𝑣)− log(𝜌ref𝑣)] . (5.398)

The cross correlation between two densities,

𝑆cross−correlation[𝜌
ref , 𝜌sim] =

∑︀
𝑣

(︀
(𝜌ref𝑣 − 𝜌ref)(𝜌sim𝑣 − 𝜌sim)

)︀√︀∑︀
𝑣(𝜌

ref
𝑣 − 𝜌ref)2

∑︀
𝑣(𝜌

sim
𝑣 − 𝜌sim)2

. (5.399)

Declaring regions to fit

A subset of atoms may be chosen when pre-processing the simulation to which the density-guided simulation
forces are applied. Only these atoms generate the simulated density that is compared to the reference density.

Performance

The following factors affect the performance of density-guided simulations

• Number of atoms in the density-guided simulation group, 𝑁atoms.

• Spreading range in multiples of Gaussian width, 𝑁𝜎 .

• The ratio of spreading width to the input density grid spacing, 𝑟𝜎 .

• The number of voxels of the input density, 𝑁voxel.

• Frequency of force calculations, 𝑁force.

• The communication cost when using multiple ranks, that is reflected in a constant 𝑐comm.

The overall cost of the density-guided simulation is approximately proportional to

1

𝑁force

[︁
𝑁atoms (𝑁𝜎𝑟𝜎)

3
+ 𝑐comm𝑁voxel

]︁
. (5.400)

5.8. Special Topics 544

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Applying force every N-th step

The cost of applying forces every integration step is reduced when applying the density-guided simulation forces
only every 𝑁 steps. The applied force is scaled by 𝑁 to approximate the same effective Hamiltonian as when
applying the forces every step, while maintaining time-reversibility and energy conservation. Note that for this
setting, the energy output frequency must be a multiple of 𝑁 .

The maximal time-step should not exceed the fastest oscillation period of any atom within the map potential
divided by 𝜋. This oscillation period depends on the choice of reference density, the similarity measure and the
force constant and is thus hard to estimate directly. It has been observed to be in the order of picoseconds for
typical cryo electron-microscopy data, resulting in a density-guided-simulation-nst (page 82) setting
in the order of 100.

Combining density-guided simulations with pressure coupling

Note that the contribution of forces from density-guided simulations to the system virial are not accounted for.
The size of the effect on the pressure-coupling algorithm grows with the total summed density-guided simulation
force, as well as the angular momentum introduced by forces from density-guided simulations. To minimize this
effect, align your structure to the density before running a pressure-coupled simulation.

Additionally, applying force every N-th steps does not work with the current implementation of infrequent evalu-
ation of pressure coupling and the constraint virial.

Periodic boundary condition treatment

Of all periodic images only the one closest to the center of the density map is considered.

The reference density map format

Reference input for the densities are given in mrc format according to the “EMDB Map Distribution Format
Description Version 1.01 (c) emdatabank.org 2014”. Closely related formats like ccp4 and map might work.

Be aware that different visualization software handles map formats differently. During simulations, reference
densities are interpreted as visualised by VMD.

Output

The energy output file will contain an additional “Density-fitting” term. This is the energy that is added to the
system from the density-guided simulations. The lower the energy, the higher the similarity between simulated
and reference density.

Adaptive force constant scaling

To enable a steady increase in similarity between reference and simulated density while using as little force as
possible, adaptive force scaling decreases the force constant when similarity increases and vice versa. To avoid
large fluctuations in the force constant, change in similarity is measured with an exponential moving average that
smoothens the time series of similarity measures with a time constant 𝑡𝑎𝑢 that is given in ps. If the exponential
moving average similarity increases, the force constant is scaled down by dividing by 1 + 𝛿𝑡density/𝑡𝑎𝑢, where
𝛿𝑡density is the time between density guided simulation steps. Conversely, if similarity between reference and
simulated density is decreasing, the force constant is increased by multiplying by 1 + 2𝛿𝑡density/𝑡𝑎𝑢. Note that
adaptive force scaling does not conserve energy and will ultimately lead to very high forces when similarity cannot
be increased further.

5.8. Special Topics 545

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Mapping input structure to density data with affine transformations

To align input structure and density data, a transformation matrix A and shift vector vshift may be defined that
transform the input structure atom coordinates before evaluating density-guided-simulation energies and forces,
so that

𝑈 = 𝑈forcefield(r)− 𝑘𝑆[𝜌ref , 𝜌sim(Ar+ vshift)] . (5.401)

Fdensity = 𝑘∇r𝑆[𝜌
ref , 𝜌sim(Ar+ vshift)] . (5.402)

Affine transformations may be used, amongst other things, to perform

• rotations, e.g., around the z-axis by an angle 𝜃 by using 𝐴 =

⎛⎝cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

⎞⎠.

• projection, e.g., onto the z-axis by using 𝐴 =

⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠. This allows density-guided simulations to be

steered by a density-profile along this axis.

• scaling the structure against the density by a factor 𝑠 by using 𝐴 =

⎛⎝𝑠 0 0
0 𝑠 0
0 0 𝑠

⎞⎠. This proves useful when,

e.g., voxel-sizes in cryo-EM densities have to be adjusted.

• and arbitrary combinations of these by matrix multiplications (note that matrix multiplications are not com-
mutative).

Future developments

Further similarity measures might be added in the future, along with different methods to determine atom ampli-
tudes. More automation in choosing a force constant as well as alignment of the input density map to the structure
might be provided.

5.8.20 Collective Variable simulations with the Colvars module

The Colvars module enables on-the-fly computation of low-dimension quantities (collective variables or colvars)
in simulations, the application of external forces (biases) to these colvars for restraining or enhanced sampling
purposes, and the computation of free energy profiles and other properties. The Colvars library and module
are described in ref. 195 (page 585) as well as in other references that are reported in the log file when the
corresponding features are used.

Using Colvars

Colvars simulations are enabled by the following mdp (page 488) file options: colvars-active,
colvars-configfile, and colvars-seed.

Setting colvars-active = true enables Colvars, using a configuration that can be defined by specifying a
Colvars configuration file using colvars-configfile.

See this section of the documentation (page 83) for detailed usage of these options.

5.8. Special Topics 546

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Configuration files for input

Colvars configuration files are plain text files describing specific collective variables and biasing and analysis
algorithms to be applied onto them. Full documentation is available here.

Additionally, the Colvars Dashboard extension within VMD can be used to prepare a Colvars configuration file,
leveraging input templates for many features; VMD version 1.9.4 or later is strongly recommended.

Colvars output files

When Colvars is active, additional output files are written during a GROMACS simulation. Their file names share
the same prefix as the edr (page 485) file, which is ener by default, followed by a suffix specific to their content
(e.g. ener.colvars.traj for the trajectory of the collective variables). These files are useful for analysis
purposes, but they are not required for continuing a simulation, because the relevant data from Colvars is included
in the binary checkpoint file.

Colvars checkpointing

The state of the Colvars library is written to the checkpoint file and read automatically upon restarting.

5.8.21 Using PLUMED

PLUMED functionality is enabled by using gmx mdrun -plumed plumed.dat.

The interface will look for an environment variable PLUMED_KERNEL that should contain the path and the name
of a shared object that contains the PLUMED kernel, and usually is called libPlumedKernel.so.

If the library is not present an error message will inform the user to export the PLUMED_KERNEL variable.

Usually the PLUMED kernel is stored in $plumed_prefix/lib/libPlumedKernel.so, so it should
be enough to export PLUMED_KERNEL=$plumed_prefix/lib/libPlumedKernel.so, where
$plumed_prefix is the PLUMED installation prefix.

Configuration files for input

PLUMED input files are plain text files describing the analysis process and how PLUMED should influence the
GROMACS simulation. The full documentation is available here

Limitations

The current implementation of the PLUMED interface does not support the following features:

• interaction with GROMACS energy

• PLUMED is incompatible with thread-MPI (PLUMED exits with an error when more than 1 thread-MPI
rank is used)

• The various replica exchange flavors are not yet implemented

5.8. Special Topics 547

https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html
https://www.plumed.org/doc

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.8.22 Neural Network Potentials

The NNPot module allows the use of potentials based on neural networks or machine learning in general. These
models can be trained to reproduce forces and energies at ab initio levels of accuracy, based on training data
from electronic structure calculations with e.g. DFT or CCSD(T). They take atomic descriptors as their input,
most commonly the atom positions and atomic numbers, and output a value for the potential energy of the given
conformation. The forces can then be calculated by backpropagating the gradients through the machine learning
model (e.g. PyTorchs AutoGrad engine), w.r.t. the inputs. Currently, only models trained in PyTorch, exported
using its TorchScript functionality, are supported.

Hybrid NNP/MM Simulations

The NNPot interface also supports hybrid NNP/MM simulations, where only a small subsystem is modeled with
the neural network potential, and the rest of the system is modeled using regular force fields. The embedding
scheme used is analoguous to the additive mechanical embedding scheme in QMMM simulations, where the total
energy of the system is expressed as 𝐸𝑡𝑜𝑡 = 𝐸𝑁𝑁𝑃 + 𝐸𝑀𝑀 + 𝐸𝑁𝑁𝑃−𝑀𝑀 , where 𝐸𝑁𝑁𝑃 describes the energy
predicted by the model for the NNP subsystem,𝐸𝑀𝑀 describes all other interactions calculated using the classical
MM force field. The coupling term 𝐸𝑁𝑁𝑃−𝑀𝑀 term includes non-bonded electrostatic and LJ interactions
between the atoms in the NNP and MM regions, calculated as usual in GROMACS. Bonded interactions are
also described on the MM level, removing terms consisting of bonds containing 2 NNP atoms, angles and settles
containing 2 or 3 NNP atoms, and dihedrals containing 3 or 4 NNP atoms. Broken chemical bonds between
NNP and MM atoms are currently not capped with a link atom, as is usual in QMMM simulations. This might
lead to unusual local chemical environments the model is not familiar with, leading to unexpected behaviour.
NNP/MM simulations with NNP subsystems that cut through chemical bonds are therefore discouraged as of now.
All necessary modifications to the system topology are performed automatically during gmx grompp (page 190)
preprocessing.

Software Prerequisites

To perform simulations with the NNPot module, GROMACS needs to be linked with a LibTorch installation
(version 2.0 or higher). For specific installations instructions please see this section (page 22) of the install guide.

Usage

Simulations using the NNPot interface are controlled by setting mdp (page 488) file options. In particular, the
relevant options, specifying the behaviour of a simulation with nnpot-active set to true, are:

• nnpot-modelfile: Specifies a path to a TorchScript-compiled model, either absolute or relative to the
simulation directory. If not provided, the interface will look for a file named model.pt in the current
working directory.

• nnpot-provides_forces: Boolean option, specifying whether the model outputs forces in addition
to the potential energy. This can be useful for cases in which the forces can be more efficiently computed
than via backpropagation. Defaults to false.

• nnpot-input_group: Specifies an [index group] defining the input atoms for the NNP subsystem.
Defaults to System, which performs a pure NNP simulation.

• nnpot-model_input[1-4]: These options can be used to specify the inputs for the model. Supported
options are atom_positions, a vector containing the input atom positions; atom_numbers, a vector
containing atomic numbers; box, the unit vectors of the simulation box; pbc, a boolean vector specifying
PBC type.

The inputs are passed to the model in order of their occurence in the mdp file. Note that there are no default values
for the model input, so not specifying the model input will lead to errors. Also note that for now, if the model does
not provide its own forces, they are calculated by the interface as gradients w.r.t. the first input tensor. You can
specify the device on which you wish to run model inference using the environment variable GMX_NN_DEVICE.
For now, only cpu and cuda are supported. For cuda, a CUDA-aware LibTorch installation should be installed,
and the corresponding CUDA installation should be available in your PATH.

5.8. Special Topics 548

https://pytorch.org/
https://pytorch.org/get-started/locally/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Find below an example Python code snippet to export a pretrained model in PyTorch using TorchScript. As an
example, we use the popular ANI models available from TorchANI.

import torch
from torch import nn
from torchani.models import ANI2x
from typing import Optional

class GmxNNPotModelWrapper(nn.Module):
def __init__(self):

super().__init__()

Load a pre-trained ANI-2x model
self.model = ANI2x(periodic_table_index=True)

GROMACS and TorchANI use different unit conventions
self.length_conversion = 10.0 # nm --> Å
self.energy_conversion = 2625.5 # Hartree --> kJ/mol

def forward(self, positions, atomic_numbers,
box: Optional[torch.Tensor]=None, pbc: Optional[torch.

→˓Tensor]=None):

Prepare the inputs for the model
atomic_numbers = atomic_numbers.unsqueeze(0)
positions = positions.unsqueeze(0) * self.length_conversion
if box is not None:

box *= self.length_conversion

Forward pass
result = self.model((atomic_numbers, positions), box, pbc)

energy = result.energies[0] * self.energy_conversion

return energy

model = GmxNNPotModelWrapper()

save_path = 'ani2x.pt'
torch.jit.script(model).save(save_path)

The model can then be used in GROMACS by specifying the path to the saved model. Take care that the LibTorch
version linked to GROMACS matches the one that was used to train/export the model.

5.9 Run parameters and Programs

5.9.1 Online documentation

We install standard UNIX man pages for all the programs. If you have sourced the GMXRC script in the GROMACS
binary directory for your host they should already be present in your MANPATH environment variable, and you
should be able to type e.g. man gmx-grompp. You can also use the -h flag on the command line (e.g. gmx
grompp (page 190) -h) to see the same information, as well as gmx help grompp. The list of all programs
are available from gmx help (page 205).

5.9. Run parameters and Programs 549

https://github.com/aiqm/torchani/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.9.2 File types

Information about different file types can be found in File formats (page 483).

GROMACS files written in XDR format can be read on any architecture with GROMACS version 1.6 or later if
the configuration script found the XDR libraries on your system. They should always be present on UNIX since
they are necessary for NFS support.

5.9.3 Run Parameters

The descriptions of mdp (page 488) parameters can be found at under the link above both in your local GROMACS
installation, or here (page 42).

5.9. Run parameters and Programs 550

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.10 Analysis

In this chapter different ways of analyzing your trajectory are described. The names of the corresponding anal-
ysis programs are given. Specific information on the in- and output of these programs can be found in the tool
documentation here (page 115). The output files are often produced as finished Grace/Xmgr graphs.

First, in sec. Using Groups (page 551), the group concept in analysis is explained. Selections (page 553) explains
a newer concept of dynamic selections, which is currently supported by a few tools. Then, the different analysis
tools are presented.

5.10.1 Using Groups

In chapter Algorithms (page 361), it was explained how groups of atoms can be used in mdrun (page 215)
(see sec. The group concept (page 364)). In most analysis programs, groups of atoms must also be chosen. Most
programs can generate several default index groups, but groups can always be read from an index file. Let’s
consider the example of a simulation of a binary mixture of components A and B. When we want to calculate the
radial distribution function (RDF) 𝑔𝐴𝐵(𝑟) of A with respect to B, we have to calculate:

4𝜋𝑟2𝑔𝐴𝐵(𝑟) = 𝑉

𝑁𝐴∑︁
𝑖∈𝐴

𝑁𝐵∑︁
𝑗∈𝐵

𝑃 (𝑟) (5.403)

where 𝑉 is the volume and 𝑃 (𝑟) is the probability of finding a B atom at distance 𝑟 from an A atom.

By having the user define the atom numbers for groups A and B in a simple file, we can calculate this 𝑔𝐴𝐵 in the
most general way, without having to make any assumptions in the RDF program about the type of particles.

Groups can therefore consist of a series of atom numbers, but in some cases also of molecule numbers. It is
also possible to specify a series of angles by triples of atom numbers, dihedrals by quadruples of atom numbers
and bonds or vectors (in a molecule) by pairs of atom numbers. When appropriate the type of index file will be
specified for the following analysis programs. To help creating such index file (page 489) index.ndx), there
are a couple of programs to generate them, using either your input configuration or the topology. To generate an
index file consisting of a series of atom numbers (as in the example of 𝑔𝐴𝐵), use gmx make_ndx (page 213) or gmx
select (page 262). To generate an index file with angles or dihedrals, use gmx mk_angndx (page 222). Of course
you can also make them by hand. The general format is presented here:

[Oxygen]
1 4 7

[Hydrogen]
2 3 5 6
8 9

First, the group name is written between square brackets. The following atom numbers may be spread out over as
many lines as you like. The atom numbering starts at 1.

Each tool that can use groups will offer the available alternatives for the user to choose. That choice can be made
with the number of the group, or its name. In fact, the first few letters of the group name will suffice if that will
distinguish the group from all others. There are ways to use Unix shell features to choose group names on the
command line, rather than interactively. Consult our webpage for suggestions.

5.10. Analysis 551

http://www.gromacs.org

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Default Groups

When no index file is supplied to analysis tools or grompp (page 190), a number of default groups are generated
to choose from:

System

all atoms in the system

Protein

all protein atoms

Protein-H

protein atoms excluding hydrogens

C-alpha

C𝛼 atoms

Backbone

protein backbone atoms; N, C𝛼 and C

MainChain

protein main chain atoms: N, C𝛼, C and O, including oxygens in C-terminus

MainChain+Cb

protein main chain atoms including C𝛽

MainChain+H

protein main chain atoms including backbone amide hydrogens and hydrogens on the N-terminus

SideChain

protein side chain atoms; that is all atoms except N, C𝛼, C, O, backbone amide hydrogens, oxygens in
C-terminus and hydrogens on the N-terminus

SideChain-H

protein side chain atoms excluding all hydrogens

Prot-Masses

protein atoms excluding dummy masses (as used in virtual site constructions of NH3 groups and
tryptophan side-chains), see also sec. Virtual sites (page 455); this group is only included when it differs
from the Protein group

Non-Protein

all non-protein atoms

DNA

all DNA atoms

RNA

all RNA atoms

Water

water molecules (names like SOL, WAT, HOH, etc.) See residuetypes.dat for a full listing

non-Water

anything not covered by the Water group

Ion

any name matching an Ion entry in residuetypes.dat

5.10. Analysis 552

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Water_and_Ions

combination of the Water and Ions groups

molecule_name

for all residues/molecules which are not recognized as protein, DNA, or RNA; one group per
residue/molecule name is generated

Other

all atoms which are neither protein, DNA, nor RNA.

Empty groups will not be generated. Most of the groups only contain protein atoms. An atom is considered a
protein atom if its residue name is listed in the residuetypes.dat file and is listed as a “Protein” entry. The
process for determinding DNA, RNA, etc. is analogous. If you need to modify these classifications, then you can
copy the file from the library directory into your working directory and edit the local copy.

Selections

gmx select (page 262)
Currently, a few analysis tools support an extended concept of (dynamic) selections. There are three main
differences to traditional index groups:

• The selections are specified as text instead of reading fixed atom indices from a file, using a syntax similar
to VMD. The text can be entered interactively, provided on the command line, or from a file.

• The selections are not restricted to atoms, but can also specify that the analysis is to be performed on, e.g.,
center-of-mass positions of a group of atoms. Some tools may not support selections that do not evaluate
to single atoms, e.g., if they require information that is available only for single atoms, like atom names or
types.

• The selections can be dynamic, i.e., evaluate to different atoms for different trajectory frames. This allows
analyzing only a subset of the system that satisfies some geometric criteria.

As an example of a simple selection, resname ABC and within 2 of resname DEF selects all atoms in
residues named ABC that are within 2nm of any atom in a residue named DEF.

Tools that accept selections can also use traditional index files similarly to older tools: it is possible to give an ndx
(page 489) file to the tool, and directly select a group from the index file as a selection, either by group number or
by group name. The index groups can also be used as a part of a more complicated selection.

To get started, you can run gmx select (page 262) with a single structure, and use the interactive prompt to try out
different selections. The tool provides, among others, output options -on and -ofpdb to write out the selected
atoms to an index file and to a pdb (page 490) file, respectively. This does not allow testing selections that evaluate
to center-of-mass positions, but other selections can be tested and the result examined.

The detailed syntax and the individual keywords that can be used in selections can be accessed by typing help
in the interactive prompt of any selection-enabled tool, as well as with gmx help (page 205) selections. The help
is divided into subtopics that can be accessed with, e.g., help syntax/ gmx help (page 205) selections
syntax. Some individual selection keywords have extended help as well, which can be accessed with, e.g.,
help keywords within.

The interactive prompt does not currently provide much editing capabilities. If you need them, you can run the
program under rlwrap.

For tools that do not yet support the selection syntax, you can use gmx select (page 262) -on to generate static
index groups to pass to the tool. However, this only allows for a small subset (only the first bullet from the above
list) of the flexibility that fully selection-aware tools offer.

It is also possible to write your own analysis tools to take advantage of the flexibility of these selections: see the
template.cpp file in the share/gromacs/template directory of your installation for an example and
https://manual.gromacs.org/current/doxygen/html-full/page_analysistemplate.xhtml for documentation.

5.10. Analysis 553

https://manual.gromacs.org/current/doxygen/html-full/page_analysistemplate.xhtml

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.10.2 Looking at your trajectory

Before analyzing your trajectory it is often informative to look at your trajectory first. There are several programs
that can read the GROMACS trajectory formats – have a look at our webpage for up-to-date links.

5.10.3 General properties

gmx energy (page 177), gmx traj (page 275)
To analyze some or all energies and other properties, such as total pressure, pressure tensor, density, box-volume
and box-sizes, use the program gmx energy (page 177). A choice can be made from a list a set of energies, like
potential, kinetic or total energy, or individual contributions, like Lennard-Jones or dihedral energies.

The center-of-mass velocity, defined as

v𝑐𝑜𝑚 =
1

𝑀

𝑁∑︁
𝑖=1

𝑚𝑖v𝑖 (5.404)

with 𝑀 =
∑︀𝑁

𝑖=1𝑚𝑖 the total mass of the system, can be monitored in time by the program gmx traj (page 275)
-com -ov. It is however recommended to remove the center-of-mass velocity every step (see chapter Algorithms
(page 361))!

5.10.4 Radial distribution functions

gmx rdf (page 243)
The radial distribution function (RDF) or pair correlation function 𝑔𝐴𝐵(𝑟) between particles of type 𝐴 and 𝐵 is
defined in the following way:

𝑔𝐴𝐵(𝑟) =
⟨𝜌𝐵(𝑟)⟩
⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙

=
1

⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙
1

𝑁𝐴

∑︀𝑁𝐴

𝑖∈𝐴

∑︀𝑁𝐵

𝑗∈𝐵

𝛿(𝑟𝑖𝑗 − 𝑟)

4𝜋𝑟2

(5.405)

with ⟨𝜌𝐵(𝑟)⟩ the particle density of type 𝐵 at a distance 𝑟 around particles 𝐴, and ⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙 the particle density
of type 𝐵 averaged over all spheres around particles 𝐴 with radius 𝑟𝑚𝑎𝑥 (see Fig. 5.52 C).

Usually the value of 𝑟𝑚𝑎𝑥 is half of the box length. The averaging is also performed in time. In practice the
analysis program gmx rdf (page 243) divides the system into spherical slices (from 𝑟 to 𝑟 + 𝑑𝑟, see Fig. 5.52 A)
and makes a histogram in stead of the 𝛿-function. An example of the RDF of oxygen-oxygen in SPC water 80
(page 580) is given in Fig. 5.53

With gmx rdf (page 243) it is also possible to calculate an angle dependent rdf 𝑔𝐴𝐵(𝑟, 𝜃), where the angle 𝜃 is
defined with respect to a certain laboratory axis e, see Fig. 5.52 B.

𝑔𝐴𝐵(𝑟, 𝜃) =
1

⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙, 𝜃
1

𝑁𝐴

𝑁𝐴∑︁
𝑖∈𝐴

𝑁𝐵∑︁
𝑗∈𝐵

𝛿(𝑟𝑖𝑗 − 𝑟)𝛿(𝜃𝑖𝑗 − 𝜃)

2𝜋𝑟2𝑠𝑖𝑛(𝜃)
(5.406)

𝑐𝑜𝑠(𝜃𝑖𝑗) =
r𝑖𝑗 · e

‖𝑟𝑖𝑗‖ ‖𝑒‖ (5.407)

This 𝑔𝐴𝐵(𝑟, 𝜃) is useful for analyzing anisotropic systems. Note that in this case the normalization ⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙, 𝜃 is
the average density in all angle slices from 𝜃 to 𝜃 + 𝑑𝜃 up to 𝑟𝑚𝑎𝑥, so angle dependent, see Fig. 5.52 D.

5.10. Analysis 554

http://www.gromacs.org

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

r

r+dr r+dr

r
θ+dθ

θ

e

A B

DC

Fig. 5.52: Definition of slices in gmx rdf (page 243): A. 𝑔𝐴𝐵(𝑟). B. 𝑔𝐴𝐵(𝑟, 𝜃). The slices are colored gray. C.
Normalization ⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙. D. Normalization ⟨𝜌𝐵⟩𝑙𝑜𝑐𝑎𝑙, 𝜃. Normalization volumes are colored gray.

0 0.2 0.4 0.6 0.8
r (nm)

0

0.5

1

1.5

2

2.5

3

g(
r)

Fig. 5.53: 𝑔𝑂𝑂(𝑟) for Oxygen-Oxygen of SPC-water.

5.10. Analysis 555

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.10.5 Correlation functions

Theory of correlation functions

The theory of correlation functions is well established 108 (page 581). We describe here the implementation of the
various correlation function flavors in the GROMACS code. The definition of the autocorrelation function (ACF)
𝐶𝑓 (𝑡) for a property 𝑓(𝑡) is:

𝐶𝑓 (𝑡) = ⟨𝑓(𝜉)𝑓(𝜉 + 𝑡)⟩𝜉 (5.408)

where the notation on the right hand side indicates averaging over 𝜉, i.e. over time origins. It is also possible to
compute cross-correlation function from two properties 𝑓(𝑡) and 𝑔(𝑡):

𝐶𝑓𝑔(𝑡) = ⟨𝑓(𝜉)𝑔(𝜉 + 𝑡)⟩𝜉 (5.409)

however, in GROMACS there is no standard mechanism to do this (note: you can use the xmgr program to
compute cross correlations). The integral of the correlation function over time is the correlation time 𝜏𝑓 :

𝜏𝑓 =

∫︁ ∞

0

𝐶𝑓 (𝑡)d𝑡 (5.410)

In practice, correlation functions are calculated based on data points with discrete time intervals ∆t, so that the
ACF from an MD simulation is:

𝐶𝑓 (𝑗∆𝑡) =
1

𝑁 − 𝑗

𝑁−1−𝑗∑︁
𝑖=0

𝑓(𝑖∆𝑡)𝑓((𝑖+ 𝑗)∆𝑡) (5.411)

where 𝑁 is the number of available time frames for the calculation. The resulting ACF is obviously only available
at time points with the same interval ∆t. Since, for many applications, it is necessary to know the short time
behavior of the ACF (e.g. the first 10 ps) this often means that we have to save the data with intervals much shorter
than the time scale of interest. Another implication of (5.411) is that in principle we can not compute all points
of the ACF with the same accuracy, since we have 𝑁 − 1 data points for 𝐶𝑓 (∆𝑡) but only 1 for 𝐶𝑓 ((𝑁 − 1)∆𝑡).
However, if we decide to compute only an ACF of length 𝑀∆𝑡, where 𝑀 ≤ 𝑁/2 we can compute all points with
the same statistical accuracy:

𝐶𝑓 (𝑗∆𝑡) =
1

𝑀

𝑁−1−𝑀∑︁
𝑖=0

𝑓(𝑖∆𝑡)𝑓((𝑖+ 𝑗)∆𝑡) (5.412)

Here of course 𝑗 < 𝑀 . 𝑀 is sometimes referred to as the time lag of the correlation function. When we decide to
do this, we intentionally do not use all the available points for very short time intervals (𝑗 << 𝑀), but it makes it
easier to interpret the results. Another aspect that may not be neglected when computing ACFs from simulation is
that usually the time origins 𝜉 ((5.408)) are not statistically independent, which may introduce a bias in the results.
This can be tested using a block-averaging procedure, where only time origins with a spacing at least the length
of the time lag are included, e.g. using 𝑘 time origins with spacing of 𝑀∆𝑡 (where 𝑘𝑀 ≤ 𝑁):

𝐶𝑓 (𝑗∆𝑡) =
1

𝑘

𝑘−1∑︁
𝑖=0

𝑓(𝑖𝑀∆𝑡)𝑓((𝑖𝑀 + 𝑗)∆𝑡) (5.413)

However, one needs very long simulations to get good accuracy this way, because there are many fewer points that
contribute to the ACF.

Using FFT for computation of the ACF

The computational cost for calculating an ACF according to (5.411) is proportional to 𝑁2, which is considerable.
However, this can be improved by using fast Fourier transforms to do the convolution 108 (page 581).

5.10. Analysis 556

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Special forms of the ACF

There are some important varieties on the ACF, e.g. the ACF of a vector p:

𝐶p(𝑡) =

∫︁ ∞

0

𝑃𝑛(cos∠ (p(𝜉),p(𝜉 + 𝑡)) d𝜉 (5.414)

where 𝑃𝑛(𝑥) is the 𝑛𝑡ℎ order Legendre polynomial.1 Such correlation times can actually be obtained experimen-
tally using e.g. NMR or other relaxation experiments. GROMACS can compute correlations using the 1𝑠𝑡 and 2𝑛𝑑

order Legendre polynomial ((5.414)). This can also be used for rotational autocorrelation (gmx rotacf (page 252))
and dipole autocorrelation (gmx dipoles (page 158)).

In order to study torsion angle dynamics, we define a dihedral autocorrelation function as 159 (page 584):

𝐶(𝑡) = ⟨cos(𝜃(𝜏)− 𝜃(𝜏 + 𝑡))⟩𝜏 (5.415)

Note that this is not a product of two functions as is generally used for correlation functions, but it may be rewritten
as the sum of two products:

𝐶(𝑡) = ⟨cos(𝜃(𝜏)) cos(𝜃(𝜏 + 𝑡)) + sin(𝜃(𝜏)) sin(𝜃(𝜏 + 𝑡))⟩𝜏 (5.416)

Some Applications

The program gmx velacc (page 292) calculates the velocity autocorrelation function.

𝐶v(𝜏) = ⟨v𝑖(𝜏) · v𝑖(0)⟩𝑖∈𝐴 (5.417)

The self diffusion coefficient can be calculated using the Green-Kubo relation 108 (page 581):

𝐷𝐴 =
1

3

∫︁ ∞

0

⟨v𝑖(𝑡) · v𝑖(0)⟩𝑖∈𝐴 𝑑𝑡 (5.418)

which is just the integral of the velocity autocorrelation function. There is a widely-held belief that the velocity
ACF converges faster than the mean square displacement (sec. Mean Square Displacement (page 559)), which can
also be used for the computation of diffusion constants. However, Allen & Tildesley 108 (page 581) warn us that
the long-time contribution to the velocity ACF can not be ignored, so care must be taken.

Another important quantity is the dipole correlation time. The dipole correlation function for particles of type 𝐴
is calculated as follows by gmx dipoles (page 158):

𝐶𝜇(𝜏) = ⟨𝜇𝑖(𝜏) · 𝜇𝑖(0)⟩𝑖∈𝐴 (5.419)

with 𝜇𝑖 =
∑︀

𝑗∈𝑖 r𝑗𝑞𝑗 . The dipole correlation time can be computed using (5.410). For some applications
see (???).

The viscosity of a liquid can be related to the correlation time of the Pressure tensor P 160 (page 584), 161
(page 584). gmx energy (page 177) can compute the viscosity, but this is not very accurate 149 (page 583), and
actually the values do not converge.

5.10.6 Curve fitting in GROMACS

Sum of exponential functions

Sometimes it is useful to fit a curve to an analytical function, for example in the case of autocorrelation functions
with noisy tails. GROMACS is not a general purpose curve-fitting tool however and therefore GROMACS only
supports a limited number of functions. Table 5.18 lists the available options with the corresponding command-
line options. The underlying routines for fitting use the Levenberg-Marquardt algorithm as implemented in the

1 𝑃0(𝑥) = 1, 𝑃1(𝑥) = 𝑥, 𝑃2(𝑥) = (3𝑥2 − 1)/2

5.10. Analysis 557

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

lmfit package 162 (page 584) (a bare-bones version of which is included in GROMACS in which an option for
error-weighted fitting was implemented).

Table 5.18: Overview of fitting functions supported in (most) analysis
tools that compute autocorrelation functions. The Note column describes
properties of the output parameters.

Command line option Functional form 𝑓(𝑡) Note

exp 𝑒−𝑡/𝑎0

aexp 𝑎1𝑒
−𝑡/𝑎0

exp_exp 𝑎1𝑒
−𝑡/𝑎0 + (1− 𝑎1)𝑒

−𝑡/𝑎2 𝑎2 ≥ 𝑎0 ≥ 0
exp5 𝑎1𝑒

−𝑡/𝑎0 + 𝑎3𝑒
−𝑡/𝑎2 + 𝑎4 𝑎2 ≥ 𝑎0 ≥ 0

exp7 𝑎1𝑒
−𝑡/𝑎0 + 𝑎3𝑒

−𝑡/𝑎2 + 𝑎5𝑒
−𝑡/𝑎4 + 𝑎6 𝑎4 ≥ 𝑎2 ≥ 𝑎0 ≥ 0

exp9 𝑎1𝑒
−𝑡/𝑎0 + 𝑎3𝑒

−𝑡/𝑎2 + 𝑎5𝑒
−𝑡/𝑎4 + 𝑎7𝑒

−𝑡/𝑎6 + 𝑎8 𝑎6 ≥ 𝑎4 ≥ 𝑎2 ≥ 𝑎0 ≥ 0

Error estimation

Under the hood GROMACS implements some more fitting functions, namely a function to estimate the error in
time-correlated data due to Hess 149 (page 583):

𝜀2(𝑡) = 2𝛼𝜏1

(︁
1 +

𝜏1
𝑡

(︁
𝑒−𝑡/𝜏1 − 1

)︁)︁
+ 2(1− 𝛼)𝜏2

(︁
1 +

𝜏2
𝑡

(︁
𝑒−𝑡/𝜏2 − 1

)︁)︁
(5.420)

where 𝜏1 and 𝜏2 are time constants (with 𝜏2 ≥ 𝜏1) and 𝛼 usually is close to 1 (in the fitting procedure it is enforced
that 0 ≤ 𝛼 ≤ 1). This is used in gmx analyze (page 125) for error estimation using

lim
𝑡→∞

𝜀(𝑡) = 𝜎

√︂
2(𝛼𝜏1 + (1− 𝛼)𝜏2)

𝑇
(5.421)

where 𝜎 is the standard deviation of the data set and 𝑇 is the total simulation time 149 (page 583).

Interphase boundary demarcation

In order to determine the position and width of an interface, Steen-Sæthre et al. fitted a density profile to the
following function

𝑓(𝑥) =
𝑎0 + 𝑎1

2
− 𝑎0 − 𝑎1

2
erf

(︂
𝑥− 𝑎2
𝑎23

)︂
(5.422)

where 𝑎0 and 𝑎1 are densities of different phases, 𝑥 is the coordinate normal to the interface, 𝑎2 is the position of
the interface and 𝑎3 is the width of the interface 163 (page 584). This is implemented in gmx densorder (page 155).

Transverse current autocorrelation function

In order to establish the transverse current autocorrelation function (useful for computing viscosity 164
(page 584)) the following function is fitted:

𝑓(𝑥) = 𝑒−𝜈

(︂
cosh(𝜔𝜈) +

sinh(𝜔𝜈)

𝜔

)︂
(5.423)

with 𝜈 = 𝑥/(2𝑎0) and 𝜔 =
√
1− 𝑎1. This is implemented in gmx tcaf (page 274).

5.10. Analysis 558

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Viscosity estimation from pressure autocorrelation function

The viscosity is a notoriously difficult property to extract from simulations 149 (page 583), 165 (page 584). It is
in principle possible to determine it by integrating the pressure autocorrelation function 160 (page 584), however
this is often hampered by the noisy tail of the ACF. A workaround to this is fitting the ACF to the following
function 166 (page 584):

𝑓(𝑡)/𝑓(0) = (1− 𝐶)cos(𝜔𝑡)𝑒−(𝑡/𝜏𝑓)
𝛽𝑓

+ 𝐶𝑒−(𝑡/𝜏𝑠)
𝛽𝑠 (5.424)

where 𝜔 is the frequency of rapid pressure oscillations (mainly due to bonded forces in molecular simulations),
𝜏𝑓 and 𝛽𝑓 are the time constant and exponent of fast relaxation in a stretched-exponential approximation, 𝜏𝑠 and
𝛽𝑠 are constants for slow relaxation and 𝐶 is the pre-factor that determines the weight between fast and slow
relaxation. After a fit, the integral of the function 𝑓(𝑡) is used to compute the viscosity:

𝜂 =
𝑉

𝑘𝐵𝑇

∫︁ ∞

0

𝑓(𝑡)𝑑𝑡 (5.425)

This equation has been applied to computing the bulk and shear viscosity using different elements from the pres-
sure tensor 167 (page 584).

5.10.7 Mean Square Displacement

gmx msd (page 222)
To determine the self diffusion coefficient 𝐷𝐴 of particles of type 𝐴, one can use the Einstein relation 108
(page 581):

lim
𝑡→∞

⟨‖r𝑖(𝑡)− r𝑖(0)‖2⟩𝑖∈𝐴 = 6𝐷𝐴𝑡 (5.426)

This mean square displacement and 𝐷𝐴 are calculated by the program gmx msd (page 222). Normally an index
file containing atom numbers is used and the MSD is averaged over these atoms. For molecules consisting of
more than one atom, r𝑖 can be taken as the center of mass positions of the molecules. In that case, you should use
an index file with molecule numbers. The results will be nearly identical to averaging over atoms, however. The
gmx msd (page 222) program can also be used for calculating diffusion in one or two dimensions. This is useful
for studying lateral diffusion on interfaces.

An example of the mean square displacement of SPC water is given in Fig. 5.54.

5.10.8 Bonds/distances, angles and dihedrals

gmx distance (page 163), gmx angle (page 128), gmx gangle (page 185)
To monitor specific bonds in your modules, or more generally distances between points, the program gmx
distance (page 163) can calculate distances as a function of time, as well as the distribution of the distance. With
a traditional index file, the groups should consist of pairs of atom numbers, for example:

[bonds_1]
1 2
3 4
9 10

[bonds_2]
12 13

5.10. Analysis 559

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

0.0 50.0 100.0 150.0
Time (ps)

0.0

1000.0

2000.0

3000.0

4000.0

M
S

D
 (
10

-5
cm

2
s-1

)

Mean Square Displacement
D = 3.5027 (10

-5
cm

2
s

-1
)

Fig. 5.54: Mean Square Displacement of SPC-water.

Selections are also supported, with first two positions defining the first distance, second pair of positions defining
the second distance and so on. You can calculate the distances between CA and CB atoms in all your residues
(assuming that every residue either has both atoms, or neither) using a selection such as:

name CA CB

The selections also allow more generic distances to be computed. For example, to compute the distances between
centers of mass of two residues, you can use:

com of resname AAA plus com of resname BBB

The program gmx angle (page 128) calculates the distribution of angles and dihedrals in time. It also gives the
average angle or dihedral. The index file consists of triplets or quadruples of atom numbers:

[angles]
1 2 3
2 3 4
3 4 5

[dihedrals]
1 2 3 4
2 3 5 5

For the dihedral angles you can use either the “biochemical convention” (𝜑 = 0 ≡ 𝑐𝑖𝑠) or “polymer convention”
(𝜑 = 0 ≡ 𝑡𝑟𝑎𝑛𝑠), see Fig. 5.55.

φ= 0φ= 0

A B

Fig. 5.55: Dihedral conventions: A. “Biochemical convention”. B. “Polymer convention”.

The program gmx gangle (page 185) provides a selection-enabled version to compute angles. This tool can also
compute angles and dihedrals, but does not support all the options of gmx angle (page 128), such as autocorrelation

5.10. Analysis 560

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

or other time series analyses. In addition, it supports angles between two vectors, a vector and a plane, two planes
(defined by 2 or 3 points, respectively), a vector/plane and the 𝑧 axis, or a vector/plane and the normal of a sphere
(determined by a single position). Also the angle between a vector/plane compared to its position in the first frame
is supported. For planes, gmx gangle (page 185) uses the normal vector perpendicular to the plane. See Fig. 5.56
A, B, C) for the definitions.

A B C

z

D

Fig. 5.56: Angle options of gmx gangle (page 185): A. Angle between two vectors. B. Angle between two planes.
C. Angle between a vector and the 𝑧 axis. D. Angle between a vector and the normal of a sphere. Also other
combinations are supported: planes and vectors can be used interchangeably.

5.10.9 Radius of gyration and distances

gmx gyrate (page 193), gmx distance (page 163), gmx mindist (page 220), gmx mdmat (page 213), gmx pairdist
(page 233), gmx xpm2ps (page 300)
To have a rough measure for the compactness of a structure, you can calculate the radius of gyration with the
program gmx gyrate (page 193) as follows:

𝑅𝑔 =

(︂∑︀
𝑖 ‖r𝑖‖2𝑚𝑖∑︀

𝑖𝑚𝑖

)︂ 1
2

(5.427)

where 𝑚𝑖 is the mass of atom 𝑖 and r𝑖 the position of atom 𝑖 with respect to the center of mass of the molecule. It
is especially useful to characterize polymer solutions and proteins. The program will also provide the radius of
gyration around the coordinate axis (or, optionally, principal axes) by only summing the radii components
orthogonal to each axis, for instance

𝑅𝑔,𝑥 =

(︃∑︀
𝑖

(︀
𝑟2𝑖,𝑦 + 𝑟2𝑖,𝑧

)︀
𝑚𝑖∑︀

𝑖𝑚𝑖

)︃ 1
2

(5.428)

Sometimes it is interesting to plot the distance between two atoms, or the minimum distance between two groups
of atoms (e.g.: protein side-chains in a salt bridge). To calculate these distances between certain groups there are
several possibilities:

• The distance between the geometrical centers of two groups can be calculated with the program gmx dis-
tance (page 163), as explained in sec. Bonds/distances, angles and dihedrals (page 559).

• The minimum distance between two groups of atoms during time can be calculated with the program gmx
mindist (page 220). It also calculates the number of contacts between these groups within a certain radius
𝑟𝑚𝑎𝑥.

• gmx pairdist (page 233) is a selection-enabled version of gmx mindist (page 220).

• To monitor the minimum distances between amino acid residues within a (protein) molecule, you can use
the program gmx mdmat (page 213). This minimum distance between two residues A𝑖 and A𝑗 is defined
as the smallest distance between any pair of atoms (i ∈ A𝑖, j ∈ A𝑗). The output is a symmetrical matrix
of smallest distances between all residues. To visualize this matrix, you can use a program such as xv. If
you want to view the axes and legend or if you want to print the matrix, you can convert it with xpm2ps
(page 300) into a Postscript Fig. 5.57.

5.10. Analysis 561

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

21 30 40 50 60 70 80 90

21

30

40

50

60

70

80

90

t=
0

ps

Residue Number
0 Distance (nm) 1.2

Fig. 5.57: A minimum distance matrix for a peptide 168 (page 584).

• Plotting these matrices for different time-frames, one can analyze changes in the structure, and e.g. forming
of salt bridges.

5.10.10 Root mean square deviations in structure

gmx rms (page 246), gmx rmsdist (page 248)
The root mean square deviation (𝑅𝑀𝑆𝐷) of certain atoms in a molecule with respect to a reference structure
can be calculated with the program gmx rms (page 246) by least-square fitting the structure to the reference
structure (𝑡2 = 0) and subsequently calculating the 𝑅𝑀𝑆𝐷 ((5.429)).

𝑅𝑀𝑆𝐷(𝑡1, 𝑡2) =

[︃
1

𝑀

𝑁∑︁
𝑖=1

𝑚𝑖‖r𝑖(𝑡1)− r𝑖(𝑡2)‖2
]︃ 1

2

(5.429)

where 𝑀 =
∑︀𝑁

𝑖=1𝑚𝑖 and r𝑖(𝑡) is the position of atom 𝑖 at time 𝑡. Note that fitting does not have to use the same
atoms as the calculation of the 𝑅𝑀𝑆𝐷; e.g. a protein is usually fitted on the backbone atoms (N, C𝛼, C), but the
𝑅𝑀𝑆𝐷 can be computed of the backbone or of the whole protein.

Instead of comparing the structures to the initial structure at time 𝑡 = 0 (so for example a crystal structure), one
can also calculate (5.429) with a structure at time 𝑡2 = 𝑡1 − 𝜏 . This gives some insight in the mobility as a
function of 𝜏 . A matrix can also be made with the 𝑅𝑀𝑆𝐷 as a function of 𝑡1 and 𝑡2, which gives a nice graphical
interpretation of a trajectory. If there are transitions in a trajectory, they will clearly show up in such a matrix.

Alternatively the 𝑅𝑀𝑆𝐷 can be computed using a fit-free method with the program gmx rmsdist (page 248):

𝑅𝑀𝑆𝐷(𝑡) =

⎡⎣ 1

𝑁2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

‖r𝑖𝑗(𝑡)− r𝑖𝑗(0)‖2
⎤⎦ 1

2

(5.430)

where the distance r𝑖𝑗 between atoms at time 𝑡 is compared with the distance between the same atoms at time 0.

5.10. Analysis 562

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.10.11 Covariance analysis

Covariance analysis, also called principal component analysis or essential dynamics 169 (page 584), can find
correlated motions. It uses the covariance matrix 𝐶 of the atomic coordinates:

𝐶𝑖𝑗 =
⟨
𝑀

1
2
𝑖𝑖 (𝑥𝑖 − ⟨𝑥𝑖⟩)𝑀

1
2
𝑗𝑗(𝑥𝑗 − ⟨𝑥𝑗⟩)

⟩
(5.431)

where 𝑀 is a diagonal matrix containing the masses of the atoms (mass-weighted analysis) or the unit matrix
(non-mass weighted analysis). 𝐶 is a symmetric 3𝑁×3𝑁 matrix, which can be diagonalized with an orthonormal
transformation matrix 𝑅:

𝑅𝑇𝐶𝑅 = diag(𝜆1, 𝜆2, . . . , 𝜆3𝑁) where 𝜆1 ≥ 𝜆2 ≥ . . . ≥ 𝜆3𝑁 (5.432)

The columns of 𝑅 are the eigenvectors, also called principal or essential modes. 𝑅 defines a transformation to a
new coordinate system. The trajectory can be projected on the principal modes to give the principal components
𝑝𝑖(𝑡):

p(𝑡) = 𝑅𝑇𝑀
1
2 (x(𝑡)− ⟨x⟩) (5.433)

The eigenvalue 𝜆𝑖 is the mean square fluctuation of principal component 𝑖. The first few principal modes often
describe collective, global motions in the system. The trajectory can be filtered along one (or more) principal
modes. For one principal mode 𝑖 this goes as follows:

x𝑓 (𝑡) = ⟨x⟩+𝑀− 1
2𝑅*𝑖 𝑝𝑖(𝑡) (5.434)

When the analysis is performed on a macromolecule, one often wants to remove the overall rotation and translation
to look at the internal motion only. This can be achieved by least square fitting to a reference structure. Care has
to be taken that the reference structure is representative for the ensemble, since the choice of reference structure
influences the covariance matrix.

One should always check if the principal modes are well defined. If the first principal component resembles a half
cosine and the second resembles a full cosine, you might be filtering noise (see below). A good way to check the
relevance of the first few principal modes is to calculate the overlap of the sampling between the first and second
half of the simulation. Note that this can only be done when the same reference structure is used for the two
halves.

A good measure for the overlap has been defined in 170 (page 584). The elements of the covariance matrix are
proportional to the square of the displacement, so we need to take the square root of the matrix to examine the
extent of sampling. The square root can be calculated from the eigenvalues 𝜆𝑖 and the eigenvectors, which are the
columns of the rotation matrix𝑅. For a symmetric and diagonally-dominant matrix𝐴 of size 3𝑁×3𝑁 the square
root can be calculated as:

𝐴
1
2 = 𝑅 diag(𝜆

1
2
1 , 𝜆

1
2
2 , . . . , 𝜆

1
2

3𝑁)𝑅𝑇 (5.435)

It can be verified easily that the product of this matrix with itself gives 𝐴. Now we can define a difference 𝑑
between covariance matrices 𝐴 and 𝐵 as follows:

𝑑(𝐴,𝐵) =

√︃
tr
(︂(︁

𝐴
1
2 −𝐵

1
2

)︁2)︂
=

√︂
tr
(︁
𝐴+𝐵 − 2𝐴

1
2𝐵

1
2

)︁

=

⎛⎝ 𝑁∑︁
𝑖=1

(︀
𝜆𝐴𝑖 + 𝜆𝐵𝑖

)︀
− 2

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

√︁
𝜆𝐴𝑖 𝜆

𝐵
𝑗

(︀
𝑅𝐴

𝑖 ·𝑅𝐵
𝑗

)︀2⎞⎠ 1
2

(5.436)

where tr is the trace of a matrix. We can now define the overlap 𝑠 as:

𝑠(𝐴,𝐵) = 1− 𝑑(𝐴,𝐵)√
tr𝐴+ tr𝐵

(5.437)

5.10. Analysis 563

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The overlap is 1 if and only if matrices 𝐴 and 𝐵 are identical. It is 0 when the sampled subspaces are completely
orthogonal.

A commonly-used measure is the subspace overlap of the first few eigenvectors of covariance matrices. The
overlap of the subspace spanned by 𝑚 orthonormal vectors w1, . . . ,w𝑚 with a reference subspace spanned by 𝑛
orthonormal vectors v1, . . . ,v𝑛 can be quantified as follows:

overlap(v,w) =
1

𝑛

𝑛∑︁
𝑖=1

𝑚∑︁
𝑗=1

(v𝑖 ·w𝑗)
2 (5.438)

The overlap will increase with increasing 𝑚 and will be 1 when set v is a subspace of set w. The disadvantage of
this method is that it does not take the eigenvalues into account. All eigenvectors are weighted equally, and when
degenerate subspaces are present (equal eigenvalues), the calculated overlap will be too low.

Another useful check is the cosine content. It has been proven that the the principal components of random
diffusion are cosines with the number of periods equal to half the principal component index 170 (page 584), 171
(page 584). The eigenvalues are proportional to the index to the power −2. The cosine content is defined as:

2

𝑇

(︃∫︁ 𝑇

0

cos

(︂
𝑖𝜋𝑡

𝑇

)︂
𝑝𝑖(𝑡)d𝑡

)︃2(︃∫︁ 𝑇

0

𝑝2𝑖 (𝑡)d𝑡

)︃−1

(5.439)

When the cosine content of the first few principal components is close to 1, the largest fluctuations are not con-
nected with the potential, but with random diffusion.

The covariance matrix is built and diagonalized by gmx covar (page 148). The principal components and overlap
(and many more things) can be plotted and analyzed with gmx anaeig (page 122). The cosine content can be
calculated with gmx analyze (page 125).

5.10.12 Dihedral principal component analysis

gmx angle (page 128), gmx covar (page 148), gmx anaeig (page 122)
Principal component analysis can be performed in dihedral space 172 (page 584) using GROMACS. You start by
defining the dihedral angles of interest in an index file, either using gmx mk_angndx (page 222) or otherwise.
Then you use the gmx angle (page 128) program with the -or flag to produce a new trr (page 494) file
containing the cosine and sine of each dihedral angle in two coordinates, respectively. That is, in the trr
(page 494) file you will have a series of numbers corresponding to: cos(𝜑1), sin(𝜑1), cos(𝜑2), sin(𝜑2), . . . ,
cos(𝜑𝑛), sin(𝜑𝑛), and the array is padded with zeros, if necessary. Then you can use this trr (page 494) file as
input for the gmx covar (page 148) program and perform principal component analysis as usual. For this to work
you will need to generate a reference file (tpr (page 494), gro (page 486), pdb (page 490) etc.) containing the
same number of “atoms” as the new trr (page 494) file, that is for 𝑛 dihedrals you need 2𝑛/3 atoms (rounded up
if not an integer number). You should use the -nofit option for gmx covar (page 148) since the coordinates in
the dummy reference file do not correspond in any way to the information in the trr (page 494) file. Analysis of
the results is done using gmx anaeig (page 122).

5.10.13 Hydrogen bonds

gmx hbond (page 197)
The program gmx hbond (page 197) analyzes the hydrogen bonds (H-bonds) between all possible donors D and
acceptors A. To determine if an H-bond exists, a geometrical criterion is used, see also Fig. 5.58:

𝑟 ≤ 𝑟𝐻𝐵 = 0.35 nm
𝛼 ≤ 𝛼𝐻𝐵 = 30𝑜

(5.440)

The value of 𝑟𝐻𝐵 = 0.35nm corresponds to the first minimum of the RDF of SPC water (see also Fig. 5.59).

5.10. Analysis 564

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

D

H

α

A
r

Fig. 5.58: Geometrical Hydrogen bond criterion.

The program gmx hbond (page 197) analyzes all hydrogen bonds existing between two groups of atoms (which
must be either identical or non-overlapping) or in specified donor-hydrogen-acceptor triplets, in the following
ways:

O

D A

H

H

H

(1)
(2)

(2)

Fig. 5.59: Insertion of water into an H-bond. (1) Normal H-bond between two residues. (2) H-bonding bridge via
a water molecule.

• Donor-Acceptor distance (𝑟) distribution of all H-bonds

• Hydrogen-Donor-Acceptor angle (𝛼) distribution of all H-bonds

• The total number of H-bonds in each time frame

• The number of H-bonds in time between residues, divided into groups 𝑛-𝑛+𝑖 where 𝑛 and 𝑛+𝑖 stand for
residue numbers and 𝑖 goes from 0 to 6. The group for 𝑖 = 6 also includes all H-bonds for 𝑖 > 6. These
groups include the 𝑛-𝑛+3, 𝑛-𝑛+4 and 𝑛-𝑛+5 H-bonds, which provide a measure for the formation of 𝛼-
helices or 𝛽-turns or strands.

• The lifetime of the H-bonds is calculated from the average over all autocorrelation functions of the existence
functions (either 0 or 1) of all H-bonds:

𝐶(𝜏) = ⟨𝑠𝑖(𝑡) 𝑠𝑖(𝑡+ 𝜏)⟩ (5.441)

• with 𝑠𝑖(𝑡) = {0, 1} for H-bond 𝑖 at time 𝑡. The integral of 𝐶(𝜏) gives a rough estimate of the average
H-bond lifetime 𝜏𝐻𝐵 :

𝜏𝐻𝐵 =

∫︁ ∞

0

𝐶(𝜏)𝑑𝜏 (5.442)

• Both the integral and the complete autocorrelation function 𝐶(𝜏) will be output, so that more sophisticated
analysis (e.g. using multi-exponential fits) can be used to get better estimates for 𝜏𝐻𝐵 . A more complete
analysis is given in ref. 173 (page 584); one of the more fancy option is the Luzar and Chandler analysis of
hydrogen bond kinetics 174 (page 584), 175 (page 584).

5.10. Analysis 565

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• An H-bond existence map can be generated of dimensions # H-bonds×# frames. The ordering is identical
to the index file (see below), but reversed, meaning that the last triplet in the index file corresponds to the
first row of the existence map.

• Index groups are output containing the analyzed groups, all donor-hydrogen atom pairs and acceptor atoms
in these groups, donor-hydrogen-acceptor triplets involved in hydrogen bonds between the analyzed groups
and all solvent atoms involved in insertion.

5.10.14 Protein-related items

gmx dssp (page 166), gmx rama (page 243), gmx wheel (page 298)
To analyze structural changes of a protein, you can calculate the radius of gyration or the minimum residue
distances over time (see sec. Radius of gyration and distances (page 561)), or calculate the RMSD (sec. Root
mean square deviations in structure (page 562)).

To analyze the secondary structure of a protein (not only for static structures, but also for trajectories), you can use
the program gmx dssp (page 166), which is a native implementation of DSSP algorithm 176 (page 584), but also is
based on the (DSSP V.4 algorithm) with some additional features. For example, you can take into account native
hydrogens from the structure (-hmode gromacs, set by default), while in the original algorithm, hydrogen
atoms are set as pseudo-atoms with coordinates based on the coordinates of the MainChain atoms (-hmode
dssp). Also, it is possible to conduct a fast search for neighboring residues using Neighbor Search (-nb, default),
instead of the slow enumeration of protein residues among themselves according to the “each with each” principle
implemented in the original algorithm (-nonb).

One other important analysis of proteins is the so-called Ramachandran plot. This is the projection of the structure
on the two dihedral angles 𝜑 and 𝜓 of the protein backbone, see Fig. 5.60:

C

O

N

C
H

R

C

Oα

N

H

H

ψ
φ

Fig. 5.60: Definition of the dihedral angles 𝜑 and 𝜓 of the protein backbone.

To evaluate this Ramachandran plot you can use the program gmx rama (page 243). A typical output is given in
Fig. 5.61.

When studying 𝛼-helices it is useful to have a helical wheel projection of your peptide, to see whether a peptide is
amphipathic. This can be done using the gmx wheel (page 298) program. Two examples are plotted in Fig. 5.62.

5.10. Analysis 566

https://github.com/PDB-REDO/dssp

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

–180.0 –120.0 –60.0 0.0 60.0 120.0 180.0
Phi

–180.0

–120.0

–60.0

0.0

60.0

120.0

180.0
Ps

i

Ramachandran Plot

Fig. 5.61: Ramachandran plot of a small protein.

HPr-A HIS-15+

THR-16

ARG-17+

PR
O-

18

ALA-19

ALA-20

GL
N-

21

PHE-22

VAL-23

LYS-24+

G
LU

-2
5-

ALA-26

LYS-27+

GLY-28

Fig. 5.62: Helical wheel projection of the N-terminal helix of HPr.

5.10. Analysis 567

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.10.15 Interface-related items

gmx order (page 231), gmx density (page 152), gmx potential (page 240), gmx traj (page 275)
When simulating molecules with long carbon tails, it can be interesting to calculate their average orientation.
There are several flavors of order parameters, most of which are related. The program gmx order (page 231) can
calculate order parameters using the equation:

𝑆𝑧 =
3

2
⟨cos2 𝜃𝑧⟩ −

1

2
(5.443)

where 𝜃𝑧 is the angle between the 𝑧-axis of the simulation box and the molecular axis under consideration. The
latter is defined as the vector from C𝑛−1 to C𝑛+1. The parameters 𝑆𝑥 and 𝑆𝑦 are defined in the same way. The
brackets imply averaging over time and molecules. Order parameters can vary between 1 (full order along the
interface normal) and −1/2 (full order perpendicular to the normal), with a value of zero in the case of isotropic
orientation.

The program can do two things for you. It can calculate the order parameter for each CH2 segment separately,
for any of three axes, or it can divide the box in slices and calculate the average value of the order parameter per
segment in one slice. The first method gives an idea of the ordering of a molecule from head to tail, the second
method gives an idea of the ordering as function of the box length.

The electrostatic potential (𝜓) across the interface can be computed from a trajectory by evaluating the double
integral of the charge density (𝜌(𝑧)):

𝜓(𝑧)− 𝜓(−∞) = −
∫︁ 𝑧

−∞
𝑑𝑧′
∫︁ 𝑧′

−∞
𝜌(𝑧′′)𝑑𝑧′′/𝜖0 (5.444)

where the position 𝑧 = −∞ is far enough in the bulk phase such that the field is zero. With this method, it is
possible to “split” the total potential into separate contributions from lipid and water molecules. The program gmx
potential (page 240) divides the box in slices and sums all charges of the atoms in each slice. It then integrates this
charge density to give the electric field, which is in turn integrated to give the potential. Charge density, electric
field, and potential are written to xvgr input files.

The program gmx traj (page 275) is a very simple analysis program. All it does is print the coordinates, velocities,
or forces of selected atoms. It can also calculate the center of mass of one or more molecules and print the
coordinates of the center of mass to three files. By itself, this is probably not a very useful analysis, but having the
coordinates of selected molecules or atoms can be very handy for further analysis, not only in interfacial systems.

The program gmx density (page 152) calculates the mass density of groups and gives a plot of the density against
a box axis. This is useful for looking at the distribution of groups or atoms across the interface.

5.10. Analysis 568

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.11 Some implementation details

In this chapter we will present some implementation details. This is far from complete, but we deemed it necessary
to clarify some things that would otherwise be hard to understand.

5.11.1 Single Sum Virial in GROMACS

The virial Ξ can be written in full tensor form as:

Ξ = −1

2

𝑁∑︁
𝑖<𝑗

r𝑖𝑗 ⊗ F𝑖𝑗 (5.445)

where ⊗ denotes the direct product of two vectors.1 When this is computed in the inner loop of an MD program
9 multiplications and 9 additions are needed.2

Here it is shown how it is possible to extract the virial calculation from the inner loop 177 (page 584).

Virial

In a system with periodic boundary conditions, the periodicity must be taken into account for the virial:

Ξ = −1

2

𝑁∑︁
𝑖<𝑗

r𝑛𝑖𝑗 ⊗ F𝑖𝑗 (5.446)

where r𝑛𝑖𝑗 denotes the distance vector of the nearest image of atom 𝑖 from atom 𝑗. In this definition we add a shift
vector 𝛿𝑖 to the position vector r𝑖 of atom 𝑖. The difference vector r𝑛𝑖𝑗 is thus equal to:

r𝑛𝑖𝑗 = r𝑖 + 𝛿𝑖 − r𝑗 (5.447)

or in shorthand:

r𝑛𝑖𝑗 = r𝑛𝑖 − r𝑗 (5.448)

In a triclinic system, there are 27 possible images of 𝑖; when a truncated octahedron is used, there are 15 possible
images.

Virial from non-bonded forces

Here the derivation for the single sum virial in the non-bonded force routine is given. There are a couple of
considerations that are special to GROMACS that we take into account:

• When calculating short-range interactions, we apply the minimum image convention and only consider the
closest image of each neighbor - and in particular we never allow interactions between a particle and any of
its periodic images. For all the equations below, this means 𝑖 ̸= 𝑗.

• In general, either the 𝑖 or 𝑗 particle might be shifted to a neighbor cell to get the closest interaction (shift
𝛿𝑖𝑗). However, with minimum image convention there can be at most 27 different shifts for particles in
the central cell, and for typical (very short-ranged) biomolecular interactions there are typically only a few
different shifts involved for each particle, not to mention that each interaction can only be present for one
shift.

• For the GROMACS nonbonded interactions we use this to split the neighborlist of each 𝑖 particle into
multiple separate lists, where each list has a constant shift 𝛿𝑖 for the 𝑖 partlcle. We can represent this as
a sum over shifts (for which we use index 𝑠), with the constraint that each particle interaction can only
contribute to one of the terms in this sum, and the shift is no longer dependent on the 𝑗 particles. For any
sum that does not contain complex dependence on 𝑠, this means the sum trivially reduces to just the sum
over 𝑖 and/or 𝑗.

1 Note that some derivations, an alternative notation 𝜉alt = 𝑣𝜉 = 𝑝𝜉/𝑄 is used.
2 The calculation of Lennard-Jones and Coulomb forces is about 50 floating point operations.

5.11. Some implementation details 569

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• To simplify some of the sums, we replace sums over 𝑗 < 𝑖 with double sums over all particles (remember,
𝑖 ̸= 𝑗) and divide by 2.

Starting from the above definition of the virial, we then get

Ξ = −1

2

𝑁∑︁
𝑖<𝑗

r𝑛𝑖𝑗 ⊗ F𝑖𝑗

= −1

2

𝑁∑︁
𝑖<𝑗

(r𝑖 + 𝛿𝑖𝑗 − r𝑗)⊗ F𝑖𝑗

= −1

4

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

(r𝑖 + 𝛿𝑖𝑗 − r𝑗)⊗ F𝑖𝑗

= −1

4

𝑁∑︁
𝑖=1

∑︁
𝑠

𝑁∑︁
𝑗=1

(r𝑖 + 𝛿𝑖,𝑠 − r𝑗)⊗ F𝑖𝑗,𝑠

= −1

4

𝑁∑︁
𝑖=

∑︁
𝑠

𝑁∑︁
𝑗=1

((r𝑖 + 𝛿𝑖,𝑠)⊗ F𝑖𝑗,𝑠 − r𝑗 ⊗ F𝑖𝑗,𝑠)

= −1

4

𝑁∑︁
𝑖=1

∑︁
𝑠

𝑁∑︁
𝑗=1

(r𝑖 + 𝛿𝑖,𝑠)⊗ F𝑖𝑗,𝑠 +
1

4

𝑁∑︁
𝑖=1

∑︁
𝑠

𝑁∑︁
𝑗=1

r𝑗 ⊗ F𝑖𝑗,𝑠

= −1

4

𝑁∑︁
𝑖=1

∑︁
𝑠

𝑁∑︁
𝑗=1

(r𝑖 + 𝛿𝑖,𝑠)⊗ F𝑖𝑗,𝑠 +
1

4

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1

r𝑗 ⊗ F𝑖𝑗

= −1

4

∑︁
𝑠

𝑁∑︁
𝑖=1

(r𝑖 + 𝛿𝑖,𝑠)⊗
𝑁∑︁
𝑗=1

F𝑖𝑗,𝑠 +
1

4

𝑁∑︁
𝑗=1

r𝑗 ⊗
𝑁∑︁
𝑖=1

F𝑖𝑗

= −1

4

∑︁
𝑠

𝑁∑︁
𝑖=1

(r𝑖 + 𝛿𝑖,𝑠)⊗
𝑁∑︁
𝑗=1

F𝑖𝑗,𝑠 −
1

4

𝑁∑︁
𝑗=1

r𝑗 ⊗
𝑁∑︁
𝑖=1

F𝑗𝑖

= −1

4

∑︁
𝑠

𝑁∑︁
𝑖=1

(r𝑖 + 𝛿𝑖,𝑠)⊗ F𝑖,𝑠 −
1

4

𝑁∑︁
𝑗=1

r𝑗 ⊗ F𝑗

= −1

4

⎛⎝ 𝑁∑︁
𝑖=1

r𝑖 ⊗ F𝑖 +

𝑁∑︁
𝑗=1

r𝑗 ⊗ F𝑗

⎞⎠− 1

4

∑︁
𝑠

𝑁∑︁
𝑖=1

𝛿𝑖,𝑠 ⊗ F𝑖,𝑠

= −1

2

𝑁∑︁
𝑖=1

r𝑖 ⊗ F𝑖 −
1

4

∑︁
𝑠

𝑁∑︁
𝑖=1

𝛿𝑖,𝑠 ⊗ F𝑖,𝑠

= −1

2

𝑁∑︁
𝑖=1

r𝑖 ⊗ F𝑖 −
1

4

∑︁
𝑠

𝛿𝑠 ⊗ F𝑠

= Ξ0 + Ξ1

In the second-last stage, we have used the property that each shift vector itself does not depend on the coordinates
of particle 𝑖, so it is possible to sum up all forces corresponding to each shift vector (in the nonbonded kernels),
and then just use a sum over the different shift vectors outside the kernels. We have also used

F𝑖 =

𝑁∑︁
𝑗=1

F𝑖𝑗

F𝑗 =

𝑁∑︁
𝑖=1

F𝑗𝑖

(5.449)

which is the total force on 𝑖 with respect to 𝑗. Because we use Newton’s Third Law:

F𝑖𝑗 = −F𝑗𝑖 (5.450)

5.11. Some implementation details 570

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

we must, in the implementation, double the term containing the shift 𝛿𝑖. Similarly, in a few places we have
summed the shift-dependent force over all shifts to come up with the total force per interaction or particle.

This separates the total virial Ξ into a component Ξ0 that is a single sum over particles, and a second component
Ξ1 that describes the influence of the particle shifts, and that is only a sum over the different shift vectors.

The intra-molecular shift (mol-shift)

For the bonded forces and SHAKE it is possible to make a mol-shift list, in which the periodicity is stored. We
simple have an array mshift in which for each atom an index in the shiftvec array is stored.

The algorithm to generate such a list can be derived from graph theory, considering each particle in a molecule as
a bead in a graph, the bonds as edges.

1. Represent the bonds and atoms as bidirectional graph

2. Make all atoms white

3. Make one of the white atoms black (atom 𝑖) and put it in the central box

4. Make all of the neighbors of 𝑖 that are currently white, gray

5. Pick one of the gray atoms (atom 𝑗), give it the correct periodicity with respect to any of its black neighbors
and make it black

6. Make all of the neighbors of 𝑗 that are currently white, gray

7. If any gray atom remains, go to [5]

8. If any white atom remains, go to [3]

Using this algorithm we can

• optimize the bonded force calculation as well as SHAKE

• calculate the virial from the bonded forces in the single sum method again

Find a representation of the bonds as a bidirectional graph.

Virial from Covalent Bonds

Since the covalent bond force gives a contribution to the virial, we have:

𝑏 = ‖r𝑛𝑖𝑗‖

𝑉𝑏 =
1

2
𝑘𝑏(𝑏− 𝑏0)

2

F𝑖 = −∇𝑉𝑏

= 𝑘𝑏(𝑏− 𝑏0)
r𝑛𝑖𝑗
𝑏

F𝑗 = −F𝑖

(5.451)

The virial contribution from the bonds then is:

Ξ𝑏 = −1

2
(r𝑛𝑖 ⊗ F𝑖 + r𝑗 ⊗ F𝑗)

= −1

2
r𝑛𝑖𝑗 ⊗ F𝑖

(5.452)

5.11. Some implementation details 571

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Virial from SHAKE

An important contribution to the virial comes from shake. Satisfying the constraints a force G that is exerted on
the particles “shaken.” If this force does not come out of the algorithm (as in standard SHAKE) it can be calculated
afterward (when using leap-frog) by:

∆r𝑖 = r𝑖(𝑡+∆𝑡)− [r𝑖(𝑡) + v𝑖(𝑡−
∆𝑡

2
)∆𝑡+

F𝑖

𝑚𝑖
∆𝑡2]

G𝑖 =
𝑚𝑖∆r𝑖

∆𝑡2𝑖

(5.453)

This does not help us in the general case. Only when no periodicity is needed (like in rigid water) this can be used,
otherwise we must add the virial calculation in the inner loop of SHAKE.

When it is applicable the virial can be calculated in the single sum way:

Ξ = −1

2

𝑁𝑐∑︁
𝑖

r𝑖 ⊗ F𝑖 (5.454)

where 𝑁𝑐 is the number of constrained atoms.

5.11.2 Optimizations

Here we describe some of the algorithmic optimizations used in GROMACS, apart from parallelism.

Inner Loops for Water

GROMACS uses special inner loops to calculate non-bonded interactions for water molecules with other atoms,
and yet another set of loops for interactions between pairs of water molecules. There highly optimized loops for
two types of water models. For three site models similar to SPC 80 (page 580), i.e.:

1. There are three atoms in the molecule.

2. The whole molecule is a single charge group.

3. The first atom has Lennard-Jones (sec. The Lennard-Jones interaction (page 405)) and Coulomb
(sec. Coulomb interaction (page 407)) interactions.

4. Atoms two and three have only Coulomb interactions, and equal charges.

These loops also works for the SPC/E 178 (page 584) and TIP3P 128 (page 582) water models. And for four site
water models similar to TIP4P 128 (page 582):

1. There are four atoms in the molecule.

2. The whole molecule is a single charge group.

3. The first atom has only Lennard-Jones (sec. The Lennard-Jones interaction (page 405)) interactions.

4. Atoms two and three have only Coulomb (sec. Coulomb interaction (page 407)) interactions, and equal
charges.

5. Atom four has only Coulomb interactions.

The benefit of these implementations is that there are more floating-point operations in a single loop, which
implies that some compilers can schedule the code better. However, it turns out that even some of the most
advanced compilers have problems with scheduling, implying that manual tweaking is necessary to get optimum
performance. This may include common-sub-expression elimination, or moving code around.

5.11. Some implementation details 572

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.12 Averages and fluctuations

5.12.1 Formulae for averaging

Note: this section was taken from ref 179 (page 584).

When analyzing a MD trajectory averages ⟨𝑥⟩ and fluctuations⟨︀
(∆𝑥)2

⟩︀ 1
2 =

⟨︀
[𝑥− ⟨𝑥⟩]2

⟩︀ 1
2 (5.455)

of a quantity 𝑥 are to be computed. The variance 𝜎𝑥 of a series of N𝑥 values, {𝑥𝑖}, can be computed from

𝜎𝑥 =

𝑁𝑥∑︁
𝑖=1

𝑥2𝑖 − 1

𝑁𝑥

(︃
𝑁𝑥∑︁
𝑖=1

𝑥𝑖

)︃2

(5.456)

Unfortunately this formula is numerically not very accurate, especially when 𝜎
1
2
𝑥 is small compared to the values

of 𝑥𝑖. The following (equivalent) expression is numerically more accurate

𝜎𝑥 =

𝑁𝑥∑︁
𝑖=1

[𝑥𝑖 − ⟨𝑥⟩]2 (5.457)

with

⟨𝑥⟩ =
1

𝑁𝑥

𝑁𝑥∑︁
𝑖=1

𝑥𝑖 (5.458)

Using (5.456) and (5.458) one has to go through the series of 𝑥𝑖 values twice, once to determine ⟨𝑥⟩ and again to
compute 𝜎𝑥, whereas (5.455) requires only one sequential scan of the series {𝑥𝑖}. However, one may cast (5.456)
in another form, containing partial sums, which allows for a sequential update algorithm. Define the partial sum

𝑋𝑛,𝑚 =

𝑚∑︁
𝑖=𝑛

𝑥𝑖 (5.459)

and the partial variance

𝜎𝑛,𝑚 =

𝑚∑︁
𝑖=𝑛

[︂
𝑥𝑖 −

𝑋𝑛,𝑚

𝑚− 𝑛+ 1

]︂2
(5.460)

It can be shown that

𝑋𝑛,𝑚+𝑘 = 𝑋𝑛,𝑚 +𝑋𝑚+1,𝑚+𝑘 (5.461)

and

𝜎𝑛,𝑚+𝑘 = 𝜎𝑛,𝑚 + 𝜎𝑚+1,𝑚+𝑘 +

[︂
𝑋𝑛,𝑚

𝑚− 𝑛+ 1
− 𝑋𝑛,𝑚+𝑘

𝑚+ 𝑘 − 𝑛+ 1

]︂2
*

(𝑚− 𝑛+ 1)(𝑚+ 𝑘 − 𝑛+ 1)

𝑘

For 𝑛 = 1 one finds

𝜎1,𝑚+𝑘 = 𝜎1,𝑚 + 𝜎𝑚+1,𝑚+𝑘 +

[︂
𝑋1,𝑚

𝑚
− 𝑋1,𝑚+𝑘

𝑚+ 𝑘

]︂2
𝑚(𝑚+ 𝑘)

𝑘
(5.462)

and for 𝑛 = 1 and 𝑘 = 1 (5.462) becomes

𝜎1,𝑚+1 = 𝜎1,𝑚 +

[︂
𝑋1,𝑚

𝑚
− 𝑋1,𝑚+1

𝑚+ 1

]︂2
𝑚(𝑚+ 1)

= 𝜎1,𝑚 +
[𝑋1,𝑚 −𝑚𝑥𝑚+1]

2

𝑚(𝑚+ 1)

(5.463)

5.12. Averages and fluctuations 573

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where we have used the relation

𝑋1,𝑚+1 = 𝑋1,𝑚 + 𝑥𝑚+1 (5.464)

Using formulae (5.463) and (5.464) the average

⟨𝑥⟩ =
𝑋1,𝑁𝑥

𝑁𝑥
(5.465)

and the fluctuation

⟨︀
(∆𝑥)2

⟩︀ 1
2 =

[︂
𝜎1,𝑁𝑥

𝑁𝑥

]︂ 1
2

(5.466)

can be obtained by one sweep through the data.

5.12.2 Implementation

In GROMACS the instantaneous energies 𝐸(𝑚) are stored in the energy file (page 485), along with the values of
𝜎1,𝑚 and 𝑋1,𝑚. Although the steps are counted from 0, for the energy and fluctuations steps are counted from
1. This means that the equations presented here are the ones that are implemented. We give somewhat lengthy
derivations in this section to simplify checking of code and equations later on.

Part of a Simulation

It is not uncommon to perform a simulation where the first part, e.g. 100 ps, is taken as equilibration. However,
the averages and fluctuations as printed in the log file (page 487) are computed over the whole simulation. The
equilibration time, which is now part of the simulation, may in such a case invalidate the averages and fluctuations,
because these numbers are now dominated by the initial drift towards equilibrium.

Using (5.461) and (5.462) the average and standard deviation over part of the trajectory can be computed as:

𝑋𝑚+1,𝑚+𝑘 = 𝑋1,𝑚+𝑘 −𝑋1,𝑚

𝜎𝑚+1,𝑚+𝑘 = 𝜎1,𝑚+𝑘 − 𝜎1,𝑚 −
[︂
𝑋1,𝑚

𝑚
− 𝑋1,𝑚+𝑘

𝑚+ 𝑘

]︂2
𝑚(𝑚+ 𝑘)

𝑘

(5.467)

or, more generally (with 𝑝 ≥ 1 and 𝑞 ≥ 𝑝):

𝑋𝑝,𝑞 = 𝑋1,𝑞 −𝑋1,𝑝−1

𝜎𝑝,𝑞 = 𝜎1,𝑞 − 𝜎1,𝑝−1 −
[︂
𝑋1,𝑝−1

𝑝− 1
− 𝑋1,𝑞

𝑞

]︂2
(𝑝− 1)𝑞

𝑞 − 𝑝+ 1

(5.468)

Note that implementation of this is not entirely trivial, since energies are not stored every time step of the sim-
ulation. We therefore have to construct 𝑋1,𝑝−1 and 𝜎1,𝑝−1 from the information at time 𝑝 using (5.463) and
(5.464):

𝑋1,𝑝−1 = 𝑋1,𝑝 − 𝑥𝑝

𝜎1,𝑝−1 = 𝜎1,𝑝 −
[𝑋1,𝑝−1 − (𝑝− 1)𝑥𝑝]

2

(𝑝− 1)𝑝

(5.469)

Combining two simulations

Another frequently occurring problem is, that the fluctuations of two simulations must be combined. Consider the
following example: we have two simulations (A) of 𝑛 and (B) of 𝑚 steps, in which the second simulation is a
continuation of the first. However, the second simulation starts numbering from 1 instead of from 𝑛 + 1. For the
partial sum this is no problem, we have to add 𝑋𝐴

1,𝑛 from run A:

𝑋𝐴𝐵
1,𝑛+𝑚 = 𝑋𝐴

1,𝑛 +𝑋𝐵
1,𝑚 (5.470)

5.12. Averages and fluctuations 574

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

When we want to compute the partial variance from the two components we have to make a correction ∆𝜎:

𝜎𝐴𝐵
1,𝑛+𝑚 = 𝜎𝐴

1,𝑛 + 𝜎𝐵
1,𝑚 +∆𝜎 (5.471)

if we define 𝑥𝐴𝐵
𝑖 as the combined and renumbered set of data points we can write:

𝜎𝐴𝐵
1,𝑛+𝑚 =

𝑛+𝑚∑︁
𝑖=1

[︃
𝑥𝐴𝐵
𝑖 −

𝑋𝐴𝐵
1,𝑛+𝑚

𝑛+𝑚

]︃2
(5.472)

and thus

𝑛+𝑚∑︁
𝑖=1

[︃
𝑥𝐴𝐵
𝑖 −

𝑋𝐴𝐵
1,𝑛+𝑚

𝑛+𝑚

]︃2
=

𝑛∑︁
𝑖=1

[︃
𝑥𝐴𝑖 −

𝑋𝐴
1,𝑛

𝑛

]︃2
+

𝑚∑︁
𝑖=1

[︃
𝑥𝐵𝑖 −

𝑋𝐵
1,𝑚

𝑚

]︃2
+∆𝜎 (5.473)

or

𝑛+𝑚∑︁
𝑖=1

⎡⎣(𝑥𝐴𝐵
𝑖)2 − 2𝑥𝐴𝐵

𝑖

𝑋𝐴𝐵
1,𝑛+𝑚

𝑛+𝑚
+

(︃
𝑋𝐴𝐵

1,𝑛+𝑚

𝑛+𝑚

)︃2
⎤⎦−

𝑛∑︁
𝑖=1

⎡⎣(𝑥𝐴𝑖)2 − 2𝑥𝐴𝑖
𝑋𝐴

1,𝑛

𝑛
+

(︃
𝑋𝐴

1,𝑛

𝑛

)︃2
⎤⎦−

𝑚∑︁
𝑖=1

⎡⎣(𝑥𝐵𝑖)2 − 2𝑥𝐵𝑖
𝑋𝐵

1,𝑚

𝑚
+

(︃
𝑋𝐵

1,𝑚

𝑚

)︃2
⎤⎦ = ∆𝜎

all the 𝑥2𝑖 terms drop out, and the terms independent of the summation counter 𝑖 can be simplified:(︀
𝑋𝐴𝐵

1,𝑛+𝑚

)︀2
𝑛+𝑚

−
(︀
𝑋𝐴

1,𝑛

)︀2
𝑛

−
(︀
𝑋𝐵

1,𝑚

)︀2
𝑚

−

2
𝑋𝐴𝐵

1,𝑛+𝑚

𝑛+𝑚

𝑛+𝑚∑︁
𝑖=1

𝑥𝐴𝐵
𝑖 + 2

𝑋𝐴
1,𝑛

𝑛

𝑛∑︁
𝑖=1

𝑥𝐴𝑖 + 2
𝑋𝐵

1,𝑚

𝑚

𝑚∑︁
𝑖=1

𝑥𝐵𝑖 = ∆𝜎

we recognize the three partial sums on the second line and use (5.470) to obtain:

∆𝜎 =

(︀
𝑚𝑋𝐴

1,𝑛 − 𝑛𝑋𝐵
1,𝑚

)︀2
𝑛𝑚(𝑛+𝑚)

(5.474)

if we check this by inserting 𝑚 = 1 we get back (5.463)

Summing energy terms

The gmx energy (page 177) program can also sum energy terms into one, e.g. potential + kinetic = total. For the
partial averages this is again easy if we have 𝑆 energy components 𝑠:

𝑋𝑆
𝑚,𝑛 =

𝑛∑︁
𝑖=𝑚

𝑆∑︁
𝑠=1

𝑥𝑠𝑖 =

𝑆∑︁
𝑠=1

𝑛∑︁
𝑖=𝑚

𝑥𝑠𝑖 =

𝑆∑︁
𝑠=1

𝑋𝑠
𝑚,𝑛 (5.475)

For the fluctuations it is less trivial again, considering for example that the fluctuation in potential and kinetic
energy should cancel. Nevertheless we can try the same approach as before by writing:

𝜎𝑆
𝑚,𝑛 =

𝑆∑︁
𝑠=1

𝜎𝑠
𝑚,𝑛 +∆𝜎 (5.476)

if we fill in (5.460):

𝑛∑︁
𝑖=𝑚

[︃(︃
𝑆∑︁

𝑠=1

𝑥𝑠𝑖

)︃
−

𝑋𝑆
𝑚,𝑛

𝑚− 𝑛+ 1

]︃2
=

𝑆∑︁
𝑠=1

𝑛∑︁
𝑖=𝑚

[︂
(𝑥𝑠𝑖)−

𝑋𝑠
𝑚,𝑛

𝑚− 𝑛+ 1

]︂2
+∆𝜎 (5.477)

5.12. Averages and fluctuations 575

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

which we can expand to:

𝑛∑︁
𝑖=𝑚

⎡⎣ 𝑆∑︁
𝑠=1

(𝑥𝑠𝑖)
2 +

(︃
𝑋𝑆

𝑚,𝑛

𝑚− 𝑛+ 1

)︃2

− 2

(︃
𝑋𝑆

𝑚,𝑛

𝑚− 𝑛+ 1

𝑆∑︁
𝑠=1

𝑥𝑠𝑖 +

𝑆∑︁
𝑠=1

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠𝑖𝑥
𝑠′

𝑖

)︃⎤⎦
−

𝑆∑︁
𝑠=1

𝑛∑︁
𝑖=𝑚

[︃
(𝑥𝑠𝑖)

2 − 2
𝑋𝑠

𝑚,𝑛

𝑚− 𝑛+ 1
𝑥𝑠𝑖 +

(︂
𝑋𝑠

𝑚,𝑛

𝑚− 𝑛+ 1

)︂2
]︃

= ∆𝜎

the terms with (𝑥𝑠𝑖)
2 cancel, so that we can simplify to:(︀

𝑋𝑆
𝑚,𝑛

)︀2
𝑚− 𝑛+ 1

− 2
𝑋𝑆

𝑚,𝑛

𝑚− 𝑛+ 1

𝑛∑︁
𝑖=𝑚

𝑆∑︁
𝑠=1

𝑥𝑠𝑖 − 2

𝑛∑︁
𝑖=𝑚

𝑆∑︁
𝑠=1

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠𝑖𝑥
𝑠′

𝑖 −

𝑆∑︁
𝑠=1

𝑛∑︁
𝑖=𝑚

[︃
−2

𝑋𝑠
𝑚,𝑛

𝑚− 𝑛+ 1
𝑥𝑠𝑖 +

(︂
𝑋𝑠

𝑚,𝑛

𝑚− 𝑛+ 1

)︂2
]︃

= ∆𝜎

or

−
(︀
𝑋𝑆

𝑚,𝑛

)︀2
𝑚− 𝑛+ 1

− 2

𝑛∑︁
𝑖=𝑚

𝑆∑︁
𝑠=1

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠𝑖𝑥
𝑠′

𝑖 +

𝑆∑︁
𝑠=1

(︀
𝑋𝑠

𝑚,𝑛

)︀2
𝑚− 𝑛+ 1

= ∆𝜎 (5.478)

If we now expand the first term using (5.475) we obtain:

−

(︁∑︀𝑆
𝑠=1𝑋

𝑠
𝑚,𝑛

)︁2
𝑚− 𝑛+ 1

− 2

𝑛∑︁
𝑖=𝑚

𝑆∑︁
𝑠=1

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠𝑖𝑥
𝑠′

𝑖 +

𝑆∑︁
𝑠=1

(︀
𝑋𝑠

𝑚,𝑛

)︀2
𝑚− 𝑛+ 1

= ∆𝜎 (5.479)

which we can reformulate to:

−2

[︃
𝑆∑︁

𝑠=1

𝑆∑︁
𝑠′=𝑠+1

𝑋𝑠
𝑚,𝑛𝑋

𝑠′

𝑚,𝑛 +

𝑛∑︁
𝑖=𝑚

𝑆∑︁
𝑠=1

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠𝑖𝑥
𝑠′

𝑖

]︃
= ∆𝜎 (5.480)

or

−2

[︃
𝑆∑︁

𝑠=1

𝑋𝑠
𝑚,𝑛

𝑆∑︁
𝑠′=𝑠+1

𝑋𝑠′

𝑚,𝑛 +

𝑆∑︁
𝑠=1

𝑛∑︁
𝑖=𝑚

𝑥𝑠𝑖

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠
′

𝑖

]︃
= ∆𝜎 (5.481)

which gives

−2

𝑆∑︁
𝑠=1

[︃
𝑋𝑠

𝑚,𝑛

𝑆∑︁
𝑠′=𝑠+1

𝑛∑︁
𝑖=𝑚

𝑥𝑠
′

𝑖 +

𝑛∑︁
𝑖=𝑚

𝑥𝑠𝑖

𝑆∑︁
𝑠′=𝑠+1

𝑥𝑠
′

𝑖

]︃
= ∆𝜎 (5.482)

Since we need all data points 𝑖 to evaluate this, in general this is not possible. We can then make an estimate of
𝜎𝑆
𝑚,𝑛 using only the data points that are available using the left hand side of (5.477). While the average can be

computed using all time steps in the simulation, the accuracy of the fluctuations is thus limited by the frequency
with which energies are saved. Since this can be easily done with a program such as xmgr this is not built-in in
GROMACS.

5.12. Averages and fluctuations 576

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

5.13 Bibliography

1 H. Bekker, H.J.C. Berendsen, E.J. Dijkstra, S. Achterop, R. van Drunen, D. van der Spoel, A. Sijbers, and H.
Keegstra et al., “Gromacs: A parallel computer for molecular dynamics simulations”; pp. 252–256 in Physics
computing 92. Edited by R.A. de Groot and J. Nadrchal. World Scientific, Singapore, 1993.
2 H.J.C. Berendsen, D. van der Spoel, and R. van Drunen, “GROMACS: A message-passing parallel molecular
dynamics implementation,” Comp. Phys. Comm., 91 43–56 (1995).
3 E. Lindahl, B. Hess, and D. van der Spoel, “GROMACS 3.0: A package for molecular simulation and trajectory
analysis,” J. Mol. Mod., 7 306–317 (2001).
4 D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, and H.J.C. Berendsen, “GROMACS: Fast,
Flexible and Free,” J. Comp. Chem., 26 1701–1718 (2005).
5 B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl, “GROMACS 4: Algorithms for Highly Efficient, Load-
Balanced, and Scalable Molecular Simulation,” J. Chem. Theory Comput., 4 [3] 435–447 (2008).
6 S. Pronk, S. Páll, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, and J.C. Smith et al., “GRO-
MACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit,” Bioinformatics, 29
[7] 845–854 (2013).
7 S. Páll, M.J. Abraham, C. Kutzner, B. Hess, and E. Lindahl, “Tackling exascale software challenges in molecular
dynamics simulations with GROMACS”; pp. 3–27 in Solving software challenges for exascale. Edited by S.
Markidis and E. Laure. Springer International Publishing Switzerland, London, 2015.
8 M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, and E. Lindahl, “GROMACS: High perfor-
mance molecular simulations through multi-level parallelism from laptops to supercomputers,” SoftwareX, 1–2
19–25 (2015).
9 W.F. van Gunsteren and H.J.C. Berendsen, “Computer simulation of molecular dynamics: Methodology, appli-
cations, and perspectives in chemistry,” Angew. Chem. Int. Ed. Engl., 29 992–1023 (1990).
10 J.G.E.M. Fraaije, “Dynamic density functional theory for microphase separation kinetics of block copolymer
melts,” J. Chem. Phys., 99 9202–9212 (1993).
11 D.A. McQuarrie, Statistical mechanics. Harper & Row, New York, 1976.
12 W.F. van Gunsteren and H.J.C. Berendsen, “Algorithms for macromolecular dynamics and constraint dynamics,”
Mol. Phys., 34 1311–1327 (1977).
13 W.F. van Gunsteren and M. Karplus, “Effect of constraints on the dynamics of macromolecules,” Macro-
molecules, 15 1528–1544 (1982).
14 T. Darden, D. York, and L. Pedersen, “Particle mesh Ewald: An N∙log(N) method for Ewald sums in large
systems,” J. Chem. Phys., 98 10089–10092 (1993).
15 U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, and L.G. Pedersen, “A smooth particle mesh ewald
potential,” J. Chem. Phys., 103 8577–8592 (1995).
16 S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,”
IEEE Trans. Patt. Anal. Mach. Int., 6 721 (1984).
17 M. Nilges, G.M. Clore, and A.M. Gronenborn, “Determination of three-dimensional structures of proteins from
interproton distance data by dynamical simulated annealing from a random array of atoms,” FEBS Lett., 239
129–136 (1988).
18 R.C. van Schaik, H.J.C. Berendsen, A.E. Torda, and W.F. van Gunsteren, “A structure refinement method based
on molecular dynamics in 4 spatial dimensions,” J. Mol. Biol., 234 751–762 (1993).
19 K. Zimmerman, “All purpose molecular mechanics simulator and energy minimizer,” J. Comp. Chem., 12
310–319 (1991).
20 D.J. Adams, E.M. Adams, and G.J. Hills, “The computer simulation of polar liquids,” Mol. Phys., 38 387–400
(1979).

5.13. Bibliography 577

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

21 H. Bekker, E.J. Dijkstra, M.K.R. Renardus, and H.J.C. Berendsen, “An efficient, box shape independent non-
bonded force and virial algorithm for molecular dynamics,” Mol. Sim., 14 137–152 (1995).
22 R.W. Hockney, S.P. Goel, and J. Eastwood, “Quiet High Resolution Computer Models of a Plasma,” J. Comp.
Phys., 14 148–158 (1974).
23 L. Verlet., “Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones
molecules,” Phys. Rev., 159 98–103 (1967).
24 H.J.C. Berendsen and W.F. van Gunsteren, “Practical algorithms for dynamics simulations”; in 1986.
25 W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson, “A computer-simulation method for the calculation
of equilibrium-constants for the formation of physical clusters of molecules: Application to small water clusters,”
J. Chem. Phys., 76 637–649 (1982).
26 H.J.C. Berendsen, J.P.M. Postma, A. DiNola, and J.R. Haak, “Molecular dynamics with coupling to an external
bath,” J. Chem. Phys., 81 3684–3690 (1984).
27 H.C. Andersen, “Molecular dynamics simulations at constant pressure and/or temperature,” J. Chem. Phys., 72
2384 (1980).
28 S. Nosé, “A molecular dynamics method for simulations in the canonical ensemble,” Mol. Phys., 52 255–268
(1984).
29 W.G. Hoover, “Canonical dynamics: Equilibrium phase-space distributions,” Phys. Rev. **A**, 31 1695–1697
(1985).
30 G. Bussi, D. Donadio, and M. Parrinello, “Canonical sampling through velocity rescaling,” J. Chem. Phys., 126
014101 (2007).
31 H.J.C. Berendsen, “Transport properties computed by linear response through weak coupling to a bath”; pp.
139–155 in Computer simulations in material science. Edited by M. Meyer and V. Pontikis. Kluwer, 1991.
32 J.E. Basconi and M.R. Shirts, “Effects of temperature control algorithms on transport properties and kinetics in
molecular dynamics simulations,” J. Chem. Theory Comput., 9 [7] 2887–2899 (2013).
33 B. Cooke and S.J. Schmidler, “Preserving the Boltzmann ensemble in replica-exchange molecular dynamics,”
J. Chem. Phys., 129 164112 (2008).
34 G.J. Martyna, M.L. Klein, and M.E. Tuckerman, “Nosé-Hoover chains: The canonical ensemble via continuous
dynamics,” J. Chem. Phys., 97 2635–2643 (1992).
35 G.J. Martyna, M.E. Tuckerman, D.J. Tobias, and M.L. Klein, “Explicit reversible integrators for extended
systems dynamics,” Mol. Phys., 87 1117–1157 (1996).
36 B.L. Holian, A.F. Voter, and R. Ravelo, “Thermostatted molecular dynamics: How to avoid the Toda demon
hidden in Nosé-Hoover dynamics,” Phys. Rev. E, 52 [3] 2338–2347 (1995).
37 M.P. Eastwood, K.A. Stafford, R.A. Lippert, M.Ø. Jensen, P. Maragakis, C. Predescu, R.O. Dror, and D.E.
Shaw, “Equipartition and the calculation of temperature in biomolecular simulations,” J. Chem. Theory Comput.,
ASAP DOI: 10.1021/ct9002916 (2010).
38 M. Parrinello and A. Rahman, “Polymorphic transitions in single crystals: A new molecular dynamics method,”
J. Appl. Phys., 52 7182–7190 (1981).
39 S. Nosé and M.L. Klein, “Constant pressure molecular dynamics for molecular systems,” Mol. Phys., 50
1055–1076 (1983).
40 G. Liu, “Dynamical equations for the period vectors in a periodic system under constant external stress,” Can.
J. Phys., 93 974–978 (2015).
41 M.E. Tuckerman, J. Alejandre, R. López-Rendón, A.L. Jochim, and G.J. Martyna, “A Liouville-operator derived
measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble,” J. Phys.
A., 59 5629–5651 (2006).
42 T.-Q. Yu, J. Alejandre, R. Lopez-Rendon, G.J. Martyna, and M.E. Tuckerman, “Measure-preserving integrators
for molecular dynamics in the isothermal-isobaric ensemble derived from the liouville operator,” Chem. Phys.,
370 294–305 (2010).

5.13. Bibliography 578

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

43 B.G. Dick and A.W. Overhauser, “Theory of the dielectric constants of alkali halide crystals,” Phys. Rev., 112
90–103 (1958).
44 P.C. Jordan, P.J. van Maaren, J. Mavri, D. van der Spoel, and H.J.C. Berendsen, “Towards phase transferable
potential functions: Methodology and application to nitrogen,” J. Chem. Phys., 103 2272–2285 (1995).
45 P.J. van Maaren and D. van der Spoel, “Molecular dynamics simulations of a water with a novel shell-model
potential,” J. Phys. Chem. B., 105 2618–2626 (2001).
46 J.P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen, “Numerical integration of the cartesian equations of motion
of a system with constraints; molecular dynamics of n-alkanes,” J. Comp. Phys., 23 327–341 (1977).
47 S. Miyamoto and P.A. Kollman, “SETTLE: An analytical version of the SHAKE and RATTLE algorithms for
rigid water models,” J. Comp. Chem., 13 952–962 (1992).
48 H.C. Andersen, “RATTLE: A ‘Velocity’ version of the SHAKE algorithm for molecular dynamics calculations,”
J. Comp. Phys., 52 24–34 (1983).
49 B. Hess, H. Bekker, H.J.C. Berendsen, and J.G.E.M. Fraaije, “LINCS: A linear constraint solver for molecular
simulations,” J. Comp. Chem., 18 1463–1472 (1997).
50 B. Hess, “P-LINCS: A parallel linear constraint solver for molecular simulation,” J. Chem. Theory Comput., 4
116–122 (2007).
51 N. Goga, A.J. Rzepiela, A.H. de Vries, S.J. Marrink, and H.J.C. Berendsen, “Efficient algorithms for Langevin
and DPD dynamics,” J. Chem. Theory Comput., 8 3637–3649 (2012).
52 R.H. Byrd, P. Lu, and J. Nocedal, “A limited memory algorithm for bound constrained optimization,” SIAM J.
Scientif. Statistic. Comput., 16 1190–1208 (1995).
53 C. Zhu, R.H. Byrd, and J. Nocedal, “L-BFGS-B: Algorithm 778: L-BFGS-B, FORTRAN routines for large
scale bound constrained optimization,” ACM Trans. Math. Softw., 23 550–560 (1997).
54 M. Levitt, C. Sander, and P.S. Stern, “The normal modes of a protein: Native bovine pancreatic trypsin in-
hibitor,” Int. J. Quant. Chem: Quant. Biol. Symp., 10 181–199 (1983).
55 N. Gō, T. Noguti, and T. Nishikawa, “Dynamics of a small globular protein in terms of low-frequency vibrational
modes,” Proc. Natl. Acad. Sci. USA, 80 3696–3700 (1983).
56 B. Brooks and M. Karplus, “Harmonic dynamics of proteins: Normal modes and fluctuations in bovine pancre-
atic trypsin inhibitor,” Proc. Natl. Acad. Sci. USA, 80 6571–6575 (1983).
57 S. Hayward and N. Gō, “Collective variable description of native protein dynamics,” Annu. Rev. Phys. Chem.,
46 223–250 (1995).
58 C.H. Bennett, “Efficient Estimation of Free Energy Differences from Monte Carlo Data,” J. Comp. Phys., 22
245–268 (1976).
59 M.R. Shirts and J.D. Chodera, “Statistically optimal analysis of multiple equilibrium simulations,” J. Chem.
Phys., 129 124105 (2008).
60 K. Hukushima and K. Nemoto, “Exchange Monte Carlo Method and Application to Spin Glass Simulations,”
J. Phys. Soc. Jpn., 65 1604–1608 (1996).
61 Y. Sugita and Y. Okamoto, “Replica-exchange molecular dynamics method for protein folding,” Chem. Phys.
Lett., 314 141–151 (1999).
62 M. Seibert, A. Patriksson, B. Hess, and D. van der Spoel, “Reproducible polypeptide folding and structure
prediction using molecular dynamics simulations,” J. Mol. Biol., 354 173–183 (2005).
63 T. Okabe, M. Kawata, Y. Okamoto, and M. Mikami, “Replica-exchange Monte Carlo method for the isobaric-
isothermal ensemble,” Chem. Phys. Lett., 335 435–439 (2001).
64 J.D. Chodera and M.R. Shirts, “Replica exchange and expanded ensemble simulations as gibbs sampling:
Simple improvements for enhanced mixing,” J. Chem. Phys., 135 194110 (2011).
65 B.L. de Groot, A. Amadei, D.M.F. van Aalten, and H.J.C. Berendsen, “Towards an exhaustive sampling of the
configurational spaces of the two forms of the peptide hormone guanylin,” J. Biomol. Str. Dyn., 13 [5] 741–751
(1996).

5.13. Bibliography 579

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

66 B.L. de Groot, A. Amadei, R.M. Scheek, N.A.J. van Nuland, and H.J.C. Berendsen, “An extended sampling of
the configurational space of HPr from E. coli,” PROTEINS: Struct. Funct. Gen., 26 314–322 (1996).
67 O.E. Lange, L.V. Schafer, and H. Grubmuller, “Flooding in GROMACS: Accelerated barrier crossings in molec-
ular dynamics,” J. Comp. Chem., 27 1693–1702 (2006).
68 A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, and P.N. Vorontsov-Velyaminov, “New approach to Monte
Carlo calculation of the free energy: Method of expanded ensembles,” J. Chem. Phys., 96 1776–1783 (1992).
69 S.Y. Liem, D. Brown, and J.H.R. Clarke, “Molecular dynamics simulations on distributed memory machines,”
Comput. Phys. Commun., 67 [2] 261–267 (1991).
70 K.J. Bowers, R.O. Dror, and D.E. Shaw, “The midpoint method for parallelization of particle simulations,” J.
Chem. Phys., 124 [18] 184109–184109 (2006).
72 D. van der Spoel and P.J. van Maaren, “The origin of layer structure artifacts in simulations of liquid water,” J.
Chem. Theory Comput., 2 1–11 (2006).
73 I. Ohmine, H. Tanaka, and P.G. Wolynes, “Large local energy fluctuations in water. II. Cooperative motions and
fluctuations,” J. Chem. Phys., 89 5852–5860 (1988).
74 D.B. Kitchen, F. Hirata, J.D. Westbrook, R. Levy, D. Kofke, and M. Yarmush, “Conserving energy during
molecular dynamics simulations of water, proteins, and proteins in water,” J. Comp. Chem., 11 1169–1180 (1990).
75 J. Guenot and P.A. Kollman, “Conformational and energetic effects of truncating nonbonded interactions in an
aqueous protein dynamics simulation,” J. Comp. Chem., 14 295–311 (1993).
76 P.J. Steinbach and B.R. Brooks, “New spherical-cutoff methods for long-range forces in macromolecular sim-
ulation,” J. Comp. Chem., 15 667–683 (1994).
77 W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott, and
I.G. Tironi, Biomolecular simulation: The GROMOS96 manual and user guide. Hochschulverlag AG an der ETH
Zürich, Zürich, Switzerland, 1996.
78 W.F. van Gunsteren and H.J.C. Berendsen, Gromos-87 manual. Biomos BV, Nijenborgh 4, 9747 AG Groningen,
The Netherlands, 1987.
79 P.M. Morse, “Diatomic molecules according to the wave mechanics. II. vibrational levels.” Phys. Rev., 34
57–64 (1929).
80 H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, and J. Hermans, “Interaction models for water in rela-
tion to protein hydration”; pp. 331–342 in Intermolecular forces. Edited by B. Pullman. D. Reidel Publishing
Company, Dordrecht, 1981.
81 D.M. Ferguson, “Parametrization and evaluation of a flexible water model,” J. Comp. Chem., 16 501–511
(1995).
82 H.R. Warner Jr., “Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells,” Ind. Eng.
Chem. Fundam., 11 [3] 379–387 (1972).
83 M. Bulacu, N. Goga, W. Zhao, G. Rossi, L. Monticelli, X. Periole, D. Tieleman, and S. Marrink, “Improved
angle potentials for coarse-grained molecular dynamics simulations,” J. Chem. Theory Comput., 9 [8] 3282-3292
(2013).
84 B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, and M. Karplus, “CHARMM: A pro-
gram for macromolecular energy, minimization, and dynamics calculation,” J. Comp. Chem., 4 187–217 (1983).
85 C.P. Lawrence and J.L. Skinner, “Flexible TIP4P model for molecular dynamics simulation of liquid water,”
Chem. Phys. Lett., 372 842–847 (2003).
86 W.L. Jorgensen, D.S. Maxwell, and J. Tirado-Rives, “Development and testing of the oPLS all-atom force field
on conformational energetics and properties of organic liquids,” J. Am. Chem. Soc., 118 11225–11236 (1996).
87 M.J. Robertson, J. Tirado-Rives, and W.L. Jorgensen, “Improved peptide and protein torsional energetics with
the oPLS-aA force field,” J. Chem. Theory Comput., 11 3499–3509 (2015).
88 M. Bulacu and E. van der Giessen, “Effect of bending and torsion rigidity on self-diffusion in polymer melts:
A molecular-dynamics study,” J. Chem. Phys., 123 [11] 114901 (2005).

5.13. Bibliography 580

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

89 R.A. Scott and H. Scheraga, “Conformational analysis of macromolecules,” J. Chem. Phys., 44 3054–3069
(1966).
90 L. Pauling, The nature of chemical bond. Cornell University Press, Ithaca; New York, 1960.
91 A.E. Torda, R.M. Scheek, and W.F. van Gunsteren, “Time-dependent distance restraints in molecular dynamics
simulations,” Chem. Phys. Lett., 157 289–294 (1989).
92 B. Hess and R.M. Scheek, “Orientation restraints in molecular dynamics simulations using time and ensemble
averaging,” J. Magn. Reson., 164 19–27 (2003).
93 P.E.M. Lopes, J. Huang, J. Shim, Y. Luo, H. Li, B. Roux, and J. MacKerell Alexander D., “Polarizable force
field for peptides and proteins based on the classical drude oscillator,” J. Chem. Theory Comput, 9 5430–5449
(2013).
94 H. Yu, T.W. Whitfield, E. Harder, G. Lamoureux, I. Vorobyov, V.M. Anisimov, A.D. MacKerell, Jr., and B.
Roux, “Simulating Monovalent and Divalent Ions in Aqueous Solution Using a Drude Polarizable Force Field,” J.
Chem. Theory Comput., 6 774–786 (2010).
95 B.T. Thole, “Molecular polarizabilities with a modified dipole interaction,” Chem. Phys., 59 341–345 (1981).
96 G. Lamoureux and B. Roux, “Modeling induced polarization with classical drude oscillators: Theory and
molecular dynamics simulation algorithm,” J. Chem. Phys., 119 3025–3039 (2003).
97 G. Lamoureux, A.D. MacKerell, and B. Roux, “A simple polarizable model of water based on classical drude
oscillators,” J. Chem. Phys., 119 5185–5197 (2003).
98 S.Y. Noskov, G. Lamoureux, and B. Roux, “Molecular dynamics study of hydration in ethanol-water mixtures
using a polarizable force field,” J. Phys. Chem. B., 109 6705–6713 (2005).
99 W.F. van Gunsteren and A.E. Mark, “Validation of molecular dynamics simulations,” J. Chem. Phys., 108
6109–6116 (1998).
100 T.C. Beutler, A.E. Mark, R.C. van Schaik, P.R. Greber, and W.F. van Gunsteren, “Avoiding singularities and nu-
merical instabilities in free energy calculations based on molecular simulations,” Chem. Phys. Lett., 222 529–539
(1994).
103 W.L. Jorgensen and J. Tirado-Rives, “The OPLS potential functions for proteins. energy minimizations for
crystals of cyclic peptides and crambin,” J. Am. Chem. Soc., 110 1657–1666 (1988).
104 H.J.C. Berendsen and W.F. van Gunsteren, “Molecular dynamics simulations: Techniques and approaches”;
pp. 475–500 in Molecular liquids-dynamics and interactions. Edited by A.J.B. et al. Reidel, Dordrecht, The
Netherlands, 1984.
105 P.P. Ewald, “Die Berechnung optischer und elektrostatischer Gitterpotentiale,” Ann. Phys., 64 253–287 (1921).
106 R.W. Hockney and J.W. Eastwood, Computer simulation using particles. McGraw-Hill, New York, 1981.
107 V. Ballenegger, J.J. Cerdà, and C. Holm, “How to convert SPME to P3M: Influence functions and error esti-
mates,” J. Chem. Theory Comput., 8 [3] 936–947 (2012).
108 M.P. Allen and D.J. Tildesley, Computer simulations of liquids. Oxford Science Publications, Oxford, 1987.
109 C.L. Wennberg, T. Murtola, B. Hess, and E. Lindahl, “Lennard-Jones Lattice Summation in Bilayer Simu-
lations Has Critical Effects on Surface Tension and Lipid Properties,” J. Chem. Theory Comput., 9 3527–3537
(2013).
110 C. Oostenbrink, A. Villa, A.E. Mark, and W.F. Van Gunsteren, “A biomolecular force field based on the
free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6,” Journal of
Computational Chemistry, 25 [13] 1656–1676 (2004).
111 W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.R. Merz Jr., D.M. Ferguson, D.C. Spellmeyer, and T. Fox
et al., “A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules,”
J. Am. Chem. Soc., 117 [19] 5179–5197 (1995).
112 P.A. Kollman, “Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the
Properties of Organic and Biological Molecules,” Acc. Chem. Res., 29 [10] 461–469 (1996).

5.13. Bibliography 581

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

113 J. Wang, P. Cieplak, and P.A. Kollman, “How Well Does a Restrained Electrostatic Potential (RESP) Model
Perform in Calculating Conformational Energies of Organic and Biological Molecules?” J. Comp. Chem., 21 [12]
1049–1074 (2000).
114 V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling, “Comparison of Multiple Amber
Force Fields and Development of Improved Protein Backbone Parameters,” PROTEINS: Struct. Funct. Gen., 65
712–725 (2006).
115 K. Lindorff-Larsen, S. Piana, K. Palmo, P. Maragakis, J.L. Klepeis, R.O. Dorr, and D.E. Shaw, “Improved
side-chain torsion potentials for the AMBER ff99SB protein force field,” PROTEINS: Struct. Funct. Gen., 78
1950–1958 (2010).
116 Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, and P. Cieplak et al., “A Point-Charge
Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical
Calculations,” J. Comp. Chem., 24 [16] 1999–2012 (2003).
117 A.E. García and K.Y. Sanbonmatsu, “𝛼-Helical stabilization by side chain shielding of backbone hydrogen
bonds,” Proc. Natl. Acad. Sci. USA, 99 [5] 2782–2787 (2002).
118 J. MacKerell A. D., M. Feig, and C.L. Brooks III, “Extending the treatment of backbone energetics in protein
force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in
molecular dynamics simulations,” J. Comp. Chem., 25 [11] 1400–15 (2004).
119 A.D. MacKerell, D. Bashford, Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, and J. Gao et al.,
“All-atom empirical potential for molecular modeling and dynamics studies of proteins,” J. Phys. Chem. B., 102
[18] 3586–3616 (1998).
120 S.E. Feller and A.D. MacKerell, “An improved empirical potential energy function for molecular simulations
of phospholipids,” J. Phys. Chem. B., 104 [31] 7510–7515 (2000).
121 N. Foloppe and A.D. MacKerell, “All-atom empirical force field for nucleic acids: I. Parameter optimization
based on small molecule and condensed phase macromolecular target data,” J. Comp. Chem., 21 [2] 86–104
(2000).
122 A.D. MacKerell and N.K. Banavali, “All-atom empirical force field for nucleic acids: II. application to molec-
ular dynamics simulations of DNA and RNA in solution,” J. Comp. Chem., 21 [2] 105–120 (2000).
123 P. Larsson and E. Lindahl, “A High-Performance Parallel-Generalized Born Implementation Enabled by Tab-
ulated Interaction Rescaling,” J. Comp. Chem., 31 [14] 2593–2600 (2010).
124 P. Bjelkmar, P. Larsson, M.A. Cuendet, B. Hess, and E. Lindahl, “Implementation of the CHARMM force
field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water
models,” J. Chem. Theory Comput., 6 459–466 (2010).
125 A. Kohlmeyer and J. Vermaas, TopoTools: Release 1.6 with CHARMM export in topogromacs, (2016).
126 T. Bereau, Z.-J. Wang, and M. Deserno, Solvent-free coarse-grained model for unbiased high-resolution
protein-lipid interactions, (n.d.).
127 Z.-J. Wang and M. Deserno, “A systematically coarse-grained solvent-free model for quantitative phospholipid
bilayer simulations,” J. Phys. Chem. B., 114 [34] 11207–11220 (2010).
128 W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, and M.L. Klein, “Comparison of simple potential
functions for simulating liquid water,” J. Chem. Phys., 79 926–935 (1983).
129 IUPAC-IUB Commission on Biochemical Nomenclature, “Abbreviations and Symbols for the Description of
the Conformation of Polypeptide Chains. Tentative Rules (1969),” Biochemistry, 9 3471–3478 (1970).
130 M.W. Mahoney and W.L. Jorgensen, “A five-site model for liquid water and the reproduction of the density
anomaly by rigid, nonpolarizable potential functions,” J. Chem. Phys., 112 8910–8922 (2000).
131 J.P. Ryckaert and A. Bellemans, “Molecular dynamics of liquid alkanes,” Far. Disc. Chem. Soc., 66 95–106
(1978).
132 H. de Loof, L. Nilsson, and R. Rigler, “Molecular dynamics simulations of galanin in aqueous and nonaqueous
solution,” J. Am. Chem. Soc., 114 4028–4035 (1992).

5.13. Bibliography 582

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

133 A.R. van Buuren and H.J.C. Berendsen, “Molecular Dynamics simulation of the stability of a 22 residue
alpha-helix in water and 30% trifluoroethanol,” Biopolymers, 33 1159–1166 (1993).
134 R.M. Neumann, “Entropic approach to Brownian Movement,” Am. J. Phys., 48 354–357 (1980).
135 C. Jarzynski, “Nonequilibrium equality for free energy differences,” Phys. Rev. Lett., 78 [14] 2690–2693 ().
136 M.S. O. Engin A. Villa and B. Hess, “Driving forces for adsorption of amphiphilic peptides to air-water
interface,” J. Phys. Chem. B., (2010).
137 V. Lindahl, J. Lidmar, and B. Hess, “Accelerated weight histogram method for exploring free energy land-
scapes,” The Journal of chemical physics, 141 [4] 044110 (2014).
138 F. Wang and D. Landau, “Efficient, multiple-range random walk algorithm to calculate the density of states,”
Physical review letters, 86 [10] 2050 (2001).
139 T. Huber, A.E. Torda, and W.F. van Gunsteren, “Local elevation: A method for improving the searching
properties of molecular dynamics simulation,” Journal of computer-aided molecular design, 8 [6] 695–708 (1994).
140 A. Laio and M. Parrinello, “Escaping free-energy minima,” Proceedings of the National Academy of Sciences,
99 [20] 12562–12566 (2002).
141 R. Belardinelli and V. Pereyra, “Fast algorithm to calculate density of states,” Physical Review E, 75 [4] 046701
(2007).
142 A. Barducci, G. Bussi, and M. Parrinello, “Well-tempered metadynamics: A smoothly converging and tunable
free-energy method,” Physical review letters, 100 [2] 020603 (2008).
143 V. Lindahl, A. Villa, and B. Hess, “Sequence dependency of canonical base pair opening in the dNA double
helix,” PLoS computational biology, 13 [4] e1005463 (2017).
144 D.A. Sivak and G.E. Crooks, “Thermodynamic metrics and optimal paths,” Physical review letters, 108 [19]
190602 (2012).
145 C. Kutzner, J. Czub, and H. Grubmüller, “Keep it flexible: Driving macromolecular rotary motions in atomistic
simulations with GROMACS,” J. Chem. Theory Comput., 7 1381–1393 (2011).
146 C. Caleman and D. van der Spoel, “Picosecond Melting of Ice by an Infrared Laser Pulse - A simulation study,”
Angew. Chem., Int. Ed. Engl., 47 1417–1420 (2008).
147 C. Kutzner, H. Grubmüller, B.L. de Groot, and U. Zachariae, “Computational electrophysiology: The molecu-
lar dynamics of ion channel permeation and selectivity in atomistic detail,” Biophys. J., 101 809–817 (2011).
148 K.A. Feenstra, B. Hess, and H.J.C. Berendsen, “Improving efficiency of large time-scale molecular dynamics
simulations of hydrogen-rich systems,” J. Comp. Chem., 20 786–798 (1999).
149 B. Hess, “Determining the shear viscosity of model liquids from molecular dynamics,” J. Chem. Phys., 116
209–217 (2002).
150 M.J.S. Dewar, “Development and status of MINDO/3 and MNDO,” J. Mol. Struct., 100 41 (1983).
151 M.F. Guest, R.J. Harrison, J.H. van Lenthe, and L.C.H. van Corler, “Computational chemistry on the FPS-X64
scientific computers - Experience on single- and multi-processor systems,” Theor. Chim. Act., 71 117 (1987).
152 M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr.,
and T. Vreven et al., Gaussian 03, Revision C.02, (n.d.).
153 R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev.
Lett., 55 2471–2474 (1985).
154 M. Field, P.A. Bash, and M. Karplus, “A combined quantum mechanical and molecular mechanical potential
for molecular dynamics simulation,” J. Comp. Chem., 11 700 (1990).
155 F. Maseras and K. Morokuma, “IMOMM: A New Ab Initio + Molecular Mechanics Geometry Optimization
Scheme of Equilibrium Structures and Transition States,” J. Comp. Chem., 16 1170–1179 (1995).
156 M. Svensson, S. Humbel, R.D.J. Froes, T. Matsubara, S. Sieber, and K. Morokuma, “ONIOM a multilayered
integrated MO + MM method for geometry optimizations and single point energy predictions. a test for Diels-
Alder reactions and Pt(P(t-Bu)3)2 + H2 oxidative addition,” J. Phys. Chem., 100 19357 (1996).

5.13. Bibliography 583

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

157 S. Yesylevskyy, “ProtSqueeze: Simple and effective automated tool for setting up membrane protein simula-
tions,” J. Chem. Inf. Model., 47 1986–1994 (2007).
158 M. Wolf, M. Hoefling, C. Aponte-Santamaría, H. Grubmüller, and G. Groenhof, “g_membed: Efficient in-
sertion of a membrane protein into an equilibrated lipid bilayer with minimal perturbation,” J. Comp. Chem., 31
2169–2174 (2010).
159 D. van der Spoel and H.J.C. Berendsen, “Molecular dynamics simulations of Leu-enkephalin in water and
DMSO,” Biophys. J., 72 2032–2041 (1997).
160 P.E. Smith and W.F. van Gunsteren, “The Viscosity of SPC and SPC/E Water,” Chem. Phys. Lett., 215 315–318
(1993).
161 S. Balasubramanian, C.J. Mundy, and M.L. Klein, “Shear viscosity of polar fluids: Molecular dynamics calcu-
lations of water,” J. Chem. Phys., 105 11190–11195 (1996).
162 J. Wuttke, Lmfit, (2013).
163 B. Steen-Sæthre, A.C. Hoffmann, and D. van der Spoel, “Order parameters and algorithmic approaches for
detection and demarcation of interfaces in hydrate-fluid and ice-fluid systems,” J. Chem. Theor. Comput., 10
5606–5615 (2014).
164 B.J. Palmer, “Transverse-current autocorrelation-function calculations of the shear viscosity for molecular
liquids.” Phys. Rev. E, 49 359–366 (1994).
165 E.J.W. Wensink, A.C. Hoffmann, P.J. van Maaren, and D. van der Spoel, “Dynamic properties of water/alcohol
mixtures studied by computer simulation,” J. Chem. Phys., 119 7308–7317 (2003).
166 G.-J. Guo, Y.-G. Zhang, K. Refson, and Y.-J. Zhao, “Viscosity and stress autocorrelation function in super-
cooled water: A molecular dynamics study,” Mol. Phys., 100 2617–2627 (2002).
167 G.S. Fanourgakis, J.S. Medina, and R. Prosmiti, “Determining the bulk viscosity of rigid water models,” J.
Phys. Chem. A, 116 2564–2570 (2012).
168 D. van der Spoel, H.J. Vogel, and H.J.C. Berendsen, “Molecular dynamics simulations of N-terminal peptides
from a nucleotide binding protein,” PROTEINS: Struct. Funct. Gen., 24 450–466 (1996).
169 A. Amadei, A.B.M. Linssen, and H.J.C. Berendsen, “Essential dynamics of proteins,” PROTEINS: Struct.
Funct. Gen., 17 412–425 (1993).
170 B. Hess, “Convergence of sampling in protein simulations,” Phys. Rev. **E**, 65 031910 (2002).
171 B. Hess, “Similarities between principal components of protein dynamics and random diffusion,” Phys. Rev.
E, 62 8438–8448 (2000).
172 Y. Mu, P.H. Nguyen, and G. Stock, “Energy landscape of a small peptide revealed by dihedral angle principal
component analysis,” PROTEINS: Struct. Funct. Gen., 58 45–52 (2005).
173 D. van der Spoel, P.J. van Maaren, P. Larsson, and N. Timneanu, “Thermodynamics of hydrogen bonding in
hydrophilic and hydrophobic media,” J. Phys. Chem. B., 110 4393–4398 (2006).
174 A. Luzar and D. Chandler, “Hydrogen-bond kinetics in liquid water,” Nature, 379 55–57 (1996).
175 A. Luzar, “Resolving the hydrogen bond dynamics conundrum,” J. Chem. Phys., 113 10663–10675 (2000).
176 W. Kabsch and C. Sander, “Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded
and geometrical features,” Biopolymers, 22 2577–2637 (1983).
177 H. Bekker, H.J.C. Berendsen, E.J. Dijkstra, S. Achterop, R. v. Drunen, D. v. d. Spoel, A. Sijbers, and H.
Keegstra et al., “Gromacs Method of Virial Calculation Using a Single Sum”; pp. 257–261 in Physics computing
92. Edited by R.A. de Groot and J. Nadrchal. World Scientific, Singapore, 1993.
178 H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma, “The missing term in effective pair potentials,” J. Phys.
Chem., 91 6269–6271 (1987).
179 W.F. van Gunsteren and H.J.C. Berendsen, Molecular dynamics of simple systems, (1994).
180 A. Laio, J. VandeVondele, U. Rothlisberger, A Hamiltonian electrostatic coupling scheme for hybrid Car-
Parrinello molecular dynamics simulations, (2002).

5.13. Bibliography 584

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

181 Hub, J. S., de Groot, B. L., Grubmüller, H., Groenhof, G., “Quantifying artifacts in Ewald simulations of
inhomogeneous systems with a net charge,” J. Chem. Theory Comput., 10, 381–390 (2014).
182 Páll, S., Hess, B., “A flexible algorithm for calculating pair interactions on SIMD architectures,” Comput. Phys.
Commun., 183, 2641–2650 (2013).
183 V. Gapsys, D. Seeliger, and B.L. de Groot, “New Soft-Core Potential Function for Molecular Dynamics Based
Alchemical Free Energy Calculations”, J. Chem. Theor. Comput., 8 2373-2382 (2012).
184 Bernetti, M. and Bussi G., “Pressure control using stochastic cell rescaling”, J. Chem. Phys., 153, 114107
(2020).
185 Lidmar J., “Improving the efficiency of extended ensemble simulations: The accelerated weight histogram
method”, Phys. Rev. E, 85, 0256708 (2012).
186 Lindahl V., Lidmar J. and Hess B., “Riemann metric approach to optimal sampling of multidimensional free-
energy landscapes”, Phys. Rev. E, 98, 023312 (2018).
187 Lundborg M., Lidmar J. and Hess B., “The accelerated weight histogram method for alchemical free energy
calculations”, J. Chem. Phys., 154, 204103 (2021).
188 Kühne T., Iannuzzi M., Del Ben M. and Hutter J. et al., “CP2K: An electronic structure and molecular dynamics
software package - Quickstep: Efficient and accurate electronic structure calculations”, J. Chem. Phys., 152,
194103 (2020).
189 Laino T., Mohamed F., Laio A. and Parrinello M., “An Efficient Real Space Multigrid QM/MM Electrostatic
Coupling”, J. Chem. Theory Comput., 1, 1176 (2005).
190 D. van der Spoel, H. Henschel, P. J. van Maaren, M. M. Ghahremanpour , and L. T. Costa, “A potential for
molecular simulation of compounds with linear moieties”, J. Chem. Phys., 153 084503 (2020).
191 M. Tuckerman, B. J. Berne, and G. J. Martyna, “Reversible multiple time scale molecular dynamics”, J. Chem.
Phys., 97 1990 (1992).
192 Orzechowski M, Tama F., “Flexible fitting of high-resolution x-ray structures into cryoelectron microscopy
maps using biased molecular dynamics simulations”, Biophysical journal, 95, 5692–705, (2008).
193 Igaev, M., Kutzner, C., Bock, L. V., Vaiana, A. C., & Grubmüller, H., “Automated cryo-EM structure refinement
using correlation-driven molecular dynamics”, eLife, 8, e43542 (2019).
194 Lundborg M., Lidmar J. and Hess B., “On the Path to Optimal Alchemistry”, Protein J., 42, 477–489 (2023).
195 G. Fiorin, M. L. Klein, and J. Hénin, “Using collective variables to drive molecular dynamics simulations”,
Mol. Phys. 111 3345-3362 (2013).

5.13. Bibliography 585

CHAPTER

SIX

GMXAPI PYTHON PACKAGE

Version 0.5.0a1.

gmxapi (page 607) allows molecular simulation and analysis work to be staged and run from Python.

After installing GROMACS and the gmxapi Python package, you can use pydoc gmxapi from the command
line or import gmxapi; help(gmxapi) within a Python interpreter for concise usage help. Complete
documentation is collected in the following sections.

6.1 Full installation instructions

Installation instructions for the gmxapi (page 607) Python package, built on GROMACS.

Command line examples assume the bash shell.

ò Regarding multiple GROMACS installations

Many GROMACS users switch between multiple GROMACS installations on the same computer using an
HPC module system and/or a GMXRC (page 24) configuration script. For the equivalent sort of environment
switching with the gmxapi (page 607) Python package, we recommend installing it in a different Python
virtual environment for each GROMACS installation. Once built, a particular copy of the gmxapi (page 607)
Python package always refers to the same GROMACS installation.

ò Unprivileged pip install

The following documentation contains frequent references to the pip tool for installing Python packages. In
some cases, an unprivileged user should use the --user command line flag to tell pip to install packages into
the user site-packages directory rather than the default site-packages directory for the Python installation. This
flag is not appropriate when running pip in a virtual environment (as recommended) and is omitted in this
documentation. If you need the --user flag, you should modify the example commands to look something
like pip install --upgrade somepackage --user

ò Python 3 executable names

These instructions use the executable names python and pip instead of python3 or pip3. Some Python
installations require the 3 suffix, but it is usually not necessary if you have already activated a Python virtual
environment (recommended).

586

https://www.gnu.org/software/bash/
https://www.google.com/search?q=python+virtual+environment
https://www.google.com/search?q=python+virtual+environment
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.1.1 Overview

Typically, setting up the gmxapi Python package follows these three steps. If this overview is sufficient for your
computing environment, you may disregard the rest of this document.

Install GROMACS

Locate your GROMACS installation, or build and install. GROMACS 2022 or higher is recommended.

ã See also

GROMACS installation

The following assumes GROMACS is installed to /path/to/gromacs

Set up a Python virtual environment

ã See also

Set up a Python virtual environment (page 591)

ò Note

mpi4py may require additional arguments (compiler hints). See MPI requirements (page 589)

python3 -m venv $HOME/myvenv
. $HOME/myvenv/bin/activate
python -m ensurepip --default-pip
pip install --upgrade pip setuptools wheel
pip install mpi4py

Install the gmxapi Python package

Pull the gmxapi package from PyPI, build it for the GROMACS installation at /path/to/gromacs, and
install it to the Python prefix for the current environment.

. /path/to/gromacs/bin/GMXRC
pip install --no-cache-dir gmxapi

ã See also

Installing the Python package (page 590)

6.1. Full installation instructions 587

http://manual.gromacs.org/documentation/current/install-guide/index.html
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.1.2 Background

gmxapi comes in three parts:

• GROMACS gmxapi library for C++.

• This Python package, supporting Python 3.7 and higher

• MD restraint plugins and sample gmxapi client code

GROMACS requirements

The Python package requires a GROMACS installation. Locate an existing GROMACS installation, or build and
install GROMACS before proceeding.

ò Note

Note that gmxapi requires that GROMACS is configured with GMXAPI=ON and BUILD_SHARED_-
LIBS=ON. These are enabled by default in most cases. If these options were overridden for your GROMACS
installation, you will see CMake errors when trying to build and install the gmxapi Python package or other
client software.

If your installation has a GMXRC file, “source” the file as you normally would (page 24) before using GROMACS.
Otherwise, note the installation location so that you can provide it when building the gmxapi package.

Build system requirements

gmxapi can be built for Python 3.7 and higher.

You will need a C++ 17 compatible compiler and a reasonably up-to-date version of CMake. Full gmxapi func-
tionality may also require an MPI compiler (e.g. mpicc).

Important: To build a module that can be imported by Python, you need a Python installation that includes the
Python headers. Unfortunately, it is not always obvious whether these headers are present or where to find them.
The simplest answer is to just try to build the Python package using these instructions, and if gmxapi is unable to
find the Python tools it needs, try a different Python installation or install the additional development packages.

On a Linux system, this may require installing packages such as python-dev and/or python3-dev. If you
are building Python, either from scratch or with a tool like pyenv install (see wiki entry), be sure to enable
installation of the Python C library with the --enable-shared flag. Alternatively, various Python distribu-
tions provide a sufficient build environment while only requiring installation into a user home directory. (Some
examples below.)

If you are using an HPC system with software available through modules you may be able to just module load
a different Python installation and find one that works.

Python environment requirements

gmxapi requires Python 3.7 or higher. Check your version with python3 --version or python
--version.

ò Note

The following documentation assumes you do not need to use a trailing ‘3’ to access a Python 3 interpreter
on your system. The default Python interpreter on your system may use python3 and pip3 instead of
python and pip. You can check the version with python3 --version or python --version and
pip --version.

6.1. Full installation instructions 588

http://manual.gromacs.org/documentation/current/install-guide/index.html
http://manual.gromacs.org/documentation/current/install-guide/index.html
https://github.com/pyenv/pyenv/wiki#how-to-build-cpython-with---enable-shared

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

To build and install, you need the Python packages for cmake, networkx, and setuptools (all available from PyPI
with pip).

For full functionality, you should also have mpi4py and numpy. These requirements and version numbers are
listed in requirements.txt.

The easiest way to make sure you have the requirements installed, first update pip, then use the requirements.
txt file provided with the repository. File paths in this section are relative to the root directory of your local copy
of the GROMACS source.

Confirm that pip is available, install pip if it is missing, or get instructions on how to install pip:

python -m ensurepip --default-pip

Install or upgrade required components:

python -m pip install --upgrade pip
pip install --upgrade setuptools wheel

“requirements” files in GROMACS source tree

If you are building from source code in a local copy of the GROMACS source repository, a requirements.
txt allows you to preinstall the Python requirements before installing the gmxapi (page 607) package.

pip install -r python_packaging/gmxapi/requirements.txt

Documentation build requirements

See Accessing gmxapi documentation (page 595)

Testing requirements

Note that the test suite is only available in the GROMACS source tree. (It is not part of the installed package.)
Acquire the GROMACS sources with git or by downloading an archive, as documented elsewhere.

Testing is performed with pytest.

python_packaging/gmxapi/requirements.txt lists additional requirements for testing. With pip:

pip install -r python_packaging/gmxapi/requirements.txt

To test the full functionality also requires an MPI parallel environment. You will need the mpi4py Python package
and an MPI launcher (such as mpiexec, mpirun, a launcher provided by your HPC queuing system, or whatever
is provided by your favorite MPI package for your operating system).

MPI requirements

For the ensemble simulations features, you will need an MPI installation.

On an HPC system, this means you will probably have to use module load to load a compatible set of MPI
tools and compilers. Check your HPC documentation or try module avail to look for an openmpi, mpich,
or mvapich module and matching compiler module. This may be as simple as:

module load gcc
module load mpicc

6.1. Full installation instructions 589

https://pypi.org/project/cmake/
https://pypi.org/project/networkx/
https://pypi.org/project/setuptools/
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://pypi.org/project/mpi4py/
https://www.numpy.org/
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://pip.pypa.io/en/stable/
https://docs.pytest.org/en/latest/
https://pip.pypa.io/en/stable/
https://pypi.org/project/mpi4py/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

If you are using a GROMACS installation that is already available through module load, try to find a Python
installation with the mpi4py package that is also available through module load. The module system will
generally enforce toolchain compatibility between the loaded modules. If you module load mpi4py or a
Python installation with mpi4py, you will probably want to use this version of the package in your venv. (See
Set up a Python virtual environment (page 591)) If you module load an MPI-enabled GROMACS installation,
gmxapi will try to check mpi4py for compatibility.

Note that the compilers loaded might not be the first compilers discovered automatically by the build tools we will
use below, so you may have to specify compilers on the command line for consistency. It may be necessary to
require that GROMACS, gmxapi, and the sample code are built with the same compiler(s).

Note that strange errors have been known to occur when mpi4py is built with a different tool set than has been used
to build Python and gmxapi. If the default compilers on your system are not sufficient for GROMACS or gmxapi,
you may need to build, e.g., OpenMPI or MPICH, and/or build mpi4py with a specific MPI compiler wrapper. This
can complicate building in environments such as Conda. You should be able to confirm that your MPI compiler
wrapper is consistent with your GROMACS tool chain by comparing the output of mpicc --version with
the compiler information reported by gmx --version.

Set the MPICC environment variable to the MPI compiler wrapper and forcibly reinstall mpi4py:

export MPICC=`which mpicc`
pip install --no-cache-dir --upgrade --no-binary ":all:" --force-reinstall

→˓mpi4py

If you have a different MPI C compiler wrapper, substitute it for mpicc above.

While gmxapi is configuring its build system during installation, it will try to confirm the compatibility of
the mpi4py toolchain with that of the GROMACS installation. If they appear incompatible, you should see a
CMake message that includes a guess at what you might try using for MPICC. (If using pip, consider using the
--verbose option for more build output.)

6.1.3 Installing the Python package

We recommend using Python’s pip package installer to automatically download, build, and install the latest version
of the gmxapi package into a Python virtual environment, though it is also possible to install without a virtual
environment. If installing without a virtual environment as an un-privileged user, you may need to use the --user
option with pip install.

Recommended installation

The instructions in this section assume that pip is able to download files from the internet. Alternatively, refer to
Offline install (page 594).

Locate or install GROMACS

You need a GROMACS installation that includes the gmxapi headers and library.

. Warning

gmxapi does not recognize multiple GROMACS installations to the same CMAKE_INSTALL_PREFIX.

The Python package uses files installed to .../share/cmake/gmxapi/ to configure its C++ component.
These configuration files are overwritten when installing GROMACS to the same CMAKE_INSTALL_PRE-
FIX. Overlapping GROMACS installations may occur when GROMACS is installed for multiple configura-
tions of MPI support and floating point precision. (See Issue 4334 and related issues.)

6.1. Full installation instructions 590

https://pypi.org/project/mpi4py/
https://mpi4py.readthedocs.io/en/stable/install.html
https://docs.conda.io/en/latest/
https://pypi.org/project/mpi4py/
https://pip.pypa.io/en/stable/
https://docs.python.org/3/tutorial/venv.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html
https://cmake.org/cmake/help/latest/variable/CMAKE_INSTALL_PREFIX.html
https://gitlab.com/gromacs/gromacs/-/issues/4334

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

If GROMACS 2020 or higher is already installed, and was configured with GMXAPI=ON at build time (the de-
fault), you may be able to just source the GMXRC (page 24) (so that the Python package knows where to find
GROMACS) and skip to the next section. Note that some GROMACS installations, such as in high-performance
computing environments, may not install a GMXRC, and may instead provide access to the GROMACS installation
through a module load gromacs or similar command.

If necessary, install a supported version of GROMACS. When building GROMACS from source, be sure to con-
figure cmake with the flag -DGMXAPI=ON (default).

Set the environment variables for the GROMACS installation so that the gmxapi headers and library can be found
when building the Python package. If you installed to a gromacs-gmxapi directory in your home directory as
above and you use the bash shell, do:

source $HOME/gromacs-gmxapi/bin/GMXRC

If you are using a GROMACS installation that does not provide GMXRC, see gmxapi cmake hints (page 593) and
additional CMake hints below.

Set up a Python virtual environment

We recommend installing the Python package in a virtual environment. If not installing in a virtual environment,
you may not be able to install necessary prerequisites (e.g. if you are not an administrator of the system you are
on).

The following instructions use the venv module. Alternative virtual environments, such as Conda, should work
fine, but are beyond the scope of this document. (We welcome contributed recipes!)

Depending on your computing environment, the Python 3 interpreter may be accessed with the command python
or python3. Use python --version and python3 --version to figure out which you need to use. The
following assumes the Python 3 interpreter is accessed with python3.

ò –system-site-packages

It can be tricky to properly or optimally build MPI enabled software in computing clusters, and adminis-
trators often provide prebuilt packages like mpi4py. If your computing environment has multiple Python
installations, try to choose one that already includes mpi4py. When you are using a Python installation that
provides mpi4py, generally, you should be sure to use the existing mpi4py installation in your new virtual
environment by creating the venv with the --system-site-packages option.

In personal computing environments (laptops and workstations), it is common to have multiple Python in-
stallations, and it can be hard to keep packages in the different installations from conflicting with each other.
Unless you know that you want to inherit the mpi4py package from the system installation, it is generally
cleaner not to inherit the system site-packages.

Create a Python 3 virtual environment:

python3 -m venv $HOME/myvenv

or (see note):

python3 -m venv --system-site-packages $HOME/myvenv

Activate the virtual environment. Your shell prompt will probably be updated with the name of the environment
you created to make it more obvious.

$ source $HOME/myvenv/bin/activate
(myvenv)$

6.1. Full installation instructions 591

https://docs.python.org/3/library/venv.html#module-venv
https://docs.conda.io/en/latest/
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

ò Note

After activating the venv, python and pip are sufficient. (The ‘3’ suffix will no longer be necessary and will
be omitted in the rest of this document.)

Activating the virtual environment may change your shell prompt to indicate the environment is active. The
prompt is omitted from the remaining examples, but the remaining examples assume the virtual environment is
still active. (Don’t do it now, but you can deactivate the environment by running deactivate.)

Install dependencies

It is always a good idea to update pip, setuptools, and wheel before installing new Python packages:

pip install --upgrade pip setuptools wheel

The gmxapi installer requires a few additional packages. It is best to make sure they are installed and up to date
before proceeding.

pip install --upgrade cmake pybind11

We use mpi4py for some features and to ensure compatible MPI bindings throughout your Python environment.
If you did not inherit mpi4py from system site-packages (see above (page 591)), make sure to install it using
the same MPI installation that we are building GROMACS against, and build with compatible compilers.

MPICC=`which mpicc` pip install --no-cache-dir --upgrade mpi4py

ã See also

MPI requirements (page 589)

Install the latest version of gmxapi

Fetch and install the latest official version of gmxapi from the Python Packaging Index. Avoid locally cached
previously-built packages that may be incompatible with your current environment or GROMACS installation:

Get the latest official release.
pip install --no-cache-dir gmxapi

or:

pip download gmxapi
pip install gmxapi-<version>.tar.gz

substituting the name of the downloaded source distribution archive.

ò Avoid cached “wheel” packages.

pip downloads a source distribution archive for gmxapi, then builds a “wheel” package for your GROMACS
installation. This “wheel” normally gets cached, and will be used by any later attempt to pip install
gmxapi instead of rebuilding. This is not what you want, if you upgrade GROMACS or if you want to install
the Python package for a different GROMACS configuration (e.g. double-precision or different MPI option.)

6.1. Full installation instructions 592

https://pip.pypa.io/en/stable/
https://pypi.org/project/setuptools/
https://pypi.org/project/wheel/
https://pypi.org/project/mpi4py/
https://mpi4py.readthedocs.io/en/stable/install.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

You can use --no-cache-dir to force rebuild of the package and its build dependencies. This may be
slow, however, and you may want to use cached dependencies. You can avoid wheel cache for just one target
package by installing from the filesystem instead of directly from PyPI.

See also Issue 4335

The PyPI repository may include pre-release versions, but pip will ignore them unless you use the --pre flag:

Get the latest version, including pre-release versions.
pip install --no-cache-dir --pre gmxapi

If pip does not find your GROMACS installation, use one of the following environment variables to provide a
hint.

CMake hints

The gmxapi (page 607) package is distributed with C++ source code that needs to be compiled against GRO-
MACS libraries. The build system is configured using CMake, mediated by scikit-build-core. Refer to scikit-
build-core documentation for the best information on passing build options through the Python package installer
(e.g.* pip). (Be sure to look at the “config-settings” and “Environment” tabs. The “pyproject.toml” tabs is for
package maintainers.)

gmxapi_ROOT

If you have a single GROMACS installation at /path/to/gromacs, it is usually sufficient to provide this
location to pip through the gmxapi_ROOT environment variable, or as a CMake variable definition.

gmxapi_ROOT=/path/to/gromacs pip install --no-cache-dir gmxapi

pip install --no-cache-dir gmxapi --config-setting=cmake.define.gmxapi_
→˓ROOT=/path/to/gromacs

GROMACS CMake hints

It can be important to use the same compiler tool chain for both GROMACS and for client software (the Python
package C++ extension).

You can check gmx --version to see what compilers your installation used, and make sure that you don’t have
incompatible compilers declared by environment variables such as $CXX.

You can also use the GROMACS provided CMake cache file to provide extra hints to the Python extension build
system about the software tools that were used to build GROMACS. (For more information, read about the -C
command line option for CMake.)

In the following example,

• ${UNIQUE_PREFIX} is the path to the directory that holds the GROMACS bin, lib, share directo-
ries, etc. It is unique because GROMACS provides CMake support for only one build configuration at a
time through .../share/cmake/gmxapi/, even if there are multiple library configurations installed
to the same location. See Issue 4334.

• ${SUFFIX} is the suffix (e.g. _d, _mpi, etcetera) that distinguishes the particular build of GROMACS
you want to target (refer to GROMACS installation instructions for more information.) ${SUFFIX} may
simply be empty, or ''.

6.1. Full installation instructions 593

https://pip.pypa.io/en/stable/topics/caching/#avoiding-caching
https://gitlab.com/gromacs/gromacs/-/issues/4335
https://pypi.org/project/gmxapi/#history
https://scikit-build-core.readthedocs.io/en/latest/configuration.html#configuring-cmake-arguments-and-defines
https://scikit-build-core.readthedocs.io/en/latest/configuration.html#configuring-cmake-arguments-and-defines
https://pip.pypa.io/en/stable/
https://cmake.org/cmake/help/latest/manual/cmake.1.html#options
https://gitlab.com/gromacs/gromacs/-/issues/4334

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

pip install gmxapi \
--config-settings=cmake.define.gmxapi_ROOT=${UNIQUE_PREFIX} \
--config-settings=cmake.args=-C${UNIQUE_PREFIX}/share/cmake/gromacs$

→˓{SUFFIX}/gromacs-hints${SUFFIX}.cmake

In sufficiently new pip versions, -C is a shorter alternative to --config-settings=. Do not confuse the -C
option to pip with the -C option to cmake.

ã See also

scikit-build-core config-settings

Install from source

You can also install the gmxapi (page 607) Python package from within a local copy of the GROMACS source
repository. Assuming you have already obtained the GROMACS source code and you are in the root directory
of the source tree, you will find the gmxapi (page 607) Python package sources in the python_packaging/
gmxapi directory.

cd python_packaging/gmxapi
pip install -r requirements.txt
pip install .

Offline install

ò Recommended, first

pip install --upgrade build pip setuptools wheel

You can use python -m build --skip-dependency-check to build a binary distribution archive (from
the source distribution) for just the gmxapi package, but then you will have to manually satisfy (separate) depen-
dencies in both the build and installation environments.

While you have internet access, you need to get access to the gmxapi source distribution and the package depen-
dencies. You will also want the wheel and build packages in environments where the package(s) will be built.
Only pip is necessary once a gmxapi wheel is built.

The following instructions are paraphrased from https://pip.pypa.io/en/stable/user_guide/
#installing-from-local-packages

To build with internet access and then install without:

Remove any locally cached (previously built) wheels.
pip cache remove gmxapi

Download gmxapi and dependencies from pypi.
pip wheel --wheel-dir DIR gmxapi
or, using package source from the GROMACS repository
cd python_packaging/gmxapi
pip wheel --wheel-dir DIR .

Later, install.
pip install --no-index --find-links=DIR DIR/gmxapi*whl

To download packages and dependencies for later build and installation:

6.1. Full installation instructions 594

https://pip.pypa.io/en/stable/cli/pip_install/#cmdoption-C
https://scikit-build-core.readthedocs.io/en/latest/configuration.html#configuring-cmake-arguments-and-defines
https://pip.pypa.io/en/stable/user_guide/#installing-from-local-packages
https://pip.pypa.io/en/stable/user_guide/#installing-from-local-packages

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

if in the GROMACS source repository
cd python_packaging/gmxapi
or download and expand the archive
pip download --destination-directory DIR gmxapi
tar xf DIR/gmxapi*
cd gmxapi*

Pre-fetch dependencies to DIR
pip download --destination-directory DIR .

Build and install from the source directory.
pip install --no-index --find-links=DIR .

Building a source archive

A source archive for the gmxapi python package can be built from the GROMACS source repository using the
Python build module.

Example:

pip install --upgrade setuptools build
cd python_packaging/gmxapi
python -m build --sdist

This command will create a dist directory containing a source distribution archive file. The file name has the
form gmxapi-version.suffix, where version is the version from the package metadata, and suffix is an
archive file extension determined by the local environment and the current packaging specifications.

The version information is derived from gmxapi.__version__ defined by the gmxapi.version
(page 616) module. Pending refinement under Issue 3851, the gmxapi version information is hard coded in
the version.py. Make sure you have an up-to-date version of the sources and that the version information is
appropriate before distributing a new release.

ã See also

Python documentation for creating a source distribution

Package maintainers may update the online repository by uploading a freshly built sdist with python
-m twine upload dist/gmxapi-{version}.{suffix}. To update the repository at the PyPI test
server, use python -m twine upload --repository testpypi dist/gmxapi-{version}.
{suffix}.

6.1.4 Accessing gmxapi documentation

Documentation for the Python classes and functions in the gmx module can be accessed in the usual ways, using
pydoc from the command line or help() in an interactive Python session.

The complete documentation (which you are currently reading) can be browsed online or built from a copy of the
GROMACS source repository.

Documentation is built from a combination of Python module documentation and static content, and requires a
local copy of the GROMACS source repository.

6.1. Full installation instructions 595

https://pypa-build.readthedocs.io/en/latest/
https://gitlab.com/gromacs/gromacs/-/issues/3851
https://docs.python.org/3/distutils/sourcedist.html#creating-a-source-distribution
https://pypi.org/project/gmxapi/
http://manual.gromacs.org/current/gmxapi/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Build with GROMACS

To build the full gmxapi documentation with GROMACS, configure GROMACS with -DGMX_PYTHON_-
PACKAGE=ON and build the GROMACS documentation normally. This will first build the gmxapi Python package
and install it to a temporary location in the build tree. Sphinx can then import the package to automatically extract
Python docstrings.

Note that this is an entirely CMake-driven installation and Python dependencies will not be installed automatically.
You can update your Python environment (before configuring with CMake) using the requirements.txt files
provided in the python_packaging/ directory of the repository. Example:

pip install -r python_packaging/gmxapi/requirements.txt

Sometimes the build environment can choose a different Python interpreter than the one you intended. You
can set the Python3_ROOT_DIR or CMAKE_PREFIX_PATH CMake variable to explicitly choose the Python
installation or venv directory. See also CMake FindPython3.

If you use pyenv or pyenv-virtualenv to dynamically manage your Python version, you can help identify a particu-
lar version with pyenv version-name and the directory with pyenv prefix {version}. For example:

-DPython3_ROOT_DIR=$(pyenv prefix $(pyenv version-name))

6.1.5 Testing

Note testing requirements (page 589) above.

After installing the gmxapi (page 607) Python package, you can run the Python test suite from the GROMACS
source tree. Example:

Assuming you are in the root directory of the repository:
pytest python_packaging/gmxapi/test/

Refer to python_packaging/README.md for more detailed information.

6.1.6 Troubleshooting

ImportError at run time with dynamic linking error

Symptom: Python fails with a weird ImportError citing something like dlopen:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ImportError: dlopen(/.../gmxapi/_gmxapi.so, 0x0002): Symbol not found:
__ZN12gmxapicompat11readTprFileERKNSt7__cxx1112basic_stringIcSt11char_

→˓traitsIcESaIcEEE
Referenced from: /.../gmxapi/_gmxapi.so
Expected in: /path/to/gromacs/lib/libgmxapi_mpi_d.0.3.1.dylib

Inconsistencies in the build and run time environments can cause dynamic linking problems at run time. This
could occur if you reinstall GROMACS built with a different compiler, or if pip or CMake somehow get tricked
into using the wrong compiler tool chain.

Refer to the gmxapi cmake hints (page 593) for notes about compiler toolchains. Rebuild and reinstall the gmxapi
Python package with --no-cache-dir and provide the gromacs-hints.cmake file for the GROMACS
installation you intend to use.

6.1. Full installation instructions 596

https://cmake.org/cmake/help/latest/module/FindPython3.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

AttributeError: module ‘enum’ has no attribute ‘IntFlag’

If you had older versions of some of the dependencies installed, you might have picked up a transitive dependency
on the enum34 package. Try:

pip uninstall -y enum34

and see if that fixes the problem. If not, try a fresh virtual environment (see above) to help narrow down the
problem before you open an issue.

Errors regarding pybind11

An error may occur in setup.py with output that contains something like the following:

ModuleNotFoundError: No module named 'pybind11'
Building wheel for gmxapi (pyproject.toml): finished with status 'error'
ERROR: Failed building wheel for gmxapi

Failed to build gmxapi
ERROR: Could not build wheels for gmxapi, which is required to install

→˓pyproject.toml-based projects

The important information here is that pybind11 was not found.

Build dependencies aren’t always automatically installed. Even if you are using pip, you may have disabled
automatic dependency fulfillment with an option like --no-build-isolation or --no-deps.

In any case, the problem should be resolved by explicitly installing the pybind11 Python package before at-
tempting to build gmxapi:

pip install --upgrade pybind11

Couldn’t find the gmxapi support library?

If you don’t want to “source” your GMXRC (page 24) file, you can tell the package where to find a gmxapi
compatible GROMACS installation with gmxapi_ROOT. E.g. gmxapi_ROOT=/path/to/gromacs pip
install .

Before updating the gmxapi package it is generally a good idea to remove the previous installation and to start
with a fresh build directory. You should be able to just pip uninstall gmxapi.

Do you see something like the following?

CMake Error at gmx/core/CMakeLists.txt:45 (find_package):
Could not find a package configuration file provided by "gmxapi" with

→˓any
of the following names:

gmxapiConfig.cmake
gmxapi-config.cmake

Add the installation prefix of "gmxapi" to CMAKE_PREFIX_PATH or set
"gmxapi_ROOT" to a directory containing one of the above files. If

→˓"gmxapi"
provides a separate development package or SDK, be sure it has been
installed.

This could be because

• GROMACS is not already installed

6.1. Full installation instructions 597

https://gitlab.com/gromacs/gromacs/-/issues/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• GROMACS was built without the CMake variable GMXAPI=ON

• or if gmxapi_ROOT (or GROMACS_DIR) is not a path containing directories like bin and share.

If you are not a system administrator you are encouraged to install in a Python virtual environment, created with
virtualenv or Conda. Otherwise, you will need to specify the --user flag to pip.

Two of the easiest problems to run into are incompatible compilers and incompatible Python. Try to make sure
that you use the same C and C++ compilers for GROMACS, for the Python package, and for the sample plugin.
These compilers should also correspond to the mpicc compiler wrapper used to compile mpi4py. In order to
build the Python package, you will need the Python headers or development installation, which might not already
be installed on the machine you are using. (If not, then you will get an error about missing Python.h at some
point.) If you have multiple Python installations (or modules available on an HPC system), you could try one of
the other Python installations, or you or a system administrator could install an appropriate Python dev package.
Alternatively, you might try installing your own Anaconda or MiniConda in your home directory.

If an attempted installation fails with CMake errors about missing “gmxapi”, make sure that GROMACS is in-
stalled and can be found during installation. For instance,

gmxapi_ROOT=/Users/eric/gromacs pip install --verbose gmxapi

Pip and related Python package management tools can be a little too flexible and ambiguous sometimes. If things
get really messed up, try explicitly uninstalling the gmxapi (page 607) module and its dependencies, then do it
again and repeat until pip can no longer find any version of any of the packages.

pip uninstall gmxapi
pip uninstall cmake
...

Successfully running the test suite is not essential to having a working gmxapi (page 607) package. We are
working to make the testing more robust, but right now the test suite is a bit delicate and may not work right,
even though you have a successfully built the gmxapi (page 607) package. If you want to troubleshoot, though,
the main problems seem to be that automatic installation of required python packages may not work (requiring
manual installations, such as with pip install somepackage) and ambiguities between python versions.

If you are working in a development branch of the repository, note that the upstream branch may be reset to main
after a new release is tagged. In general, but particularly on the devel branch, when you do a git pull, you
should use the --rebase flag.

If you fetch this repository and then see a git status like this:

$ git status
On branch devel
Your branch and 'origin/devel' have diverged,
and have 31 and 29 different commits each, respectively.

then gmxapi (page 607) has probably entered a new development cycle. You can do git pull --rebase to
update to the latest development branch.

If you do a git pull while in devel and get a bunch of unexpected merge conflicts, do git merge
--abort; git pull --rebase and you should be back on track.

If you are developing code for gmxapi, this should be an indication to rebase your feature branches for the new
development cycle.

6.1. Full installation instructions 598

https://docs.conda.io/en/latest/
https://mpi4py.readthedocs.io/en/stable/install.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.2 Using the Python package

After installing GROMACS, sourcing the “GMXRC” (see GROMACS docs), and installing the gmxapi Python
package (see Full installation instructions (page 586)), import the package in a Python script or interactive inter-
preter. This documentation assumes a convenient alias of gmx to refer to the gmxapi Python package.

import gmxapi as gmx

For full documentation of the Python-level interface and API, use the pydoc command line tool or the help()
interactive Python function, or refer to the gmxapi Python module reference (page 605).

Any Python exception raised by gmxapi should be descended from (and catchable as) gmxapi.exceptions.
Error (page 615). Additional status messages can be acquired through the Logging (page 604) facility. Unfortu-
nately, some errors occurring in the GROMACS library are not yet recoverable at the Python level, and much of the
standard GROMACS terminal output is not yet accessible through Python. If you find a particularly problematic
scenario, please file a GROMACS bug report.

During installation, the gmxapi Python package becomes tied to a specific GROMACS installation. If you would
like to access multiple GROMACS installations from Python, build and install gmxapi in separate virtual environ-
ments (page 591).

6.2.1 Notes on parallelism and MPI

The GROMACS library can be built for parallel computation using various strategies. If GROMACS was config-
ured with -DGMX_MPI=ON, the same MPI library and compiler tool chain must be used for gmxapi and mpi4py.
In any case, the Python package must be built with mpi4py installed. See MPI requirements (page 589).

ò Note

This section uses “mpiexec” generically to refer to the MPI program launcher. Depending on your MPI
implementation and system details, your environment may use “mpirun”, or some other command instead.

gmxapi scripts manage batches of simulations (as “ensembles”) using MPI and mpi4py. To check whether
your installed gmxapi package was built with MPI bindings, you can check for the mpi_bindings feature
using gmxapi.version.has_feature() (page 616). The following command will produce an error if the
feature is not available.

python -c 'import gmxapi; assert gmxapi.version.has_feature("mpi_bindings")
→˓'

Assuming you use mpiexec to launch MPI jobs in your environment, run a gmxapi script on two ranks with
something like the following. Note that it can be helpful to provide mpiexec with the full path to the intended
Python interpreter since new process environments are being created.

mpiexec -n 2 `which python` -m mpi4py myscript.py

The -m mpi4py ensures that the mpi4py package is available and allows for proper clean-up of resources. (See
mpi4py.run for details.)

6.2. Using the Python package 599

https://docs.python.org/3/library/functions.html#help
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py
https://mpi4py.readthedocs.io/en/stable/mpi4py.run.html#module-mpi4py.run

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Mapping ranks to ensemble members

gmxapi divides the root communicator into separate sub-communicators for each simulator in an ensemble sim-
ulation task. Consider a root communicator of size S being allocated to N simulators. Each rank R in the root
communicator is assigned to ensemble member M(R) as follows.

When GROMACS is built with MPI library support, gmxapi allocates available MPI ranks to simulators in (ap-
proximately) equal size consecutive chunks.

𝑀(𝑅) = trunc(𝑅 *𝑁/𝑆)

For thread-MPI (or no-MPI) GROMACS builds, each simulator is assigned one process (with an attempt at even
distribution). Based on the preceding formula, thread-MPI ensemble member assignment looks like the following.

𝑀𝑇 (𝑅) =

{︃
𝑀(𝑅) , 𝑀(𝑅) ̸=𝑀(𝑅− 1)

null , otherwise

In other words, without an MPI library, only the root rank from M(R) is assigned.

Changed in version 0.4.0: In earlier releases, ranks were assigned to thread-MPI simulators contiguously, such
that high-numbered ranks R>N were unused. MPI simulators were not supported for ensemble simulation tasks.

Caveats for MPI jobs

Changed in version 0.3.0: By default, most commands outside gmxapi.simulation (page 610) launch only
on the root rank. (Results are synchronized to all ranks.) gmxapi.function_wrapper (page 607) allows
you to set allow_duplicate=True, if your script logic or data transfer overhead require tasks to be executed on all
ranks (computation is duplicated).

If gmxapi.commandline_operation (page 607) is used to wrap an MPI-enabled executable, the executable
could behave unpredictably when the script is run in an MPI context. By default, commandline_operation subpro-
cesses get a copy of the environment from the Python interpreter from which they are launched, and an executable
may think it was launched directly by mpiexec, causing MPI errors when it tries to assert ownership of the MPI
resources.

When a gmxapi script is launched in an MPI context, it may be necessary to hide the MPI context from MPI-
aware commands run in subprocesses, since gmxapi.commandline_operation (page 607) executables are
generally only launched on a single process. gmxapi.runtime.filtered_mpi_environ() (page 613)
is available to provide a copy of the os.environ dictionary with known MPI-related environment variables
filtered out.

Changed in version 0.3.1: You can use the env key word argument to gmxapi.commandline_operation
(page 607) to replace the default map of environment variables. By pruning out the environment variables set by
the MPI launcher, you can prevent the executable from automatically detecting an MPI context that it shouldn’t
use. See also Issue 4421

Changed in version 0.4.1: Added gmxapi.runtime.filtered_mpi_environ() (page 613).

gmxapi does not currently have an abstraction for subprocess launch methods. While such a feature is under in-
vestigation, allow_duplicate (function_wrapper() (page 607)) and env (commandline_operation()
(page 607)) should allow users to wrap tools in custom launchers. Discussion welcome on the forum!

6.2. Using the Python package 600

https://docs.python.org/3/library/os.html#os.environ
https://gitlab.com/gromacs/gromacs/-/issues/4421
https://gromacs.bioexcel.eu/tag/gmxapi

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.2.2 Running simple simulations

Once the gmxapi package is installed, running simulations is easy with gmxapi.read_tpr() (page 610).

import gmxapi as gmx
simulation_input = gmx.read_tpr(tpr_filename)
md = gmx.mdrun(simulation_input)

Note that this sets up the work you want to perform, but does not immediately trigger execution. You can explicitly
trigger execution with:

md.run()

or you can let gmxapi automatically launch work in response to the data you request (by calling result()
(page 606) on a named output member).

The gmxapi.mdrun() (page 611) operation produces a simulation trajectory output. You can use md.
output.trajectory as input to other operations, or you can get the output directly by calling md.output.
trajectory.result(). If the simulation has not been run yet when result() is called, the simulation
will be run before the function returns.

6.2.3 Running ensemble simulations

To run a batch of simulations, just pass an array of inputs.:

md = gmx.read_tpr([tpr_filename1, tpr_filename2, ...])
md.run()

Make sure to launch the script in an MPI environment with a sufficient number of ranks to allow one rank per
simulation.

ã See also

Notes on parallelism and MPI (page 599)

6.2.4 Input arguments and “ensemble” syntax

When a list of input is provided to a command argument that expects some other type, gmxapi generates an
ensemble operation. The command is applied to each element of input, and the result() will be a list. When
an output member of an ensemble operation is provided as input to another command, the consuming command
will also be an ensemble operation.

gmxapi uses MPI to manage ensemble members across available resources. It is important that the same gmxapi
commands are called on all processes so that underlying collective MPI calls are made as expected. In other
words, if you are using mpi4py in your script, be careful with conditional execution like the following.

if mpi4py.MPI.COMM_WORLD.Get_rank() == 0:
don't put any gmxapi commands here, including method calls
like `obj.result()`, unless you have an `else`
to make sure the same gmxapi command runs on every rank.
...

For commands that already integrate well with gmxapi’s MPI-based ensemble management (like mdrun()
(page 611)), available resources can be split up automatically, and applied to run the ensemble members concur-
rently. Other operations may require further development of Resource Management API features for the gmxapi
framework to most effectively apply multi-core computing resources. See Issue 3718 and the wiki for more infor-
mation.

6.2. Using the Python package 601

https://docs.python.org/3/library/stdtypes.html#list
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py
https://gitlab.com/gromacs/gromacs/-/issues/3718
https://gitlab.com/gromacs/gromacs/-/wikis/subprojects/Resource-Management-2023

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

See also Notes on parallelism and MPI (page 599).

6.2.5 Accessing command line tools

In gmxapi 0.1, most GROMACS tools are not yet exposed as gmxapi Python operations. gmxapi.
commandline_operation (page 607) provides a way to convert a gmx (or other) command line tool into
an operation that can be used in a gmxapi script.

In order to establish data dependencies, input and output files need to be indicated with the input_files
and output_files parameters. input_files and output_files key word arguments are dictionaries
consisting of files keyed by command line flags.

For example, you might create a gmx solvate operation as:

solvate = gmx.commandline_operation('gmx',
arguments=['solvate', '-box', '5', '5',

→˓ '5'],
input_files={'-cs': structurefile},
output_files={'-p': topfile,

'-o': structurefile,
}

To check the status or error output of a command line operation, refer to the returncode and stderr outputs.
To access the results from the output file arguments, use the command line flags as keys in the file dictionary
output.

Example:

structurefile = solvate.output.file['-o'].result()
if solvate.output.returncode.result() != 0:

print(solvate.output.erroroutput.result())

6.2.6 Preparing simulations

Continuing the previous example, the output of solvate may be used as the input for grompp:

grompp = gmx.commandline_operation('gmx', 'grompp',
input_files={

'-f': mdpfile,
'-p': solvate.output.file['-p'],
'-c': solvate.output.file['-o'],
'-po': mdout_mdp,

},
output_files={'-o': tprfile})

Then, grompp.output.file['-o'] can be used as the input for gmxapi.read_tpr() (page 610).

Simulation input can be modified with the gmxapi.modify_input() (page 610) operation before being
passed to gmxapi.mdrun() (page 611). For gmxapi 0.1, a subset of MDP parameters may be overridden using
the dictionary passed with the parameters key word argument.

Example:

simulation_input = gmx.read_tpr(grompp.output.file['-o'])
modified_input = gmx.modify_input(input=simulation_input, parameters={

→˓'nsteps': 1000})
md = gmx.mdrun(input=modified_input)
md.run()

6.2. Using the Python package 602

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.2.7 Using arbitrary Python functions

Generally, a function in the gmxapi package returns an object that references a node in a work graph, representing
an operation that will be run when the graph executes. The object has an output attribute providing access to
data Futures that can be provided as inputs to other operations before computation has actually been performed.

You can also provide native Python data as input to operations, or you can operate on native results retrieved from
a Future’s result() method. However, it is trivial to convert most Python functions into gmxapi compatible op-
erations with gmxapi.function_wrapper() (page 607). All function inputs and outputs must have a name
and type. Additionally, functions should be stateless and importable (e.g. via Python from some.module
import myfunction) for future compatibility.

Simple functions can just use return() to publish their output, as long as they are defined with a return value
type annotation. Functions with multiple outputs can accept an output key word argument and assign values to
named attributes on the received argument.

Examples:

from gmxapi import function_wrapper

@function_wrapper(output={'data': float})
def add_float(a: float, b: float) -> float:

return a + b

@function_wrapper(output={'data': bool})
def less_than(lhs: float, rhs: float, output=None):

output.data = lhs < rhs

ã See also

For more on Python type hinting with function annotations, check out PEP 3107.

6.2.8 Subgraphs

Basic gmxapi work consists of a flow of data from operation outputs to operation inputs, forming a directed acyclic
graph (DAG). In many cases, it can be useful to repeat execution of a subgraph with updated inputs. You may
want a data reference that is not tied to the immutable result of a single node in the work graph, but which instead
refers to the most recent result of a repeated operation.

One or more operations can be staged in a gmxapi.operation.Subgraph, a sort of meta-operation factory
that can store input binding behavior so that instances can be created without providing input arguments.

The subgraph variables serve as input, output, and mutable internal data references which can be updated by
operations in the subgraph. Variables also allow state to be propagated between iterations when a subgraph is used
in a while loop.

Use gmxapi.subgraph() (page 609) to create a new empty subgraph. The variables argument declares
data handles that define the state of the subgraph when it is run. To initialize input to the subgraph, give each
variable a name and a value.

To populate a subgraph, enter a SubgraphContext by using a with() statement. Operations created in the with
block will be captued by the SubgraphContext. Define the subgraph outputs by assigning operation outputs to
subgraph variables within the with block.

After exiting the with block, the subgraph may be used to create operation instances or may be executed repeatedly
in a while loop.

6.2. Using the Python package 603

https://peps.python.org/pep-3107/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

ò Note

The object returned by gmxapi.subgraph() (page 609) is atypical of gmxapi operations, and has some
special behaviors. When used as a Python context manager, it enters a “builder” state that changes the behavior
of its attribute variables and of operaton instantiation. After exiting the with() block, the subgraph variables
are no longer assignable, and operation references obtained within the block are no longer valid.

6.2.9 Looping

An operation can be executed an arbitrary number of times with a gmxapi.while_loop() (page 609) by pro-
viding a factory function as the operation argument. When the loop operation is run, the operation is instantiated
and run repeatedly until condition evaluates True.

gmxapi.while_loop() (page 609) does not provide a direct way to provide operation arguments. Use a
subgraph to define the data flow for iterative operations.

When a condition is a subgraph variable, the variable is evaluated in the running subgraph instance at the beginning
of an iteration.

Example:

subgraph = gmx.subgraph(variables={'float_with_default': 1.0, 'bool_data':
→˓True})
with subgraph:

Define the update for float_with_default to come from an add_float
→˓operation.

subgraph.float_with_default = add_float(subgraph.float_with_default, 1.
→˓).output.data

subgraph.bool_data = less_than(lhs=subgraph.float_with_default, rhs=6.
→˓).output.data
operation_instance = subgraph()
operation_instance.run()
assert operation_instance.values['float_with_default'] == 2.

loop = gmx.while_loop(operation=subgraph, condition=subgraph.bool_data)
handle = loop()
assert handle.output.float_with_default.result() == 6

6.2.10 Logging

gmxapi uses the Python logging module to provide hierarchical logging, organized by submodule. You can
access the logger at gmxapi.logger or through the Python logging framework:

import gmxapi as gmx
import logging

Get the root gmxapi logger.
gmx_logger = logging.getLogger('gmxapi')
Set a low default logging level
gmx_logger.setLevel(logging.WARNING)
Make some tools very verbose
by descending the hierarchy
gmx_logger.getChild('commandline').setLevel(logging.DEBUG)
or by direct reference
logging.getLogger('gmxapi.mdrun').setLevel(logging.DEBUG)

6.2. Using the Python package 604

https://docs.python.org/3/reference/datamodel.html#context-managers
https://docs.python.org/3/library/logging.html#module-logging

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

You may prefer to adjust the log format or manipulate the log handlers. For example, tag the log output with MPI
rank:

try:
from mpi4py import MPI
rank_number = MPI.COMM_WORLD.Get_rank()

except ImportError:
rank_number = 0
rank_tag = ''
MPI = None

else:
rank_tag = 'rank{}:'.format(rank_number)

formatter = logging.Formatter(rank_tag + '%(name)s:%(levelname)s:
→˓%(message)s')

For additional console logging, create and attach a stream handler.
ch = logging.StreamHandler()
ch.setFormatter(formatter)
logging.getLogger().addHandler(ch)

For more information, refer to the Python logging documentation.

6.2.11 More

Refer to the gmxapi Python module reference (page 605) for complete and granular documentation.

For more information on writing or using pluggable simulation extension code, refer to https://gitlab.com/gromacs/
gromacs/-/issues/3133. (For gmxapi 0.0.7 and GROMACS 2019, see https://github.com/kassonlab/sample_
restraint)

6.3 gmxapi Python module reference

Version 0.5.0a1.

The GROMACS Python package includes a high-level scripting interface implemented in pure Python and a
lower-level API implemented as a C++ extension module. The pure Python implementation provides the basic
gmxapi module and classes with a very stable syntax that can be maintained with maximal compatibility while
mapping to lower level interfaces that may take a while to sort out. The separation also serves as a reminder that
different execution contexts may be implemented quite diffently, though Python scripts using only the high-level
interface should execute on all.

Package documentation is extracted from the gmxapi Python module and is also available directly, using either
pydoc from the command line or help() from within Python, such as during an interactive session.

Refer to the Python source code itself for additional clarification.

ã See also

Accessing gmxapi documentation (page 595)

6.3. gmxapi Python module reference 605

https://docs.python.org/3/library/logging.html
https://gitlab.com/gromacs/gromacs/-/issues/3133
https://gitlab.com/gromacs/gromacs/-/issues/3133
https://github.com/kassonlab/sample_restraint
https://github.com/kassonlab/sample_restraint
https://docs.python.org/3/library/functions.html#help

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.3.1 Interface concepts

gmxapi commands return references to operations. Generally, the operations are collected into a graph of data
flow dependencies, and only executed when the results are requested.

class gmxapi.abc.OperationReference

Client interface to an element of computational work already configured.

An “instance” of an operation is assumed to be a node in a computational work graph, owned and managed
by a Context. This class describes the interface of the reference held by a client once the node exists.

The convergence of OperationReferences with Nodes as the results of the action of a Director implies that
a Python user should also be able to “subscribe” to an operation handle (or its member resources). This
could be a handy feature with which a user could register a call-back. Note that we will want to provide an
optional way for the call-back (as with any subscriber) to assert a chain of prioritized Contexts to find the
optimal path of subscription.

abstract property output: OutputDataProxy

Get a proxy collection to the output of the operation.

Developer note: The ‘output’ property exists to isolate the namespace of output data from other oper-
ation handle attributes and we should consider whether it is actually necessary or helpful. To facilitate
its possible future removal, do not enrich its interface beyond that of a collection of OutputDescriptor
attributes. The OutputDataProxy also serves as a Mapping, with keys matching the attributes. We may
choose to keep only this aspect of the interface instead of trying to keep track of the set of attributes.

abstract run()

Assert execution of an operation.

After calling run(), the operation results are guaranteed to be available in the local context.

gmxapi uses a Future (page 606) to reference an operation output or data that may not yet be available.

class gmxapi.abc.Future

Data source that may represent Operation output that does not yet exist.

Futures represent “immutable resources,” or fixed points in the data flow.

abstract property dtype: type

Data type for the promised result.

abstract result()→ Any
Fetch data to the caller’s Context.

Returns the actual result of the operation supplying this Future.

Ensemble data are returned as a list. Scalar results or results from single member ensembles are
returned as scalars. If this behavior is confusing or problematic for you, please reopen https://gitlab.
com/gromacs/gromacs/-/issues/3179 or a new issue and join the discussion.

An OperationReference (page 606) may provide several named Futures on its output attribute.

A Future (page 606) may be provided directly as inputs to other gmxapi commands. gmxapi will execute the
required operation to get the data when it is needed.

To get an actual result in your Python script, you can call result() (page 606) on any gmxapi data reference.
If the operation has not yet been executed, the operation (and any operation dependencies) will be executed
immediately.

You can also force an operation to run by calling its run() (page 606) method. But this is not generally necessary
unless your only goal is to produce output files on disk that are not consumed in the same script.

In some cases, a Future (page 606) can be subscripted to get a new Future representing a slice of the original.
For instance, commandline_operation (page 607) objects have a file output that produces a mapping of
command line flags to output files (per the output_files parameter). This file output can be subscripted with a
single command line option to get a Future (page 606) for just one output file type. See Preparing simulations
(page 602) for an illustrative example.

6.3. gmxapi Python module reference 606

https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.Any
https://gitlab.com/gromacs/gromacs/-/issues/3179
https://gitlab.com/gromacs/gromacs/-/issues/3179

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Ensemble data flow

gmxapi automatically generates arrays of operations and parallel data flow, when parallel inputs are provided to
gmxapi command parameters.

When a Future (page 606) represents the output of an ensemble operation, result() (page 606) returns a list
with elements corresponding to the ensemble members.

It is not currently possible to get a Future (page 606) for a specific ensemble member.

See Input arguments and “ensemble” syntax (page 601) for more information.

6.3.2 gmxapi basic package

import gmxapi as gmx

gmxapi Python package for GROMACS.

This package provides Python access to GROMACS molecular simulation tools. Operations can be connected
flexibly to allow high performance simulation and analysis with complex control and data flows. Users can define
new operations in C++ or Python with the same tool kit used to implement this package.

@gmxapi.function_wrapper(output: dict | None = None, allow_duplicate=False)

Generate a decorator for wrapped functions with signature manipulation.

New function accepts the same arguments, with additional arguments required by the API.

The new function returns an object with an output attribute containing the named outputs.

Example

>>> @function_wrapper(output={'spam': str, 'foo': str})
... def myfunc(parameter: str = None, output=None):
... output.spam = parameter
... output.foo = parameter + ' ' + parameter
...
>>> operation1 = myfunc(parameter='spam spam')
>>> assert operation1.output.spam.result() == 'spam spam'
>>> assert operation1.output.foo.result() == 'spam spam spam spam'

Parameters
output (dict) – output names and types

If output is provided to the wrapper, a data structure will be passed to the wrapped functions with the
named attributes so that the function can easily publish multiple named results. Otherwise, the output of
the generated operation will just capture the return value of the wrapped function.

gmxapi.commandline_operation(executable=None, arguments=(), input_files: dict | Iterable[dict] |
None = None, output_files: dict | Iterable[dict] | None = None, stdin:
str | Iterable[str] | None = None, env: dict | Iterable[dict] | None =
None, **kwargs)

Helper function to define a new operation that executes a subprocess in gmxapi data flow.

Define a new Operation for a particular executable and input/output parameter set. Generate a chain of
operations to process the named key word arguments and handle input/output data dependencies.

Note that the operation will be executed in a subprocess in an automatically generated subdirectory. See
below for more information.

Parameters

6.3. gmxapi Python module reference 607

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• arguments – list of positional arguments to insert at argv[1]

• env – Optional replacement for the environment variables seen by the subprocess.

• executable – name of an executable on the path

• input_files – mapping of command-line flags to input file paths

• output_files – mapping of command-line flags to output file names

• stdin (str) – String input to send to STDIN (terminal input) of the executable (op-
tional).

Changed in version 0.5.0: Relative paths in input_files are considered relative to the current working direc-
tory, and are immediately converted to absolute paths.

Multi-line text sent to stdin should be joined into a single string. E.g.:

commandline_operation(..., stdin='\n'.join(list_of_strings) + '\n')

If multiple strings are provided to stdin, gmxapi will assume an ensemble, and will run one operation for
each provided string.

Only string input (str()) to stdin is currently supported. If you have a use case that requires streaming
input or binary input, please open an issue or contact the author(s).

Changed in version 0.3.0: output_files paths are converted to absolute paths at run time.

If non-absolute paths are provided to output_files, paths are resolved relative to the working directory of the
command instance (not relative to the working directory of the workflow script).

By default, executable runs in a subprocess that inherits its environment and resources from the Python
interpreter. (See https://docs.python.org/3/library/subprocess.html#subprocess.run)

Added in version 0.3.1: If specified, env replaces the default environment variables map seen by executable
in the subprocess.

Changed in version 0.4.1: If unspecified, env defaults to a filtered copy of the current environment (with
MPI-related environment variables removed). See gmxapi.runtime.filtered_mpi_environ()
(page 613).

In addition to controlling environment variables used for user-input, it may be necessary to adjust the envi-
ronment to prevent the subprocess from inheriting variables that it should not. This is particularly relevant
if the Python script is launched with mpiexec and then commandline_wrapper is used to launch an
MPI-aware executable that may try to manage the MPI context. (Reference Issue 4421)

When overriding the environment variables, don’t forget to include basic variables like PATH that are
necessary for the executable to run. os.getenv can help. E.g. commandline_operation(...,
env={'PATH': os.getenv('PATH'), ...})

ã See also

gmxapi.runtime.filtered_mpi_environ() (page 613).

Output:
The output node of the resulting operation handle contains

• directory: filesystem path that was used as the working directory for the subprocess

• file: the mapping of CLI flags to filename strings resulting from the output_files kwarg

• returncode: return code of the subprocess.

•stderr: A string mapping from process STDERR; it will be the
error output (if any) if the process failed.

• stdout: A string mapping from process STDOUT.

6.3. gmxapi Python module reference 608

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://gitlab.com/gromacs/gromacs/-/issues/4421
https://docs.python.org/3/library/os.html#os.getenv

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Changed in version 0.3: Subprocesses run in directories managed by gmxapi.

Added in version 0.3: The directory output.

Working directory names are details of the gmxapi implementation; the naming scheme is not yet specified
by the API, but is intended to be related to the operation ID.

Note that re-executing a gmxapi script in the same directory will cause commands to be executed again in
the same directories. If this presents a risk of data corruption (or just wasted compute cycles), you may
include the key word argument _exist_ok=False to force an error. Please consider contacting the
developers through any of the various GROMACS community channels to further discuss your use case.

gmxapi.subgraph(variables: Mapping | None = None)

Allow operations to be configured in a sub-context.

The object returned functions as a Python context manager. When entering the context manager (the be-
ginning of the with block), the object has an attribute for each of the named variables. Reading from
these variables gets a proxy for the initial value or its update from a previous loop iteration. At the end of
the with block, any values or data flows assigned to these attributes become the output for an iteration.

After leaving the with block, the variables are no longer assignable, but can be called as bound methods to
get the current value of a variable.

When the object is run, operations bound to the variables are reset and run to update the variables.

gmxapi.while_loop(*, operation, condition, max_iteration=10)

Generate and run a chain of operations such that condition evaluates True.

Returns and operation instance that acts like a single node in the current work graph, but which is a proxy to
the operation at the end of a dynamically generated chain of operations. At run time, condition is evaluated
for the last element in the current chain. If condition evaluates False, the chain is extended and the next
element is executed. When condition evaluates True, the object returned by while_loop becomes a
proxy for the last element in the chain.

Equivalent to calling operation.while(condition), where available.

Parameters

• operation – a callable that produces an instance of an operation when called with no
arguments.

• condition – a callable that accepts an object (returned by operation) that returns
a boolean.

• max_iteration – execute the loop no more than this many times (default 10)

. Warning

max_iteration is provided in part to minimize the cost of bugs in early versions of this software. The
default value may be changed or removed on short notice.

. Warning

The protocol by which while_loop interacts with operation and condition is very unstable
right now. Please refer to this documentation when installing new versions of the package.

Protocol:

Warning:
This protocol will be changed before the API is finalized.

When called, while_loop calls operation without arguments and captures the return value for
inspection of outputs. The object produced by operation() must have a reset, a run method,

6.3. gmxapi Python module reference 609

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/constants.html#None

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

and an output attribute. From gmxapi 0.1, an additional values attribute is examined to advertise
the output members that will appear on the while_loop output.

This is inspected to determine the output data proxy for the operation produced by the call to while_-
loop. When that operation is called, it does the equivalent of

while(condition(self._operation)):
self._operation.reset() self._operation.run()

Then, the output data proxy of self is updated with the results from self._operation.output.

6.3.3 Simulation module

GROMACS simulation subpackage for gmxapi.

Provides operations for configuring and running molecular simulations.

The initial version of this module is a port of the gmxapi 0.0.7 facilities from https://github.com/kassonlab/gmxapi
and is not completely integrated with the gmxapi 0.1 specification. Operation execution is dispatched to the old
execution manager for effective ensemble handling and C++ MD module binding. This should be an implemen-
tation detail that is not apparent to the typical user, but it is worth noting that chains of gmxapi.simulation module
operations will be automatically bundled for execution as gmxapi 0.0.7 style API sessions. Run time options and
file handling will necessarily change as gmxapi data flow handling evolves.

In other words, if you rely on behavior not specified explicitly in the user documentation, please keep an eye on
the module documentation when updating gmxapi and please participate in the ongoing discussions for design and
implementation.

Preparing simulations

gmxapi.read_tpr(filename, label: str | None = None, context=None)

Get simulation input from a TPR file.

Parameters

• filename – input file name

• label – optional human-readable label with which to tag the new node

• context – Context in which to return a handle to the new node. Use default (None)
for Python scripting interface

Returns
Reference (handle) to the new operation instance (node).

See OutputDataProxy (page 610) for members of the output attribute.

class gmxapi.simulation.read_tpr.OutputDataProxy(*args, **kwargs)

Implement the ‘output’ attribute of read_tpr (page 610) operations.

parameters

Dictionary of simulation parameters.

Additionally (through an unspecified interface), the object serves as a complete simulation input to other
gmxapi operations.

gmxapi.modify_input(input, parameters: dict, label: str | None = None, context=None)

Modify simulation input with data flow operations.

Given simulation input input, override components of simulation input with additional arguments, such as
parameters.

See OutputDataProxy (page 610) for output attribute members.

6.3. gmxapi Python module reference 610

https://github.com/kassonlab/gmxapi
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

class gmxapi.simulation.modify_input.OutputDataProxy(*args, **kwargs)

Implement the ‘output’ attribute of modify_input (page 610) operations.

parameters

Aggregated dictionary simulation parameters for the resulting simulation input.

Additionally (through an unspecified interface), the object serves as a complete simulation input to other
gmxapi operations.

Running simulations

gmxapi.mdrun(input, runtime_args: dict | Sequence[dict] | None = None, label: str | None = None,
context=None)

MD simulation operation.

Parameters

• input – valid simulation input

• runtime_args (dict) – command line flags and arguments to be passed to mdrun
(optional)

Returns
runnable operation to perform the specified simulation

See OutputDataProxy (page 611) for members of the output attribute.

input may be a TPR file name or an object providing the SimulationInput interface.

runtime_args allows an optional dictionary of mdrun options, using the option flag (including the leading hy-
phen -) as the dictionary key. For mdrun command line options that do not take a value (e.g. -noappend),
use None as the dictionary value.

. Warning

Run time argument processing does not have Python bindings at this time. key-value pairs are passed as
plain text to the underlying library. Usage errors can be hard to discover. Refer to the MD log file in the
output directory for messages regarding argument processing.

Note, in particular, that the available mdrun arguments can depend on the GROMACS build configura-
tion, such as whether an MPI library or thread-MPI is enabled.

ã See also

The gmx mdrun (page 215) command line tool.

class gmxapi.simulation.mdrun.OutputDataProxy(instance: SourceResource, client_id: int |
None = None)

Implement the ‘output’ attribute of mdrun (page 611) operations.

checkpoint

Full path to cpt file.

Type
str

directory

Full path to the working directory in which the simulation ran.

6.3. gmxapi Python module reference 611

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Type
str

parameters

Dictionary of parameters with which the simulation was run.

Type
dict

stderr

Full path to the text file that captured stderr during the simulation.

Type
str

stdout

Full path to the text file that captured stdout during the simulation.

Type
str

trajectory

Full path to trajectory output (corresponding to the -o flag, if provided).

Type
str

Notes

For multi-rank MPI-enabled simulators, stderr and stdout are reported for the root rank only, in line with
how GROMACS behaves.

Changed in version 0.4: Added directory output, replacing an earlier “hidden” _work_dir output.

Added in version 0.4: stderr and stdout provide paths to the captured standard I/O. Previously, a lot of
output from the underlying library bypassed Python and went straight to the standard output and standard
error of the calling process.

6.3.4 Utilities

Provide some additional utilities.

gmxapi.utility.config()

Get the GROMACS configuration detected during installation.

Returns read-only dictionary proxy to file written during installation. The Mapping contains information
about the supporting GROMACS installation that was used to configure the Python package installation.
The exact keys in the Mapping is not formally specified, and mostly for internal use.

Added in version 0.4.

gmxapi.utility.join_path(first: str, second: str, output=None)

Get a Future path for use in data flow.

This is useful when a base path or filename is not known until runtime.

output.path

first and second, joined by the native filesystem path separator.

Type
str

6.3. gmxapi Python module reference 612

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmxapi.concatenate_lists(sublists: Sequence[Sequence[Scalar]] = ())→ ArrayFuture[Scalar]
Combine data sources into a single list.

A trivial data flow restructuring helper.

gmxapi.join_arrays(*, front: NDArray = (), back: NDArray = ())→ Future[NDArray]
Consumes two sequences and produces a concatenated single sequence.

Note that the exact signature of the operation is not determined until this helper is called. Helper functions
may dispatch to factories for different operations based on the inputs. In this case, the dtype and shape of
the inputs determines dtype and shape of the output. An operation instance must have strongly typed output,
but the input must be strongly typed on an object definition so that a Context can make runtime decisions
about dispatching work and data before instantiating.

gmxapi.logical_not(value)

Boolean negation.

If the argument is a gmxapi compatible Data or Future object, a new View or Future is created that proxies
the boolean opposite of the input.

If the argument is a callable, logical_not returns a wrapper function that produces the logical opposite of
the result of the callable. If the callable produces a (non-string) sequence, the wrapper returns a list of the
negated results of the callable.

gmxapi.make_constant(value: Scalar)→ Future[Scalar]
Provide a predetermined value at run time.

This is a trivial operation that provides a (typed) value, primarily for internally use to manage gmxapi data
flow.

Accepts a value of any type. The object returned has a definite type and provides same interface as other
gmxapi outputs. Additional constraints or guarantees on data type may appear in future versions.

Run time details

ò Note

The gmxapi.runtime Python module is evolving. Some details are not yet well specified.

Manage computing resources and runtime context.

Utilities, context managers, and singletons for handling resource allocation and lifetime management.

For the purposes of this module, the term “assignment” refers to resources that have been reserved (usually for
exclusive use) within a well-defined scope (such as a specific function call or phase of program execution).

“Allocation” can be taken to mean “resources that are available to be assigned,” and may or may not be tightly
scoped.

Resource assignment may be nested, in which case an Assignment with a broader scope in the program is used as
the Allocation from which a more local Assignment is made.

Assignment and Allocation are roles that can be served by Context objects. Abstractly, a Context is a notion of
some aspect of program or resource state. A Context may be represented by a concrete class when an object
manages the details needed to participate in a stateful protocol.

Note that resource assignment is usually a collective operation within the scope of an allocation. For instance, an
MPI_Comm_split call must be made (synchronously) on all members of the parent MPI communicator. Similar
care must be taken with the Allocation and Assignment protocols in this module.

Added in version 0.4.0: This module generalizes some of the resource management previously in gmxapi.
simulation.mdrun, decoupling MPI communicator handling from gmxapi.simulation.context.
See also https://gitlab.com/gromacs/gromacs/-/issues/3718

6.3. gmxapi Python module reference 613

https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/typing.html#typing.Sequence
https://gitlab.com/gromacs/gromacs/-/issues/3718

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmxapi.runtime.filtered_mpi_environ()→ dict
Return a filtered environment variables map with MPI-related entries removed.

ã See also

filtered_prefixes (page 614)

gmxapi.runtime.filtered_prefixes = ('DCMF_', 'MPICH_', 'MPIEXEC_', 'MPIO_',
'MV2_', 'MVAPICH_', 'HYDRA_', 'OMPI_', 'PMI_', 'PMIX_', 'I_MPI_')

MPI-related environment variable prefixes.

Environment variable prefixes known to be associated with MPI implementations, which may affect MPI
context detection, and which should not matter outside of MPI contexts.

References

• Issue 4423

• Issue 4736

6.3.5 Status messages and Logging

Python logging facilities use the built-in logging module.

Upon import, the gmxapi package sets a placeholder “NullHandler” to block propagation of log messages to the
root logger (and sys.stderr, if not handled).

If you want to see gmxapi logging output on sys.stderr, import logging in your script or module and
configure it. For the simplest case, consider logging.basicConfig:

>>> import logging
>>> logging.basicConfig(level=logging.DEBUG)

For more advanced usage, consider attaching a logging.StreamHandler to the gmxapi logger.

The gmxapi logging module adds an additional rank_tag log formatter field that can be particularly helpful in
ensemble MPI workflows.

Example:

ch = logging.StreamHandler()
Optional: Set log level.
ch.setLevel(logging.DEBUG)
Optional: create formatter and add to character stream handler
formatter = logging.Formatter('%(levelname)s %(asctime)s:%(name)s %(rank_

→˓tag)s%(message)s')
ch.setFormatter(formatter)
add handler to logger
logging.getLogger('gmxapi').addHandler(ch)

To handle log messages that are issued while importing gmxapi (page 607) and its submodules, attach the handler
before importing gmxapi (page 607)

Each module in the gmxapi package uses its own hierarchical logger to allow granular control of log handling (e.g.
logging.getLogger('gmxapi.operation')). Refer to the Python logging module for information
on connecting to and handling logger output.

6.3. gmxapi Python module reference 614

https://docs.python.org/3/library/stdtypes.html#dict
https://gitlab.com/gromacs/gromacs/-/issues/4423
https://gitlab.com/gromacs/gromacs/-/issues/4736
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logging.basicConfig
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/logging.html#module-logging

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.3.6 Exceptions module

Exceptions and Warnings raised by gmxapi module operations.

Errors, warnings, and other exceptions used in the GROMACS Python package are defined in the exceptions
(page 615) submodule.

The gmxapi Python package defines a root exception, exceptions.Error, from which all Exceptions thrown from
within the module should derive. If a published component of the gmxapi package throws an exception that cannot
be caught as a gmxapi.exceptions.Error, please report the bug.

exception gmxapi.exceptions.ApiError

An API operation was attempted with an incompatible object.

exception gmxapi.exceptions.DataShapeError

An object has an incompatible shape.

This exception does not imply that the Type or any other aspect of the data has been checked.

exception gmxapi.exceptions.Error

Base exception for gmx.exceptions classes.

exception gmxapi.exceptions.FeatureNotAvailableError

Requested feature not available in the current environment.

This exception will usually indicate an issue with the user’s environment or run time details. There may be
a missing optional dependency, which should be specified in the exception message.

exception gmxapi.exceptions.MissingImplementationError

Specified feature is not implemented in the current code.

This exception indicates that the implemented code does not support the API as specified. The calling code
has used valid syntax, as documented for the API, but has reached incompletely implemented code, which
should be considered a bug.

Changed in version 0.3: Named changed to avoid conflict with built-in NotImplementedError excep-
tion

exception gmxapi.exceptions.ProtocolError

Unexpected API behavior or protocol violation.

This exception generally indicates a gmxapi bug, since it should only occur through incorrect assumptions
or misuse of API implementation internals.

exception gmxapi.exceptions.TypeError

Incompatible type for gmxapi data.

Reference datamodel.rst for more on gmxapi data typing.

exception gmxapi.exceptions.UsageError

Unsupported syntax or call signatures.

Generic usage error for gmxapi module.

exception gmxapi.exceptions.ValueError

A user-provided value cannot be interpreted or doesn’t make sense.

exception gmxapi.exceptions.Warning

Base warning class for gmx.exceptions.

6.3. gmxapi Python module reference 615

https://docs.python.org/3/library/exceptions.html#NotImplementedError

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

6.3.7 gmx.version module

gmxapi version and release information.

The gmxapi.__version__ attribute contains a version string. The more general way to access the package
version is with the pkg_resources module:

pkg_resources.get_distribution('gmxapi').version

gmxapi.version (page 616) module functions api_is_at_least() (page 616) and has_feature()
(page 616) support additional convenience and introspection.

Changed in version 0.2: This module no longer provides public data attributes. Instead, use the module functions
or packaging.version.

ã See also

Consider https://packaging.pypa.io/en/latest/version/ for programmatic handling of the version string. For
example:

import pkg_resources
from packaging.version import parse
gmxapi_version = pkg_resources.get_distribution('gmxapi').version
if parse(gmxapi_version).is_prerelease:

print('The early bird gets the worm.')

gmxapi.version.api_is_at_least(major_version, minor_version=0, patch_version=0)

Allow client to check whether installed module supports the requested API level.

Parameters

• major_version (int) – gmxapi major version number.

• minor_version (int) – optional gmxapi minor version number (default: 0).

• patch_version (int) – optional gmxapi patch level number (default: 0).

Returns
True if installed gmx package is greater than or equal to the input level

Note that if gmxapi.version.release is False, the package is not guaranteed to correctly or fully support the
reported API level.

gmxapi.version.has_feature(name: str, enable_exception=False)→ bool
Query whether a named feature is available in the installed package.

Between updates to the API specification, new features or experimental aspects may be introduced into the
package and need to be detectable. This function is intended to facilitate code testing and resolving differ-
ences between development branches. Users should refer to the documentation for the package modules
and API level.

The primary use case is, in conjunction with api_is_at_least() (page 616), to allow client code to
robustly identify expected behavior and API support through conditional execution and branching. Note that
behavior is strongly specified by the API major version number. Features that have become part of the spec-
ification and bug-fixes referring to previous major versions should not be checked with has_feature(). Using
has_feature() with old feature names will produce a DeprecationWarning for at least one major version, and
client code should be updated to avoid logic errors in future versions.

For convenience, setting enable_exception = True causes the function to instead raise a
gmxapi.exceptions.FeatureNotAvailableError for unrecognized feature names. This allows extension code
to cleanly produce a gmxapi exception instead of first performing a boolean check. Also, some code may be
unexecutable for more than one reason, and sometimes it is cleaner to catch all gmxapi.exceptions.
Error (page 615) exceptions for a code block, rather than to construct complex conditionals.

6.3. gmxapi Python module reference 616

https://peps.python.org/pep-0440/
https://packaging.pypa.io/en/latest/version/
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Returns
True if named feature is recognized by the installed package, else False.

Raises
gmxapi.exceptions.FeatureNotAvailableError (page 615) – If enable_-
exception == True and feature is not found.

6.3.8 Core API

gmxapi core module

gmxapi._gmxapi provides Python access to the GROMACS C++ API so that client code can be implemented in
Python, C++, or a mixture. The classes provided are mirrored on the C++ side in the gmxapi namespace as best
as possible.

This documentation is generated from C++ extension code. Refer to C++ source code and developer documenta-
tion for more details.

Exceptions

Module Exceptions

exception gmxapi._gmxapi.Exception

Root exception for the C++ extension module. Derives from gmxapi.exceptions.Error (page 615).

exception gmxapi._gmxapi.FeatureNotAvailable

An API feature is not available in the current installation.

This may occur when a new gmxapi Python package is installed with an older GROMACS installation that
does not have the library support for a newer feature.

Wrapped C++ exceptions emitted through the supporting GROMACS library

exception gmxapi._gmxapi.MissingImplementationError

Expected feature is not implemented.

Changed in version 0.3: Renamed from NotImplementedError.

exception gmxapi._gmxapi.ProtocolError

Behavioral protocol violated.

exception gmxapi._gmxapi.UsageError

Unacceptable API usage.

Other

No other C++ exceptions are expected, but will be wrapped in a Exception (page 617) to help tracing and
reporting bugs.

exception gmxapi._gmxapi.UnknownException

Catch-all exception wrapper.

GROMACS library produced an exception that is not mapped in gmxapi or which should have been caught
at a lower level. I.e. a bug. (Please report.)

6.3. gmxapi Python module reference 617

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Functions

This documentation is provided for completeness and as an aid to developers. Users of the gmxapi (page 607)
package, generally, should not need to use the following tools directly.

Tools for launching simulations

gmxapi._gmxapi.from_tpr(arg0: str)→ gmxapi._gmxapi.MDSystem (page 619)
Return a system container initialized from the given input record.

gmxapi._gmxapi.create_context(*args, **kwargs)

Overloaded function.

1. create_context() -> gmxapi._gmxapi.Context

Initialize a new API Context to manage resources and software environment.

2. create_context(arg0: object) -> gmxapi._gmxapi.Context

Initialize a new API Context to manage resources and software environment.

Tools to manipulate TPR input files

gmxapi._gmxapi.copy_tprfile(source: gmxapi._gmxapi.TprFile (page 619), destination: str)→ bool
Copy a TPR file from source to destination.

gmxapi._gmxapi.read_tprfile(filename: str)→ gmxapi._gmxapi.TprFile (page 619)
Get a handle to a TPR file resource for a given file name.

gmxapi._gmxapi.write_tprfile(filename: str, parameters: gmxapi._gmxapi.SimulationParameters
(page 619))→ None

Write a new TPR file with the provided data.

gmxapi._gmxapi.rewrite_tprfile(source: str, destination: str, end_time: float)→ bool
Copy a TPR file from source to destination, replacing nsteps (page 44) with end_time.

Utilities

gmxapi._gmxapi.has_feature(arg0: str)→ bool
Check feature name first with the bindings package, then the supporting library.

Available features may depend on the package version, the details of the supporting GROMACS installation,
the software environment detected when the package was built, or possibly on detected runtime details.
These feature checks are largely for internal use. The gmxapi (page 607) commands may adjust their
behavior slightly depending on feature checks, and (at worst) should produce meaningful error messages or
exceptions.

Named features:

• create_context: create_context (page 618) can be used to initialize a Context (page 619) with
assigned resources.

• mpi_bindings: C++ extension module was built with mpi4py compatibility.

6.3. gmxapi Python module reference 618

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Classes

class gmxapi._gmxapi.Context

add_mdmodule(self: gmxapi._gmxapi.Context (page 619), arg0: object)→ None
Add an MD plugin for the simulation.

setMDArgs(self: gmxapi._gmxapi.Context (page 619), arg0: gmxapi._gmxapi.MDArgs (page 619))→
None

Set MD runtime parameters.

class gmxapi._gmxapi.MDArgs

get_args(self: gmxapi._gmxapi.MDArgs (page 619))→ list
Get an iterator of command line argument tokens, if possible and relevant.

set(self: gmxapi._gmxapi.MDArgs (page 619), arg0: dict)→ None
Assign parameters in MDArgs from Python dict.

class gmxapi._gmxapi.MDSession

close(self: gmxapi._gmxapi.MDSession (page 619))→ gmxapi._gmxapi.Status
Shut down the execution environment and close the session.

run(self: gmxapi._gmxapi.MDSession (page 619))→ gmxapi._gmxapi.Status
Run the simulation workflow

class gmxapi._gmxapi.MDSystem

launch(self: gmxapi._gmxapi.MDSystem (page 619), arg0: gmxapi._gmxapi.Context (page 619))→
gmxapi._gmxapi.MDSession (page 619)

Launch the configured workflow in the provided context.

class gmxapi._gmxapi.SimulationParameters

extract(self: gmxapi._gmxapi.SimulationParameters (page 619))→ dict
Get a dictionary of the parameters.

set(*args, **kwargs)

Overloaded function.

1. set(self: gmxapi._gmxapi.SimulationParameters, key: str, value: int) -> None

Use a dictionary to update simulation parameters.

2. set(self: gmxapi._gmxapi.SimulationParameters, key: str, value: float) -> None

Use a dictionary to update simulation parameters.

3. set(self: gmxapi._gmxapi.SimulationParameters, key: str, value: None) -> None

Use a dictionary to update simulation parameters.

class gmxapi._gmxapi.TprFile

params(self: gmxapi._gmxapi.TprFile (page 619))→ gmxapi._gmxapi.SimulationParameters
(page 619)

To discuss gmxapi, use the #gmxapi tag on the GROMACS user discussion forum. Report bugs through the
GROMACS issue tracker.

Complete documentation for the gmxapi Python package is part of the GROMACS manual since gmxapi version
0.1. Older releases can also be found at GitHub. Pre-release documentation may be found at https://manual.
gromacs.org/nightly/gmxapi/.

6.3. gmxapi Python module reference 619

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#dict
https://gromacs.bioexcel.eu/tag/gmxapi
https://gromacs.bioexcel.eu/c/gromacs-user-forum/5
https://gitlab.com/gromacs/gromacs/-/issues/
http://manual.gromacs.org/current/
https://www.github.com/kassonlab/gmxapi
https://manual.gromacs.org/nightly/gmxapi/
https://manual.gromacs.org/nightly/gmxapi/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

ã See also

gmxapi publications

Irrgang, M. E., Davis, C., & Kasson, P. M. gmxapi: A GROMACS-native Python interface for molecular
dynamics with ensemble and plugin support. PLOS Comput Biol 2022. DOI: 10.1371/journal.pcbi.1009835

Irrgang, M. E., Hays, J. M., & Kasson, P. M. gmxapi: a high-level interface for advanced control and extension
of molecular dynamics simulations. Bioinformatics 2018. DOI: 10.1093/bioinformatics/bty484

6.3. gmxapi Python module reference 620

https://dx.plos.org/10.1371/journal.pcbi.1009835
https://doi.org/10.1093/bioinformatics/bty484

CHAPTER

SEVEN

(NON-)BONDED LIBRARY (NB-LIB) API

This documentation is part of the GROMACS manual and describes the (Non-)Bonded LIBrary (NB-LIB) API.

7.1 Guide to Writing MD Programs

The goal of NB-LIB’s is to enable researchers to programmatically define molecular simulations. Traditionally
these have been performed using a collection of executables and a manual workflow followed by a “black-box”
simulation engine. NB-LIB allows users to script a variety of novel simulation and analysis workflows at a more
granular level.

Many possible use cases are facilitated by the flexibility that NB-LIB allows. These include customized update
rules, defining custom forces, or orchestrating swarms of simulations. NB-LIB also allows for writing conven-
tional MD simulations and analysis.

This document goes over the steps to write MD programs using the API in NB-LIB that exposes features that are
a part of the GROMACS package.

7.1.1 Global Definitions

NB-LIB programs are written in C++ so its headers for I/O or advanced tasks must be included. In addition, one
must include the headers for various capabilities and abstractions NB-LIB exposes as well. This can be directly
copied from here. Finally, we use the namespace nblib for the data structures defined in the library. The last
line in the block allows one to skip this specifier each time a function or a data structure is used.

#include <cstdio>

#include "nblib/box.h"
#include "nblib/forcecalculator.h"
#include "nblib/integrator.h"
#include "nblib/molecules.h"
#include "nblib/nbkerneloptions.h"
#include "nblib/particletype.h"
#include "nblib/simulationstate.h"
#include "nblib/topology.h"

using namespace nblib;

621

http://manual.gromacs.org/current/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

7.1.2 Define Particle Data

// Parameters from a GROMOS compatible force-field 2016H66

struct OWaterAtom
{

ParticleName name = "Ow";
Mass mass = 15.999;
C6 c6 = 0.0026173456;
C12 c12 = 2.634129e-06;

};

struct HwAtom
{

ParticleName name = "Hw";
Mass mass = 1.00784;
C6 c6 = 0.0;
C12 c12 = 0.0;

};

struct CMethAtom
{

ParticleName name = "Cm";
Mass mass = 12.0107;
C6 c6 = 0.01317904;
C12 c12 = 34.363044e-06;

};

struct HcAtom
{

ParticleName name = "Hc";
Mass mass = 1.00784;
C6 c6 = 8.464e-05;
C12 c12 = 15.129e-09;

};

There can be as many structs of this kind as there are particle types in the system. Organizing the data like this is
not strictly necessary, but is shown for the purpose of clarity. As shown here, there can be multiple particles that
correspond to a single element as atomic mass can vary by molecular context. For example, the carbon atom in a
carboxyl group would have different parameters from one in the methyl group. We can obtain the parameter set
from any standard force-field, or generate new parameters to study new compounds or force fields. This example
comes from the 2016H66 Parameter Set.

7.1.3 Defining Coordinates, Velocities and Force Buffers

std::vector<gmx::RVec> coordinates = {
{ 0.794, 1.439, 0.610 }, { 1.397, 0.673, 1.916 }, { 0.659, 1.080, 0.

→˓573 },
{ 1.105, 0.090, 3.431 }, { 1.741, 1.291, 3.432 }, { 1.936, 1.441, 5.

→˓873 },
{ 0.960, 2.246, 1.659 }, { 0.382, 3.023, 2.793 }, { 0.053, 4.857, 4.

→˓242 },
{ 2.655, 5.057, 2.211 }, { 4.114, 0.737, 0.614 }, { 5.977, 5.104, 5.

→˓217 },
};

(continues on next page)

7.1. Guide to Writing MD Programs 622

https://pubs.acs.org/doi/10.1021/acs.jctc.6b00187

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

std::vector<gmx::RVec> velocities = {
{ 0.0055, -0.1400, 0.2127 }, { 0.0930, -0.0160, -0.0086 }, { 0.1678, 0.

→˓2476, -0.0660 },
{ 0.1591, -0.0934, -0.0835 }, { -0.0317, 0.0573, 0.1453 }, { 0.0597, 0.

→˓0013, -0.0462 },
{ 0.0484, -0.0357, 0.0168 }, { 0.0530, 0.0295, -0.2694 }, { -0.0550, -

→˓0.0896, 0.0494 },
{ -0.0799, -0.2534, -0.0079 }, { 0.0436, -0.1557, 0.1849 }, { -0.0214,

→˓0.0446, 0.0758},
};

std::vector<gmx::RVec> forces = {
{ 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.

→˓0000, 0.0000 },
{ 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.

→˓0000, 0.0000 },
{ 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.

→˓0000, 0.0000 },
{ 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.0000, 0.0000 }, { 0.0000, 0.

→˓0000, 0.0000 },
};

We can initialize coordinates for our particles using std::vector of gmx::RVec which is a specific data type
for holding 3D vector quantities. Doxygen page on RVec here.

7.1.4 Writing the MD Program

As with as any basic C++ program, there needs to be a main() function.

Define ParticleTypes

int main()
{

// Bring the parameter structs to scope
OwAtom owAtom;
HwAtom hwAtom;
CMethAtom cmethAtom;
HcAtom hcAtom;

// Create the particles
ParticleType Ow(owAtom.name, owAtom.mass);
ParticleType Hw(hwAtom.name, hwAtom.mass);
ParticleType Cm(cmethAtom.name, cmethAtom.mass);
ParticleType Hc(hcAtom.name, hcAtom.mass);

As before, the helper struct to define ParticleType data is not strictly needed, but is shown for clarity. The
line ParticleType CMethAtom(ParticleName("Cm"), Mass(12.0107)); would be sufficient.

7.1. Guide to Writing MD Programs 623

../doxygen/html-lib/namespacegmx.xhtml#a139c1919a9680de4ad1450f42e37d33b

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Define Non-Bonded Interactions

ParticleTypeInteractions interactions(CombinationRule::Geometric);

// add non-bonded interactions for the particle types
interactions.add(owAtom.name, owAtom.c6, owAtom.c12);
interactions.add(hwAtom.name, hwAtom.c6, hwAtom.c12);
interactions.add(cmethAtom.name, cmethAtom.c6, cmethAtom.c12);
interactions.add(hcAtom.name, hcAtom.c6, hcAtom.c12);

For the Lennard-Jones interactions, we define a ParticleTypeInteractions object. Each particle of the
ParticleType interacts with each other based on the C6 and C12 parameters. These parameters of the two dif-
ferent particles are averaged using Geometric or LorentzBerthelot CombinationRule. More details
here. By default CombinationRule::Geometric is selected.

We add the interaction parameters of each of the particle types into the ParticleTypeInteractions object.
The result is a table that has interactions specified for all ParticleType pairs. The following matrix describes
the pair-wise C6 parameter created using CombinationRule::Geometric.

Ow Hw Cm Hc

Ow 0.0026 0.0 0.42 4.7e-4
Hw 0.0 0.0 0.0 0.0
Cm 0.42 0.0 0.013 1.05e-3
Hc 4.7e-4 0.0 1.05e-3 8.5e-5

For a particular interaction pair, the user can also override the specified CombinationRule with custom pa-
rameters. The following overload would replace the parameters computed from a CombinationRule between
Ow and Cm particle types.

interactions.add("Ow", "Cm", 0.42, 42e-6);

To facilitate modular, reusable code, it is possible to combine multiple ParticleTypeInteractions
objects. Assuming otherInteractions is defined, this can be done with interactions.
merge(otherInteractions)

Define Molecules

Molecule water("Water");
Molecule methane("Methane");

water.addParticle(ParticleName("O"), Ow);
water.addParticle(ParticleName("H1"), Hw);
water.addParticle(ParticleName("H2"), Hw);

water.addExclusion("H1", "O");
water.addExclusion("H2", "O");

methane.addParticle(ParticleName("C"), Cm);
methane.addParticle(ParticleName("H1"), Hc);
methane.addParticle(ParticleName("H2"), Hc);
methane.addParticle(ParticleName("H3"), Hc);
methane.addParticle(ParticleName("H4"), Hc);

methane.addExclusion("H1", "C");
methane.addExclusion("H2", "C");

(continues on next page)

7.1. Guide to Writing MD Programs 624

http://manual.gromacs.org/documentation/2019/reference-manual/functions/nonbonded-interactions.html#the-lennard-jones-interaction

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

methane.addExclusion("H3", "C");
methane.addExclusion("H4", "C");

We begin declaring molecules with their constituent particles. A string identifier must uniquely identify a specific
particle within the molecule. It is also possible to define partial charges on each particle for the computation of
Coulomb interactions. water.addParticle(ParticleName("O"), Charge(-0.04), Ow);

Adding exclusions ensures that non-bonded interactions are only computed when necessary. For example, if two
particles share a bond, the potential energy of the bond makes the non-bonded term negligible. Particle self-
exclusions are enabled by default. We use the unique identifiers specified during addParticle() for this and
the listed interactions later.

Define Listed Interactions

Within a molecule, one can define interactions such as bonds, angles and dihedrals between the constituent parti-
cles. NB-LIB provides concrete implementations of several commonly used 2, 3 and 4 center interactions.

HarmonicBondType ohHarmonicBond(1, 1);
HarmonicBondType hcHarmonicBond(2, 1);

DefaultAngle hohAngle(Degrees(120), 1);
DefaultAngle hchAngle(Degrees(109.5), 1);

//add harmonic bonds for water
water.addInteraction("O", "H1", ohHarmonicBond);
water.addInteraction("O", "H2", ohHarmonicBond);

// add the angle for water
water.addInteraction("H1", "O", "H2", hohAngle);

// add harmonic bonds for methane
methane.addInteraction("H1", "C", hcHarmonicBond);
methane.addInteraction("H2", "C", hcHarmonicBond);
methane.addInteraction("H3", "C", hcHarmonicBond);
methane.addInteraction("H4", "C", hhcHarmonicBondc);

// add the angles for methane
methane.addInteraction("H1", "C", "H2", hchAngle);
methane.addInteraction("H1", "C", "H3", hchAngle);
methane.addInteraction("H1", "C", "H4", hchAngle);
methane.addInteraction("H2", "C", "H3", hchAngle);
methane.addInteraction("H2", "C", "H4", hchAngle);
methane.addInteraction("H3", "C", "H4", hchAngle);

Define Options for the Simulation and Non-Bonded Calculations

// Define a box for the simulation
Box box(6.05449);

// Define options for the non-bonded kernels
NBKernelOptions options;

One can define the bounding box either with a single argument for a cube and 3 arguments to specify length,
breadth and height separately.

7.1. Guide to Writing MD Programs 625

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

NBKernelOptions contains a set of flags and configuration options for both hardware context and the relevant
calculations for the simulation. The following table describes the possible options that can be set.

Flag or Config Option Type Implications

useGpu Bool
ean

Use GPU for non-bonded computations

numThreads Inte ger Number of CPU threads to use
nbnxmSimd Enum Kernel SIMD type (SimdAuto/SimdNo/Simd4XM/

Simd2XMM)
useHalfLJOptimizat
ion

Bool
ean

Enable i-cluster half-LJ optimization

pairlistCutoff Real Specify pairlist and interaction cut-off
computeVirialAndEn
ergy

Bool
ean

Enable energy computations

coulombType Enum Coulomb interaction function
(Pme/Cutoff/ReactionField)

useTabulatedEwaldC
orr

Bool
ean

Use tabulated PME grid correction instead of analytical

numIterations Inte ger Specify number of iterations for each kernel
cyclesPerPair Bool

ean
Enable printing cycles/pair instead of pairs/cycle

timestep Real Specify the time step

Define Topology and Simulation State

We build the system topology using the TopologyBuilder class. We add the Molecule objects that we
defined previously along with the ParticleTypesInteractions using its public functions. We get the
actual Topology object complete with all exclusions, interaction maps and listed interaction data constructed
based on the defined entities using the buildTopology()function.

TopologyBuilder topologyBuilder;

// add molecules
topologyBuilder.addMolecule(water, 10);
topologyBuilder.addMolecule(methane, 10);

// add non-bonded interaction map
topologyBuilder.addParticleTypesInteractions(interactions);

Topology topology = topologyBuilder.buildTopology();

We now have all we need to fully describe our system using the SimulationState object. This is built using
the topology, the box, and the particle coordinates and velocities. This object serves as a snapshot of the system
that can be used for analysis or to start simulations from known states.

SimulationState simulationState(coordinates, velocities, forces, box,
→˓topology);

7.1. Guide to Writing MD Programs 626

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Writing the MD Loop

Now that we have fully described our system and the problem, we need two entities to write an MD loop. The first
is the ForceCalculator and the second is an Integrator. NB-LIB comes with a LeapFrog integrator but it
is also possible for users to write custom integrators.

// The force calculator contains all the data needed to compute forces
ForceCalculator forceCalculator(simulationState, options);

// Integration requires masses, positions, and forces
LeapFrog integrator(simulationState);

// Allocate a force buffer
gmx::ArrayRef<gmx::RVec> userForces(topology.numParticles());

// MD Loop
int numSteps = 100;

for (i = 0; i < numSteps; i++)
{

userForces = forceCalculator.compute();

// The forces are not automatically updated in case the user wants to
→˓add their own
std::copy(userForces.begin(), userForces.end(), begin(simulationState.

→˓forces()));

// Integrate with a time step of 1 fs
integrator.integrate(1.0);

}

return 0;
} // main

7.1. Guide to Writing MD Programs 627

CHAPTER

EIGHT

DEVELOPER GUIDE

This set of pages contains guidelines, instructions, and explanations related to GROMACS development. The
actual code is documented in Doxygen documentation linked below.

The focus is (at least for now) on things that are tightly tied to the code itself, such as helper scripts that reside
in the source repository and organization of the code itself, and may require the documentation to be updated in
sync.

The guide is currently split into a few main parts:

• Overview of the GROMACS codebase.

• Collection of overview pages that describe some important implementation aspects.

• Generic guidelines to follow when developing GROMACS. For some of the guidelines, scripts exist (see
below) to automatically reformat the code and/or enforce the guidelines for each commit.

• Instructions on what tools are used, and how to use them.

The full code documentation generated from Doxygen can be found in the online documentation. It is not
included here in order to save the trees.

Some overview documentation that is closely related to the actual C/C++ code appears in the Doxygen docu-
mentation, while some other overview content is in the developer guide. The reasons are partially technical, but
crosslinks between the developer guide and the Doxygen documentation are provided whenever related content
appears split between the two sources.

The documentation does not yet cover all areas, but more content is being (slowly) added.

8.1 Contribute to GROMACS

GROMACS is a community-driven project, and we love getting contributions from people. Contributions are
welcome in many forms, including improvements to documentation, patches to fix bugs, advice on the forums,
bug reports that let us reproduce the issue, and new functionality.

If you are planning to contribute new functionality to GROMACS, we strongly encourage you to get in contact
with us first at an early stage. New things can lead to exciting science, and we love that. However, the subsequent
code maintenance is time-consuming and requires both “up front” and long-term commitment from you, and
others who might not share your particular scientific enthusiasm. Please read the following pages first, and at least
post on the developer discussion forum. Looking through the gmx-developers mailing list archive might also be
helpful. Sometimes we will be able to save you a lot of time even at the planning stage!

Much of the documentation is found alongside the source code in the git repository. If you have changes to suggest
there, those contributions can be done using the same mechanism as the source code contributions, and will be
reviewed in similar ways.

628

https://gromacs.bioexcel.eu/c/gromacs-developers/10
https://mailman-1.sys.kth.se/pipermail/gromacs.org_gmx-developers

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

8.1.1 Checklist

Before you send us your code for review and inclusion into GROMACS, please make sure that you have checked
all the points on this list:

• Usefulness: Your code should have wide applicability within the scientific community. You are welcome to
have smaller projects tracking our code, but we are not prepared to include and maintain code that will only
have limited application. Evidence that people are already using your code or method is one good way to
show that your code is useful. Scientific publications is another, but those publications should ideally come
from several different research groups to show widespread adoption of the method.

• Advance discussion: Please communicate with the other developers, e.g. on the developer discussion forum,
or issue tracker to let them know of the general nature of your plans. This will prevent duplicate or wasted
effort. It is also a good idea to search those resources as well as the literature and WWW for other projects
that may be relevant.

• Verifiable: If you propose a new method that passes the first check, please make sure that we can easily
verify that it will be correct from a physics point of view. That must include documentation (both in the
source code and as later additions to the user guide and/or reference manual) that a capable graduate student
can read and understand well enough to use your method appropriately. The source code documentation
will also help in maintenance and later development.

This will be facilitated by the inclusions of unit tests for your code, as described in the section on how to
write new tests (page 699).

We also need some form of automated high-level test of your code, because people who do not understand
its details need to be able to change the infrastructure that you depend on. GROMACS uses automated
continuous-integration testing in GitLab (page 678), and we need quick feedback about whether your code
would be affected by a proposed change. This means the users of your feature can continue to do good
science based upon trustworthy results generated by new versions of GROMACS released after you have
contributed your feature.

• Structured change process: Reviewing code for correctness, quality and performance is a very time con-
suming process, which we are committed to because it is necessary in order to deliver software that is of
high enough quality for reliable scientific results. However, human beings are busy and have short attention
spans, and a proposed change affecting 10,000 lines of code is likely to generate little enthusiasm from other
developers to review it. Your local git commit history is likely full of changes that are no longer present in
the version you would like to contribute, so we cannot reasonably review that, either. It might be reasonable
to break the process into manageable pieces, such as

– the functionality to read the mdp settings (page 42) you might require and write a tpr (page 494),

– the functionality for mdrun (page 215) to execute the simplest form of your feature,

– further extensions and/or optimizations for your feature, and

– functionality for an analysis tool to do useful things with the simulation output.

Do get in touch with us, e.g. on the developer discussion forum, to exchange ideas here.

• Timeliness: We make an annual release of GROMACS, with a feature freeze (and git branch fork) on a fixed
date, which is agreed more than six months in advance. We still need a month or more to do quality testing
on that branch, after the fork and before the release, so there is a period when we cannot accept certain kinds
of potentially risky changes. (The main branch will remain open for all kinds of changes, but it is likely
that the focus of many of the core developers will be on the release process.) If you have a large change to
propose, you need to

– make a group of smaller changes,

– negotiate in advance who will do the code review, and

– have them available for review and improvement months(!) before that date. Even smaller changes
are unlikely to be prioritized by others for review in the last month or so!

• Coding style: Please make sure that your code follows all the coding style (page 653) and code formatting
(page 653) guidelines. This will make the code review go more smoothly on both sides. There are a number

8.1. Contribute to GROMACS 629

https://gromacs.bioexcel.eu/c/gromacs-developers/10
https://gitlab.com/gromacs/gromacs/-/issues/
https://gromacs.bioexcel.eu/c/gromacs-developers/10

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

of tools already included with GROMACS to facilitate this, please have a look at the respective part of the
documentation (page 692).

• Code documentation: To ensure proper code documentation, please follow the instructions provided for the
use of doxygen (page 665). In addition to this, the new functionality should be documented in the manual
and possibly the user guide .

• In addition to coding style, please also follow the instructions given concerning the commit style (page 662).
This will also facilitate the code review process.

8.1.2 Preparing code for submission

GROMACS uses git for Change Management (page 642). Instead of accepting “pull requests”, GROMACS
changes are submitted as individual commits on the tip of the main branch hosted at gitlab. Preparing, submitting,
and managing patches for a change requires a little bit of set-up. Refer to Change Management (page 642) for
information about

• accessing the GROMACS git repository

• structure of the repository

• source control without merge commits

• git usage that may be less common in other development work flows

8.1.3 Alternatives

GROMACS has a public mirror available on GitHub at https://github.com/gromacs/gromacs. You may wish to fork
the project under your own GitHub account and make your feature available that way. This should help you to gen-
erate a following of users that would help make the case for contributing the feature to the core. This process would
then still need to follow the remaining criteria outlined here. If you fork GROMACS, please set the CMake variable
GMX_VERSION_STRING_OF_FORK to an appropriate descriptive string - see cmake/gmxVersionInfo.cmake for
details.

There is a project underway to develop a stable API for GROMACS, which promises to be a great tool for per-
mitting innovation while ensuring ongoing quality of the core functionality. You might prefer to plan to port your
functionality to that API when it becomes available. Do keep in touch on the developer discussion forum, so you
will be the first to know when such functionality is ready for people to explore!

8.1.4 Do you have more questions?

If you have questions regarding these points, or would like feedback on your ideas for contributing, please feel
free to contact us through the developer discussion forum. If your code is of interest to the wider GROMACS
community, we will be happy to assist you in the process of including it in the main source tree.

8.1.5 Removing functionality

This is occasionally necessary, and there is policy for such occasions (page 339). For users, there are also lists of
anticipated changes, including deprecated functionality, in the “Major release” notes (page 709).

8.1. Contribute to GROMACS 630

https://gitlab.com/gromacs/gromacs/
https://github.com/gromacs/gromacs
https://gromacs.bioexcel.eu/c/gromacs-developers/10
https://gromacs.bioexcel.eu/c/gromacs-developers/10

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

8.2 Codebase overview

The root directory of the GROMACS repository only contains CMakeLists.txt (the root file for the CMake
build system), a few files supporting the build system, and a few standard informative files (README etc.). The
INSTALL is generated for source packages from docs/install-guide/index.rst.

All other content is in the following top-level directories:

admin/
Contains various scripts for developer use, as well as configuration files and scripts for some of the tools
used.

api/
Contains code for the installable C++ API (page 705).

cmake/
Contains code fragments and find modules for CMake. Some content here is copied and/or adapted from
newer versions of CMake than the minimum currently supported. Default suppression file for valgrind is
also included here. See Build system overview (page 635) for details of the build system.

docs/
Contains the build system logic and source code for all documentation, both user-facing and developer-
facing. Some of the documentation is generated from the source code under src/; see Documentation
organization (page 633). This directory also contains some developer scripts that use the Doxygen docu-
mentation for their operation.

scripts/
Contains the templates for GMXRC script, some other installed scripts, as well as installation rules for all
these scripts.

share/
Contains data files that will be installed under share/. These include a template for writing C++ analysis
tools, and data files used by GROMACS.

src/
Contains all source code. See Source code organization (page 631).

tests/
Contains build system logic for some high-level tests. Currently, only the regression test build system logic,
while other tests are under src/.

8.2.1 Source code organization

The sample code for the Trajectory Analysis Framework is in share/template/.

Code for the gmxapi Python package and the sample MD extension module is in python_packaging/.

api/ holds code for the installable C++ API (page 705), including the legacy gromacs headers and full sources
for libgmxapi and (Non-)Bonded LIBrary (NB-LIB) API (page 621).

The rest of the source code is under the src/ directory.

The following figure shows a high-level view of components of what gets built from the source code under src/
and how the code is organized. Arrows indicate the direction of dependencies. The build system is described in
detail in Build system overview (page 635). With default options, the green and white components are built as part
of the default target. The gray parts are for testing, and are by default only built as part of the tests target, but if
GMX_DEVELOPER_BUILD is ON, then these are included in the default build target. See Unit testing (page 697)
for details of the testing side.

8.2. Codebase overview 631

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

externals
src/external/

Google Test & Mock
src/external/googletest/

libgromacs
src/gromacs/

testutils
src/testutils/

gmx
src/programs/

analysis template
share/template/

test binaries
src/.../tests/

Only a few files related to the build system are included at the root level. All actual code is in subdirectories:

src/gromacs/
The code under this directory is built into a single library, libgromacs. Installed headers are also located
in this hierarchy. This is the main part of the code, and is organized into further subdirectories as modules.
See below for details.

src/programs/
The GROMACS executable gmx is built from code under this directory. Also found here is some of the
driver code for the mdrun module called by gmx, and numerous end-to-end tests of gmx mdrun.

src/.../tests/
Various subdirectories under src/ contain a subdirectory named tests/. The code from each such
directory is built into a test binary. Some such directories also provide shared test code as object libraries
that is linked into multiple test binaries from different folders. See Unit testing (page 697) for details.

src/testutils/
Contains shared utility code for writing Google Test tests. See Unit testing (page 697) for details.

src/external/
Contains bundled source code for various libraries and components that GROMACS uses internally. All the
code from these directories are built using our custom build rules into libgromacs, or in some cases into
the test binaries. Some CMake options change which parts of this code are included in the build. See Build
system overview (page 635) for some explanation about how the code in this directory is used.

src/external/build-fftw/
This folder contains the build system code for downloading and building FFTW to be included into
libgromacs.

When compiling, the include search path is set to src/ by the legacy_modules CMake target for many of
the interfaces that do not have clearer module ownership.

Some directories from under src/external/ may also be included, depending on the compilation options.

8.2. Codebase overview 632

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Organization under src/gromacs/

The libgromacs library is built from code under src/gromacs/. Again, the top-level directory contains
build and installation rules for the library.

The code is organized into subdirectories. These subdirectories are denoted as modules throughout this documen-
tation. Each module consists of a set of routines that do some well-defined task or a collection of tasks. Many
modules are represented by distinct CMake targets, and target_link_libraries() should be used to get access to the
headers and linkable symbols. Other modules are only expressed by the filesystem hierarchy, and their source files
are compiled directly into the monolithic libgromacs CMake target.

Modules under src/gromacs/ are not part of the public installed interface. However, some of the headers
that were traditionally installed have been moved api/legacy/include (not duplicated in src/) pending
specification of an updated public API. These interfaces are grouped into the legacy_api CMake target (in
the build tree), and are available through the IMPORTED Gromacs::libgromacs target for an installation
configured with GMX_INSTALL_LEGACY_API=ON. They are installed into a corresponding hierarchy under
include/gromacs/ in the installation directory.

Historically, comments at the top of the header files contain a note about their visibility: public (installed),
intra-library (can be used from inside the library), or intra-module/intra-file. Many of these comments remain,
but they are no longer maintained.

All headers should compile by themselves, with installed headers doing so without reference to variables defined
in config.h or requiring other headers to be included before it. No installed headers are allowed to include
config.h. Cyclic include dependencies prevent this, and must be avoided because of this. This is best guaran-
teed by including every header in some source file as the first header, even before config.h.

Code inside the library should not unnecessarily include headers. In particular, headers should not include other
headers if a forward declaration of a type is enough for the header. Within the library source files, include only
headers from other modules that are necessary for that file. Check the CMakeLists.txt for the module to see
whether you need to target_link_libraries(). Many modules distinguish between a public interface and a private in-
terface intended only for use inside the module implementation. In such cases, the public module headers (for use
by other modules in the library) are in src/gromacs/modulename/include/gromacs/modulename
subdirectories. Module private headers (located with the source files) may be leaked into the include path, such as
through the legacy_modules target, but should not be used by other modules!

See Naming conventions (page 655) for some common naming patterns for files that can help locating declarations.

Tests, and data required for them, are in a tests/ subdirectory under the module directory. See Unit testing
(page 697) for more details.

8.2.2 Documentation organization

All documentation (including this developer guide) is produced from source files under docs/, except for some
command-line help that is generated from the source code (by executing the compiled gmx binary). The build
system provides various custom targets that build the documentation; see Build system overview (page 635) for
details.

docs/fragments/
Contains reStructuredText fragments used through .. include:: mechanism from various places in the
documentation.

8.2. Codebase overview 633

https://cmake.org/cmake/help/latest/command/target_link_libraries.html
https://cmake.org/cmake/help/latest/command/target_link_libraries.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

User documentation

docs/install-guide/
Contains reStructuredText source files for building the install guide section of the user documentation, as
well as the INSTALL file for the source package. The build rules are in docs/CMakeLists.txt.

docs/reference-manual/
Contains reStructuredText source files to generate the reference manual for html and LaTeX.

docs/manual/
Contains LaTeX helper files to build the reference (PDF) manual.

docs/user-guide/
Contains reStructuredText source files used to build the user guide section of the user documentation. The
build rules are in docs/CMakeLists.txt.

docs/how-to/
Contains reStructuredText source files building the how-to section of the user focused documentation.

Unix man pages

Man pages for programs are generated by running the gmx executable after compiling it, and then using Sphinx
on the reStructuredText files that gmx writes out.

The build rules for the man pages are in docs/CMakeLists.txt.

Developer guide

docs/dev-manual/
Contains reStructuredText source files used to build the developer guide. The build rules are in docs/
CMakeLists.txt.

The organization of the developer guide is explained on the front page of the guide (page 628).

Doxygen documentation

docs/doxygen/
Contains the build rules and some overview content for the Doxygen documentation. See Using Doxygen
(page 665) for details of how the Doxygen documentation is built and organized.

The Doxygen documentation is made of a few different parts. Use the list below as a guideline on where to look
for a particular kind of content. Since the documentation has been written over a long period of time and the
approach has evolved, not all the documentation yet follows these guidelines, but this is what we are aiming at.

documentation pages
These contain mainly overview content, from general-level introduction down into explanation of some
particular areas of individual modules. These are generally the place to start familiarizing with the code or
a new area of the code. They can be reached by links from the main page, and also through cross-links from
places in the documentation where that information is relevant to understand the context.

module documentation
These contain mainly technical content, explaining the general implementation of a particular module and
listing the classes, functions etc. in the module. They complement pages that describe the concepts. They
can be reached from the Modules tab, and also from all individual classes, functions etc. that make up the
module.

class documentation
These document the usage of an individual class, and in some cases that of closely related classes. Where
necessary (and time allowing), a broader overview is given on a separate page and/or in the module docu-
mentation.

8.2. Codebase overview 634

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

method documentation
These document the individual method. Typically, the class documentation or other overview content is the
place to look for how different methods interact.

file and namespace documentation
These are generally only placeholders for links, and do not contain much else. The main content is the list
of classes and other entities declared in that file.

8.3 Build system overview

The GROMACS build system uses CMake (version 3.28 or newer is required) to generate the actual build system
for the build tool chosen by the user. See CMake documentation for general introduction to CMake and how to
use it. This documentation focuses on how the GROMACS build system is organized and implemented, and what
features it provides to developers (some of which may be of interest to advanced users).

Most developers use make or ninja as the underlying build system, so there can be parts of the build system that
are specifically designed for command-line consumption with these tools, and may not work ideally with other
environments, but basic building should be possible with all the environments supported by CMake.

Also, the build system and version control is designed for out-of-source builds. In-source builds mostly work
(there are a few custom targets that do not), but no particular effort has been put to, e.g., having .gitignore
files that exclude all the build outputs, or to have the clean target remove all possible build outputs.

8.3.1 Build types

Build types is a CMake concept that provides overall control of how the build tools are used on the given platform
to produce executable code. These can be set in CMake in various ways, including on a command line such as
cmake -DCMAKE_BUILD_TYPE=Debug. GROMACS supports the following standard CMake build types:

Release
Fully optimized code intended for use in production simulation. This is the default.

Debug
Compiled code intended for use with debugging tools, with low optimization levels and debug information
for symbols.

RelWithDebInfo
As Release, but with debug information for symbol names, which can help debugging issues that only
emerge in optimized code.

MinSizeRel
As Release, but optimized to minimize the size of the resulting executable. This is never a concern for
GROMACS installations, so should not be used, but probably works.

Additionally, GROMACS provides the following build types for development and testing. Their implementations
can be found in cmake/gmxBuildTypeXXX.cmake.

Reference
This build type compiles a version of GROMACS aimed solely at correctness. All parallelization and
optimization possibilities are disabled. This build type is compiled with GCC 11 to generate the regression
test reference values, against which all other GROMACS builds are tested.

RelWithAssert
As Release, but removes -DNDEBUG from compiler command lines, which makes all assertion statements
active (and can have other safety-related side effects in GROMACS and code upon which it depends).

Profile
As Release, but adds -pg for use with profiling tools. This is not likely to be effective for profiling the
performance of gmx mdrun (page 215), but can be useful for the tools.

8.3. Build system overview 635

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

TSAN
Builds GROMACS for use with ThreadSanitizer in GCC and Clang to detect data races. This disables the
use of atomics in ThreadMPI, preferring the mutex-based implementation.

ASAN
Builds GROMACS for use with AddressSanitizer in GCC and Clang to detect many kinds of memory mis-
use. By default, AddressSanitizer includes LeakSanitizer (LSAN) but in many cases GROMACS suppresses
leak detection either from particular functions known to leak, or in bulk.

MSAN
Builds GROMACS for use with MemorySanitizer in Clang to detect reads of uninitialized memory. This
functionality requires that dependencies of the GROMACS build have been built in a compatible way
(roughly, static libraries with -g -fsanitize=memory -fno-omit-frame-pointer), which
generally requires at least the C++ standard library to have been built specially. The path where the in-
cludes and libraries for dependencies should be found for this build type is set in the CMake cache variable
GMX_MSAN_PATH. Only internal XDR and internal fftpack are supported at this time.

UBSAN
Builds GROMACS for use with UndefinedBehaviorSanitizer in GCC and Clang to detect undefined behav-
ior during execution. The checks performed during execution have a small cost and do not impact address
space layout and application binary interface.

For all of the sanitizer builds, to get readable stack traces, you may need to ensure that the ASAN_-
SYMBOLIZER_PATH environment variable (or your PATH) includes that of the llvm-symbolizer binary.

With some generators, CMake generates the build system for more than a single CMAKE_BUILD_TYPE from
one pass over the CMakeLists.txt files, so any code that uses CMAKE_BUILD_TYPE in CMakeLists.
txt directly will break. GROMACS does use such CMake code, so we do not fully support all these build types
in such generators (which includes Visual Studio).

8.3.2 CMake cache variables

This section provides a (currently incomplete) list of cache variables that developers or advanced users can set to
affect what CMake generates and/or what will get built.

Compiler flags

Standard CMake mechanism for specifying the compiler flags is to use CMAKE_C_FLAGS/CMAKE_CXX_FLAGS
for flags that affect all build types, and CMAKE_C_FLAGS_buildtype/CMAKE_CXX_FLAGS_buildtype
for flags that only affect a specific build type. CMake provides some default flags.

GROMACS determines its own set of default flags, grouped into two categories:

• Generic flags that are appended to the above default CMake flag variables (possibly for multiple build types),
generally specifying optimization flags to use and controlling compiler warnings.

• Specific flags for certain features that the build system determines to be necessary for successful compila-
tion. One example is flags that determine what SIMD instruction set the compiler is allowed to use/needs to
support.

All of the above flags are only added after testing that they work with the provided compiler.

There is one cache variable to control the behavior of automatic compiler flags:

GMX_SKIP_DEFAULT_CFLAGS

If set ON, the build system will not add any compiler flags automatically (neither generic nor specific as
defined above), and will skip most linker flags as well. The default flags that would have been added are
instead printed out when cmake is run, and the user can set the flags themselves using the CMake variables.
If OFF (the default), the flags are added as described above.

The code the determine the default generic flags is in cmake/gmxCFlags.cmake. Code that sets the spe-
cific flags (e.g., SIMD flags) is in the main CMakeLists.txt; search for GMX_SKIP_DEFAULT_CFLAGS

8.3. Build system overview 636

https://clang.llvm.org/docs/ThreadSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/MemorySanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(page 636). The variables used there can be traced back to the locations where the actual flags to use are deter-
mined.

Variables affecting compilation/linking

GMX_BROKEN_CALLOC

Enable emulation of calloc via malloc/memset. Only needed on machines with a broken
calloc(3), e.g. in -lgmalloc on Cray XT3. Defaults to OFF, and there should not be any need
to change this unless you are sure it is required.

GMX_BUILD_FOR_COVERAGE

Special variable set ON by CI when doing a build for the coverage job. Allows the build system to set options
to produce as useful coverage metrics as possible. Currently, it disables all asserts to avoid them showing up
as poor conditional coverage. Defaults to OFF, and there should not be any need to change this in a manual
build.

GMX_BUILD_OWN_FFTW

If set ON, GROMACS build system will download and build FFTW from source automatically. Not sup-
ported on Windows or with ninja build system. In complicated scenarios (e.g., when cross-compiling or
using a toolchain file), we recommend not relying on this feature and building FFTW manually.

GMX_BUILD_SHARED_EXE

Build executables as shared binaries. If not set, this disables -rpath and dynamic linker flags in an attempt
to build a static binary, but this may require setting up the toolchain properly and making appropriate
libraries available. Defaults to ON.

GMX_COMPILER_WARNINGS

If set ON, various compiler warnings are enabled for compilers that CI uses for verification. Defaults to
OFF when building from a source tarball so that users compiling with versions not tested in CI are not
exposed to our rather aggressive warning flags that can trigger a lot of warnings with, e.g., new versions of
the compilers we use. When building from a git repository, defaults to ON.

GMX_CYCLE_SUBCOUNTERS

If set to ON, enables performance subcounters that offer more fine-grained mdrun performance measurement
and evaluation than the default counters. See Getting good performance from mdrun (page 86) for the
description of subcounters which are available. Defaults to OFF.

GMX_ENABLE_CCACHE

If set to ON, attempts to set up the ccache caching compiler wrapper to speed up repeated builds. The
ccache executable is searched for with find_package() if CMake is being run with a compatible
build type. If the executable is found and a compatible compiler is configured, CMake launch wrapper
scripts are set. If enabled, the ccache executable location discovered by CMake must be accessible during
build, as well. Defaults to OFF to minimize build system complexity.

GMX_INSTALL_DATASUBDIR

Sets the subdirectory under CMAKE_INSTALL_DATADIR where GROMACS-specific read-only
architecture-independent data files are installed. The default is gromacs, which means the files will go un-
der share/gromacs. To alter the share part, change CMAKE_INSTALL_DATADIR. See Relocatable
binaries (page 648) for how this influences the build.

GMX_DOUBLE

Many part of GROMACS are implemented in terms of “real” precision, which is actually either a single- or
double-precision type, according to the value of this flag. Some parts of the code deliberately use single- or
double-precision types, and these are unaffected by this setting. See Mixed or Double precision (page 358)
for further information.

GMX_EXTRAE

Add support for tracing using Extrae.

8.3. Build system overview 637

https://ccache.dev/
https://tools.bsc.es/extrae

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_EXTERNAL_BLAS

If not set (the default), CMake will first try to use an external BLAS library, and, if unsuccessful, fall back
to using the one bundled with GROMACS. If set to OFF, CMake will use the bundled one immediately. If
set to ON, CMake will use the external one, and raise an error if it is not found.

GMX_EXTERNAL_LAPACK

See GMX_EXTERNAL_BLAS.

GMX_EXTERNAL_TNG

Use external TNG library for trajectory-file handling. Default: OFF.

GMX_FFT_LIBRARY

Choose the CPU FFT library to use. Possible values: fftw, mkl, fftpack. The default selection depends
on the compiler and build type.

GMX_GIT_VERSION_INFO

Whether to generate version information dynamically from git for each build (e.g., HEAD commit hash).
Defaults to ON if the build is from a git repository and git is found, otherwise OFF. If OFF, static version
information from cmake/gmxVersionInfo.cmake is used.

GMX_GPU

Choose the backend for GPU offload. Possible values: CUDA, OpenCL, SYCL. Please see the Installation
guide (page 8) for more information.

GMX_CLANG_CUDA

Use clang for compiling CUDA GPU code, both host and device. Please see the Installation guide (page 8)
for more information.

GMX_CUDA_CLANG_FLAGS

Pass additional CUDA-only compiler flags to clang using this variable.

CMAKE_INSTALL_LIBDIR

Sets the installation directory for libraries (default is determined by standard CMake package
GNUInstallDirs). See Relocatable binaries (page 648) for how this influences the build.

GMX_USE_PLUGINS

Enable support for dynamic plugins (e.g. VMD-supported file formats). Default: OFF.

GMX_MPI

Enable MPI (not thread-MPI) support for inter-node parallelism. Defaults to OFF. Please see the Installation
guide (page 8) for more information.

GMX_OPENMP

Enable OpenMP support. Default is ON.

GMX_PREFER_STATIC_LIBS

Prefer statically linking to external libraries. Defaults to OFF, unless GMX_BUILD_SHARED_EXE is dis-
abled.

GMX_SIMD

Choose SIMD instruction set to use. Default is: Auto (best one for the current CPU). Please see the
Installation guide (page 14) for more information.

GMX_THREAD_MPI

Enable thread-MPI support for intra-node parallelism. Defaults to ON.

GMX_USE_RDTSCP

Use low-latency RDTSCP instruction for x86 CPU-based timers for mdrun execution. Ignored on non-x86
machines. Might need to be set to OFF when compiling for for heterogeneous environments or a very old
x86 CPU.

8.3. Build system overview 638

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GMX_USE_TNG

Use the TNG library for trajectory I/O. Defaults to ON.

GMX_USE_ITT

Use the Intel ITT library for annotating GROMACS tasks in the Intel tracing tools. Defaults to OFF. Relies
on the VTUNE_PROFILER_DIR environment variable set when loading the oneAPI toolkit to find the
library.

GMX_USE_NVTX

Use the NVTX library for annotating GROMACS tasks in the NVIDIA tracing tools. Defaults to OFF.
Relies on the CUDA_HOME environment variable to find the library.

GMX_USE_ROCTX

Use the ROC-TX library for annotating GROMACS tasks in the AMD ROCm tracing tools. Defaults to
OFF. Relies on the ROCM_HOME environment variable to find the library.

GMX_VMD_PLUGIN_PATH

Path to VMD plugins for molfile I/O. Only used when GMX_USE_PLUGINS is enabled.

Variables affecting the all target

BUILD_TESTING

Standard variable created by CTest that enables/disables all tests. Defaults to ON.

GMX_BUILD_HELP

Controls handling of man pages and shell completions. Possible values:

OFF (default for builds from release source distribution)
Man pages and shell completions are not generated as part of the all target, and only installed if
compiling from a source package.

AUTO (default for builds from development version)
Shell completions are generated by executing the gmx binary as part of the all target. If it fails, a
message is printed, but the build succeeds. Man pages need to be generated manually by invoking the
man target. Man pages and shell completions are installed if they have been successfully generated.

ON
Works the same as AUTO, except that if invoking the gmx binary fails, the build fails as well.

GMX_DEVELOPER_BUILD

If set ON, the all target will include also the test binaries using Google Test (if GMX_BUILD_UNITTESTS
(page 640) is ON), while webpage target will also include Reference manual in PDF format. Also, GMX_-
COMPILER_WARNINGS (page 637) and CMAKE_EXPORT_COMPILE_COMMANDS are always en-
abled. In the future, other developer convenience features (as well as features inconvenient for a general
user) can be added to the set controlled by this variable.

GMX_CLANG_TIDY

clang-tidy is used for static code analysis and (some) automated fixing of issues detected. clang-
tidy is easy to install. It is contained in the llvm binary package. Only version 18.0.* is sup-
ported. Others might miss tests or give false positives. It is run automatically in GitLab CI for
each commit. Many checks have fixes which can automatically be applied. To run it, the build has
to be configured with cmake -DGMX_CLANG_TIDY=ON -DCMAKE_BUILD_TYPE=Debug. Any
CMAKE_BUILD_TYPE which enables asserts (e.g. ASAN) works. Such a configured build will run
both the compiler as well as clang-tidy when building. The name of the clang-tidy executable is
set with -DCLANG_TIDY=..., and the full path to it can be set with -DCLANG_TIDY_EXE=..
.. To apply the automatic fixes to the issues identified, clang-tidy should be run separately (run-
ning clang-tidy with -fix-errors as part of the build can corrupt header files). To fix a spe-
cific file run clang-tidy -fix-errors -header-filter '.*' {file}, to fix all files in
parallel run-clang-tidy.py -fix -header-filter '.*' '(?<!/selection/parser\
.cpp|selection/scanner\.cpp)$', and to fix all modified files run-clang-tidy.py -fix

8.3. Build system overview 639

https://cmake.org/cmake/help/latest/variable/CMAKE_EXPORT_COMPILE_COMMANDS.html
https://releases.llvm.org/18.0.0/tools/clang/tools/extra/docs/clang-tidy/index.html
http://releases.llvm.org/download.html#18.0.0

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

-header-filter '.*' $(git diff HEAD --name-only). The run-clang-tidy.py
script is in the share/clang/ subfolder of the llvm distribution. clang-tidy has to be able to find the
compile_commands.json file. Either run from the build folder or add a symlink to the source folder.
GMX_ENABLE_CCACHE (page 637) does not work with clang-tidy.

Variables affecting special targets

GMX_INSTALL_LEGACY_API

Default OFF. If set to ON, headers will be installed to gromacs/ in the CMake header destination folder
to allow use of the ::gmx C++ namespace, supported by the libgromacs library. See Legacy API.

GMX_INSTALL_NBLIB_API

If set to ON (default, when BUILD_SHARED_LIBS on non-Windows platforms), build and install the
libnb_gmx and nblib/ headers. See (Non-)Bonded LIBrary (NB-LIB) API (page 621).

GMXAPI

If set ON (default, when BUILD_SHARED_LIBS on non-Windows platforms), the additional gmxapi C++
library is configured and the gmxapi headers will be installed. Provides the additional build tree targets
gmxapi-cppdocs and gmxapi-cppdocs-dev when Doxygen is available. Also exports CMake con-
figuration files for gmxapi that allow find_package(gmxapi) to import the Gromacs::gmxapi
CMake target in client projects that search the GROMACS installation root.

GMX_BUILD_MANUAL

If set ON, CMake detection for LaTeX and other prerequisites for the reference PDF manual is done, and
the manual target for building the manual is generated. If OFF (the default), all detection is skipped and
the manual cannot be built.

GMX_BUILD_TARBALL

If set ON, -dev suffix is stripped off from version strings and some other version info logic is adjusted such
that the man pages and other documentation generated from this build is suitable for releasing (on the web
page and/or in the source distribution package). Defaults to OFF.

GMX_BUILD_UNITTESTS

If ON, test binaries using Google Test are built (either as the separate tests target, or also as part of the
all target, depending on GMX_DEVELOPER_BUILD (page 639)). All dependencies required for building
the tests (Google Test and Google Mock frameworks, and tinyxml2) are included in src/external/.
Defaults to ON if BUILD_TESTING (page 639) is ON.

GMX_COMPACT_DOXYGEN

If set ON, Doxygen configuration is changed to avoid generating large dependency graphs, which makes it
significantly faster to run Doxygen and reduces disk usage. This is typically useful when developing the
documentation to reduce the build times. Defaults to OFF.

REGRESSIONTEST_DOWNLOAD

If set ON, CMake will download the regression tests and extract them to a local directory.
REGRESSIONTEST_PATH (page 640) is set to the extracted tests. Note that this happens during the
configure phase, not during the build. After the download is done, the variable is automatically reset to OFF
again to avoid repeated downloads. Can be set to ON to download again. Defaults to OFF.

REGRESSIONTEST_PATH

Path to extracted regression test suite matching the source tree (the directory containing gmxtest.pl) If
set, CTest tests are generated to run the regression tests. Defaults to empty.

SOURCE_MD5SUM

Sets the MD5 sum of the release tarball when generating the HTML documentation. It gets inserted into the
download section of the HTML pages.

8.3. Build system overview 640

../doxygen/html-user/index.xhtml

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

8.3.3 External libraries

8.3.4 Special targets

In addition to the default all target, the generated build system has several custom targets that are intended to
be explicitly built to perform various tasks (some of these may also run automatically). There are various other
targets as well used internally by these, but those are typically not intended to be invoked directly.

check
Builds all the binaries needed by the tests and runs the tests. If some types of tests are not available, shows
a note to the user. This is the main target intended for normal users to run the tests. See Unit testing
(page 697).

check-source
Runs a custom Python checker script to check for various source-level issues. Uses Doxygen XML docu-
mentation as well as rudimentary parsing of some parts of the source files. This target is used as part of the
CI. All CMake code is currently in docs/doxygen/. See Source tree checker scripts (page 689).

completion
Runs the compiled gmx executable to generate shell command-line completion definitions. This target is
only added if GMX_BUILD_HELP (page 639) is not OFF, and it is run automatically as part of the default
all target. See GMX_BUILD_HELP (page 639). All CMake code is in src/programs/.

dep-graphs*
Builds include dependency graphs for the source files using dot from graphviz. All CMake code is in
docs/doxygen/. See Source tree checker scripts (page 689).

doxygen-*
Targets that run Doxygen to generate the documentation. The doxygen-all target runs as part of the
webpage target, which in turn runs as part of the CI. All CMake code is in docs/doxygen/. See Using
Doxygen (page 665).

gmxapi-cppdocs
Builds API documentation for gmxapi. Useful to authors of client software. Documentation is generated in
docs/api-user in the build directory.

gmxapi-cppdocs-dev
Extract documentation for gmxapi and GROMACS developers to docs/api-dev.

install-guide
Runs Sphinx to generate a plain-text INSTALL file for the source package. The files is generated at docs/
install-guide/text/, from where it gets put at the root of the source package by CPack. All CMake
code is in docs/.

man
Runs Sphinx to generate man pages for the programs. Internally, also runs the compiled gmx executable to
generate the input files for Sphinx. All CMake code is in docs/. See GMX_BUILD_HELP (page 639) for
information on when the man pages are installed.

manual
Runs LaTeX to generate the reference PDF manual. All CMake code is in docs/manual/. See GMX_-
BUILD_MANUAL (page 640).

package_source
Standard target created by CPack that builds a source package. This target is used to generate the released
source packages.

test
Standard target created by CTest that runs all the registered tests. Note that this does not build the test
binaries, only runs them, so you need to first ensure that they are up-to-date. See Unit testing (page 697).

tests
Builds all the binaries needed by the tests (but not gmx). See Unit testing (page 697).

8.3. Build system overview 641

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

webpage
Collection target that runs the other documentation targets to generate the full set of HTML (and linked)
documentation. This target is used as part of the CI. All CMake code is in docs/.

webpage-sphinx
Runs Sphinx to generate most content for the HTML documentation (the set of web pages this developer
guide is also part of). Internally, also runs the compiled gmx executable to generate some input files for
Sphinx. All CMake code is in docs/.

8.3.5 Passing information to source code

The build system uses a few different mechanisms to influence the compilation:

• On the highest level, some CMake options select what files will be compiled.

• Some options are passed on the compiler command line using -D or equivalent, such that they are available
in every compilation unit. This should be used with care to keep the compiler command lines manageable.
You can find the current set of such defines with

git grep add_definitions

• A few header files are generated using CMake configure_file() and included in the desired source
files. These files must exist for the compilation to pass. Only a few files use an #ifdef HAVE_-
CONFIG_H to protect against inclusion in case the define is not set; this is used in files that may get
compiled outside the main build system.

buildinfo.h
Contains various strings about the build environment, used mainly for outputting version information
to log files and when requested.

config.h
Contains defines for conditional compilation within source files.

gmxpre-config.h
Included by gmxpre.h as the first thing in every source file. Should only contain defines that are
required before any other header for correct operation. For example, defines that affect the behavior
of system headers fall in this category. See Doxygen documentation for gmxpre.h.

The above files are available through the INTERFACE_INCLUDE_DIR of the common CMake target.
I.e. to #include "config.h", be sure to target_link_libraries(mymodule PRIVATE
common)

Additionally, the following file is generated by the build system:

baseversion-gen.cpp
Provides definitions for declarations in baseversion_gen.h for version info output. The con-
tents are generated either from Git version info, or from static version info if not building from a git
repository.

8.4 Change Management

This documentation assumes the reader is already familiar with using git for managing file revisions.

8.4. Change Management 642

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

8.4.1 Getting started

GROMACS development happens on gitlab at https://gitlab.com/gromacs/gromacs. Create a user account at https:
//gitlab.com/users/sign_in#register-pane or use an existing account at gitlab.com. For more information on how to
use gitlab have a look at their extensive user documentation at https://docs.gitlab.com/ee/user/index.html.

If you do not already have a GROMACS repository set up, use git clone git@gitlab.com:gromacs/
gromacs.git to obtain the current GROMACS repository from gitlab. Otherwise use git remote add
gitlab git@gitlab.com:gromacs/gromacs.git.

Using gitlab, new code enters GROMACS by merging git development branches into the main branch.

To automatically detect issues in new code, it is tested within continuous integration (CI) with a large combination
of settings. See Automatic source code formatting (page 692) for help meeting and testing the style guidelines.

More information about change management is available on the gitlab wiki.

Setting up login credentials with gitlab

You will need a public ssh key:

ssh-keygen -t rsa -C "your.email@address.com"
cat ~/.ssh/id_rsa.pub

Copy the output of the last command, go to gitlab.com, click your user symbol in the right top corner of the panel
to the left, and select Preferences.

Choose SSH keys in the menu on the left and paste your key in the text field.

Creating issues

The meta-level code design and discussions is organised in issues and visible at https://gitlab.com/gromacs/
gromacs/-/issues. Please check if your issue, or a similar issue, already exists before creating a new one. See
Guidelines for creating meaningful issue reports (page 661) for more information.

Note that all Redmine issues have been transferred to gitlab retaining the original issue number from Redmine.
However, comments and discussion are now represented by gitlab user @acmnpv - the original authors are found
inline at the bottom of the comments.

Uploading code for review - creating a merge request

Issues are addressed with new code via “merge requests” (MR). Find the current MRs at https://gitlab.com/
gromacs/gromacs/-/merge_requests. There are two ways of creating a merge request - either via the gitlab graph-
ical user interface or via the command line.

To use the GUI, find the relevant issue or open a new one, then find the “create merge request” button to create
a merge request related to that issue in gitlab. We recommend using the “Mark as draft” option until you are
completely satisfied with the code yourself and all tests are passed.

Select milestone and assignees to make tracking of the progress easier. Keep the requirements for merging as they
are set by default.

You can also use git push on the command line directly and create a merge request following the link that is
output on the command line.

Your repository should be in sync with the GROMACS repository. To ensure this, use git fetch to obtain the
newest branches, then merge the main branch into your branch with git merge main while on your branch.

You can create MRs without having a Developer role account, but in order to trigger MR test pipelines you
must be a project member with (at least) the Developer role. Project membership can be requested via the
Gitlab web interface. The Developer role is granted based on acquaintance and/or knowledge about intentions
to contribute to the project.

8.4. Change Management 643

https://gitlab.com/gromacs/gromacs
https://gitlab.com/users/sign_in#register-pane
https://gitlab.com/users/sign_in#register-pane
https://docs.gitlab.com/ee/user/index.html
https://gitlab.com/gromacs/gromacs/-/wikis/home
https://gitlab.com/gromacs/gromacs/-/issues
https://gitlab.com/gromacs/gromacs/-/issues
https://gitlab.com/acmnpv
https://gitlab.com/gromacs/gromacs/-/merge_requests
https://gitlab.com/gromacs/gromacs/-/merge_requests

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

As mentioned in Code Review (page 644), the Developer role is different to membership in the GMX
Developers approval group. Approving and merging changes require higher privileges than what is required
for counting as a Developer.

Naming branches

Good names: documentation_UpdateDevelopersDocsTOGitLab, nbnxm_MakeNbnxmGPUIntoClass, pme_-
FEPPMEGPU, 1234-ml-fix-issue.

Bad names: branch1234, mybranch, test, etc

N.b., prefixing the branch with an issue number (such as 1234-ml-fix-issue above), followed by a hyphen, auto-
matically links the branch to the issue. Milestones and labels are copied and the issue will be closed when the MR
is merged, see the Gitlab documentation.

Documentation

Contributors and reviewers frequently overlook the effects of changes on the built documentation. Contributors
and reviewers should note that the build artifacts from the automated test jobs are available for download through
the GitLab CI web interface (webpage:build job artifacts). For earlier review or alternative preferences,
consider building and sharing a Docker image containing the built documentation. See docs/docs.dockerfile in the
source tree.

8.4.2 Labels

Labels help developers by allowing additional filtering of issues and merge requests.

The GROMACS project defines many labels.

To minimize duplicated documentation, refer to the GitLab project Labels web interface for label descriptions.

When creating a new label, please provide a short description so that people can understand what the label is
intended to convey, and when they should apply it to their own issues or merge requests.

In general:

• Ongoing categorizations to help specify the GROMACS component or development area use the #7F8C8D
color.

• Specific features or subproject areas targeting an upcoming release use the #8E44AD background color.

• Status labels use #428BCA. Note that Status labels are also used for Issues, and are used according to status
label guidelines (page 645)

8.4.3 Code Review

Reviewing someone else’s uploaded code

The reviewing workflow is the following:

1. https://gitlab.com/gromacs/gromacs/-/merge_requests shows all open changes

2. A change needs two approvals to go in, of which one approval has to come from a member of either GMX
Core or GMX Developers approval groups.

3. Usually a patch goes through several cycles of voting, commenting and updating before it becomes merged,
with votes from the developers indicating if they think that the change has progressed enough to be included.

4. A change is submitted for merging and post-submit testing by clicking “Merge”.

8.4. Change Management 644

https://docs.gitlab.com/ee/user/project/repository/branches/#prefix-branch-names-with-issue-numbers
https://gitlab.com/gromacs/gromacs/-/tree/main/docs/docs.dockerfile
https://docs.gitlab.com/ee/user/project/labels.html
https://gitlab.com/gromacs/gromacs/-/labels
https://gitlab.com/gromacs/gromacs/-/labels
https://gitlab.com/gromacs/gromacs/-/merge_requests

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Do not review your own code. The point of the policy is that at least two non-authors have approved, and that the
issues are resolved in the opinion of the person who applies an approval before a merge. If you have uploaded a
minor fix to someone else’s patch, use your judgement in whether to approve yourself.

Membership in the GMX Developers and GMX Core approval groups are based on long-term engagement in
the project and does not correlate directly with a Developer role account.

Guide for reviewing

• First and foremost, check correctness to the extent possible;

• As portability and performance are the next most important things, do check for potential issues;

• Check adherence to the coding standards (page 653);

• We should try to ensure that commits that implement bugfixes (as well as important features and tasks) get
an issue tracker entry created and linked. The linking is done automatically through special syntax

• If the commit is a bugfix:

– if present in the issue tracker, it has to contain a valid reference to the issue;

– if it is a major bug, there has to be a bug report filed in the issue tracker (with urgent or immediate
priority) and referenced appropriately.

• If the commit is a feature/task implementation:

– if it is present in the issue tracker it has to contain a valid reference to the issue;

– If no current issue is currently present and the change would benefit of one for future explanation on
why it was added, a new issue should be created.

Update the Status label

• Please update the Status label for the issue (page 662) when a merge request is under review.

• Please update the Status label for the merge request (page 645) when it is closed.

Closing Merge Requests

A merge request that has had no updates for six months or more can acquire the status label “Status::Stale”
If the proposed change still seems important and the next steps are unclear, contributors with stale issues are
encouraged. . .

• to contact existing reviewers (or potential reviewers),

• to participate in the developer discussion forum, and

• to attend the biweekly teleconference to coordinate.

If the future of the merge request has not become clear within a month (especially if it has become stale multi-
ple times), developers may close the merge request with a label indicating why it has entered a “closed” state.
“Status::MR::. . . ” labels do not indicate that the merge request has been reviewed unless it is explicitly rejected.

See Issue 4126 for background discussion.

• Status::MR::Inactive: No response from contributor or no reviewers available for over six months.

• Status::MR::Superseded: This merge request is no longer necessary.

• Status::MR::Rejected: The solution (or its associated issue) will not be accepted.

• Status::MR::Needs discussion: More discussion must take place at the tracked issue before a MR is opened.

• Status::Stale: No activity for over six months.

8.4. Change Management 645

https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/help/user/markdown#special-gitlab-references
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/
https://gromacs.bioexcel.eu/c/gromacs-developers/10
https://gitlab.com/gromacs/gromacs/-/labels?subscribed=&search=status%3A%3Amr
https://gitlab.com/gromacs/gromacs/-/issues/4126
https://gitlab.com/gromacs/gromacs/-/merge_requests?label_name%5B%5D=Status%3A%3AMR%3A%3AInactive
https://gitlab.com/gromacs/gromacs/-/merge_requests?label_name%5B%5D=Status%3A%3AMR%3A%3ASuperseded
https://gitlab.com/gromacs/gromacs/-/merge_requests?label_name%5B%5D=Status%3A%3AMR%3A%3ARejected
https://gitlab.com/gromacs/gromacs/-/merge_requests?label_name%5B%5D=Status%3A%3AMR%3A%3ANeeds+discussion
https://gitlab.com/gromacs/gromacs/-/labels?subscribed=&search=status%3A%3AStale

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

ã See also

General issue workflow (page 662) for use of Status labels in Issue management.

8.4.4 More git tips

Q: Are there some other useful git configuration settings?

A: If you need to work with branches that have large differences (in particular, if a lot of files have moved), it can
be helpful to set

git config diff.renamelimit 5000

to increase the limit of inexact renames that Git considers. The default value is not sufficient, for example, if you
need to do a merge or a cherry-pick from a release branch to main.

Q: How do I use git rebase (also git pull --rebase)?

A: Assume you have a local feature branch checked out, that it is based on main, and main has gotten new commits.
You can then do

git rebase main

to move your commits on top of the newest commit in main. This will save each commit you did, and replay them
on top of main. If any commit results in conflicts, you need to resolve them as usual (including marking them as
resolved using git add), and then use

git rebase --continue

Note that unless you are sure about what you are doing, you should not use any commands that create or delete
commits (git commit, or git checkout or git reset without paths). git rebase --continue will create the
commit after conflicts have been resolved, with the original commit message (you will get a chance to edit it).

If you realize that the conflicts are too messy to resolve (or that you made a mistake that resulted in messy
conflicts), you can use

git rebase --abort

to get back into the state you started from (before the original git rebase main invocation). If the rebase is al-
ready finished, and you realize you made a mistake, you can get back where you started with (use git log <my-
branch>@{1} and/or git reflog <my-branch> to check that this is where you want to go)

git reset --hard <my-branch>@{1}

Q: How do I prepare several commits at once?

A: Assume I have multiple independent changes in my working tree. Use

git add [-p] [file]

to add one independent change at a time to the index. Use

git diff --cached

to check that the index contains the changes you want. You can then commit this one change:

8.4. Change Management 646

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

git commit

If you want to test that the change works, use to temporarily store away other changes, and do your testing.

git stash

If the testing fails, you can amend your existing commit with git commit --amend. After you are satisfied,
you can push the commit for review. If you stashed away your changes and you want the next change to be
reviewed independently, do

git reset --hard HEAD^
git stash pop

(only do this if you pushed the previous change upstream, otherwise it is difficult to get the old changes back!) and
repeat until each independent change is in its own commit. If you skip the git reset --hard step, you can
also prepare a local feature branch from your changes.

Q: How do I edit an earlier commit?

A: If you want to edit the latest commit, you can simply do the changes and use

git commit --amend

If you want to edit some other commit, and commits after that have not changed the same lines, you can do the
changes as usual and use

git commit --fixup <commit>

or

git commit --squash <commit>

where <commit> is the commit you want to change (the difference is that --fixup keeps the original commit
message, while --squash allows you to input additional notes and then edit the original commit message dur-
ing git rebase -i). You can do multiple commits in this way. You can also mix --fixup/--squash
commits with normal commits. When you are done, use

git rebase -i --autosquash <base-branch>

to merge the --fixup/--squash commits to the commits they amend. See separate question on git
rebase -i on how to choose <base-branch>.

In this kind of workflow, you should try to avoid to change the same lines in multiple commits (except in
--fixup/--squash commits), but if you have already changed some lines and want to edit an earlier commit,
you can use

git rebase -i <base-branch>

but you likely need to resolve some conflicts later. See git rebase -i question later.

8.4. Change Management 647

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Q: How do I split a commit?

A: The instructions below apply to splitting the HEAD commit; see above how to use git rebase -i to get
an earlier commit as HEAD to split it.

The simplest case is if you want to split a commit A into a chain A’-B-C, where A’ is the first new commit, and
contains most of the original commit, including the commit message. Then you can do

git reset -p HEAD^ [-- <paths>]
git commit --amend

to selectively remove parts from commit A, but leave them in your working tree. Then you can create one or more
commits of the remaining changes as described in other tips.

If you want to split a commit A into a chain where the original commit message is reused for something else than
the first commit (e.g., B-A’-C), then you can do

git reset HEAD^

to remove the HEAD commit, but leave everything in your working tree. Then you can create your commits as
described in other tips. When you come to a point where you want to reuse the original commit message, you can
use

git reflog

to find how to refer to your original commit as HEAD@{n}, and then do

git commit -c HEAD@{n}

Q: How do I use git rebase -i to only edit local commits?

A: Assume that you have a local feature branch checked out, this branch has three commits, and that it is based on
main. Further, assume that main has gotten a few more commits after you branched off. If you want to use git
rebase -i to edit your feature branch (see above), you probably want to do

git rebase -i HEAD~3

followed by a separate

git rebase main

The first command allows you to edit your local branch without getting conflicts from changes in main. The latter
allows you to resolve those conflicts in a separate rebase run. If you feel brave enough, you can also do both at the
same time using

git rebase -i main

8.5 Relocatable binaries

GROMACS (mostly) implements the concept of relocatable binaries, i.e., that after initial installation to CMAKE_-
INSTALL_PREFIX (or binary packaging with CPack), the whole installation tree can be moved to a different
folder and GROMACS continues to work without further changes to the installation tree. This page explains
how this is implemented, and the known limitations in the implementation. This information is mainly of interest
to developers who need to understand this or change the code, but it can also be useful for people installing or
packaging GROMACS.

8.5. Relocatable binaries 648

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

A related feature that needs to be considered in all the code related to this is that the executables should work
directly when executed from the build tree, before installation. In such a case, the data files should also be looked
up from the source tree to make development easy.

8.5.1 Finding shared libraries

If GROMACS is built with dynamic linking, the first part of making the binaries relocatable is to make it possible
for the executable to find libgromacs, no matter how it is executed. On platforms that support a relative RPATH,
this is used to make the GROMACS executables find the libgromacs from the same installation prefix. This
makes the executables fully relocatable when it comes to linking, as long as the relative folder structure between
the executables and the library is kept the same.

If the RPATH mechanism does not work, GMXRC also adds the absolute path to the libgromacs installed with
it to LD_LIBRARY_PATH. On platforms that support this, this makes the linker search for the library here, but
it is less robust, e.g., when mixing calls to different versions of GROMACS. Note that GMXRC is currently not
relocatable, but hardcodes the absolute path.

On native Windows, DLLs are not fully supported; it is currently only possible to compile a DLL with MinGW,
not with Visual Studio or with Intel compilers. In this case, the DLLs are placed in the bin/ directory instead of
lib/ (automatically by CMake, based on the generic binary type assignment in CMakeLists.txt). Windows
automatically searches DLLs from the executable directory, so the correct DLL should always be found.

For external libraries, standard CMake linking mechanisms are used and RPATH for the external dependencies is
included in the executable; on Windows, dynamic linking may require extra effort to make the loader locate the
correct external libraries.

To support executing the built binaries from the build tree without installation (critical for executing tests during
development), standard CMake mechanism is used: when the binaries are built, the RPATH is set to the build tree,
and during installation, the RPATH in the binaries is rewritten by CMake to the final (relative) value. As an extra
optimization, if the installation tree has the same relative folder structure as the build tree, the final relative RPATH
is used already during the initial build.

The RPATH settings are in the root CMakeLists.txt. It is possible to disable the use of RPATH during
installation with standard CMake variables, such as setting CMAKE_SKIP_INSTALL_RPATH=ON.

8.5.2 Finding data files

The other, GROMACS-specific part, of making the binaries relocatable is to make them able to find data files from
the installation tree. Such data files are used for multiple purposes, including showing the quotes at the end of
program execution. If the quote database is not found, the quotes are simply not printed, but other files (mostly
used by system preparation tools like gmx pdb2gmx (page 235) and gmx grompp (page 190), and by various
analysis tools for static data) will cause fatal errors if not found.

There are several considerations here:

• For relocation to work, finding the data files cannot rely on any hard-coded absolute path, but it must find
out the location of the executing code by inspecting the system. As a fallback, environment variables or
such set by GMXRC or similar could be used (but currently are not).

• When running executables from the build tree, it is desirable that they will automatically use the data files
from the matching source tree to facilitate easy testing. The data files are not copied into the build tree, and
the user is free to choose any relative locations for the source and build trees. Also, the data files are not in
the same relative path in the source tree and in the installation tree (the source tree has share/top/, the
installation tree share/gromacs/top/; the latter is customizable during CMake configuration).

• In addition to GROMACS executables, programs that link against libgromacs need to be able to find
the data files if they call certain functions in the library. In this case, the executable may not be in the same
directory where GROMACS is. In case of static linking, no part of the code is actually loaded from the
GROMACS installation prefix, which makes it impossible to find the data files without external information.

8.5. Relocatable binaries 649

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• The user can always use the GMXLIB environment variable to provide alternative locations for the data files,
but ideally this should never be necessary for using the data files from the installation.

Not all the above considerations are fully addressed by the current implementation, which works like this:

1. It finds the path to the current executable based on argv[0]. If the value contains a directory, this is
interpreted as absolute or as relative to the current working directory. If there is no directory, then a file
by that name is searched from the directories listed in PATH. On Windows, the current directory is also
searched before PATH. If a file with a matching name is found, this is used without further checking.

2. If the executable is found and is a symbolic link, the symbolic links are traversed until a real file is found.
Note that links in the directory name are not resolved, and if some of the links contain relative paths, the
end result may contain .. components and such.

3. If an absolute path to the executable was found, the code checks whether the executable is located in the
build output directory (using stat() or similar to account for possible symbolic links in the directory
components). If it is, then the hard-coded source tree location is returned.

4. If an absolute path to the executable was found and it was not in the build tree, then all parent direc-
tories are checked. If a parent directory contains share/gromacs/top/gurgle.dat, this direc-
tory is returned as the installation prefix. The file name gurgle.dat and the location are considered
unique enough to ensure that the correct directory has been found. The installation directory for read-only
architecture-independent data files can be customized during CMake configuration by setting CMAKE_-
INSTALL_DATADIR, and the subdirectory under this that hosts the GROMACS-specific data is set by
GMX_INSTALL_DATASUBDIR.

Note that this search does not resolve symbolic links or normalize the input path beforehand: if there are
.. components and symbolic links in the path, the search may proceed to unexpected directories, but this
should not be an issue as the correct installation prefix should be found before encountering such symbolic
links (as long as the bin/ directory is not a symbolic link).

5. If the data files have not been found yet, try a few hard-coded guesses (like the original installation
CMAKE_INSTALL_PREFIX and /usr/local/). The first guess that contains suitable files (gurgle.
dat) is returned.

6. If still nothing is found, return CMAKE_INSTALL_PREFIX and let the subsequent data file opening fail.

The above logic to find the installation prefix is in src/gromacs/commandline/
cmdlineprogramcontext.cpp. Note that code that links to libgromacs can provide an alternative
implementation for gmx::IProgramContext for locating the data files, and is then fully responsible of the
above considerations.

Information about the used data directories is printed into the console output (unless run with -quiet), as well
as to (some) error messages when locating data files, to help diagnosing issues.

There is no mechanism to disable this probing search or affect the process during compilation time, except for the
CMake variables mentioned above.

8.5.3 Known issues

• GMXRC is not relocatable: it hardcodes the absolute installation path in one assignment within the script,
which no longer works after relocation. Contributions to get rid of this on all the shells the GMXRC currently
supports are welcome.

• There is no version checking in the search for the data files; in case of issues with the search, it may happen
that the installation prefix from some other installation of GROMACS is returned instead, and only cryptic
errors about missing or invalid files may reveal this.

• If the searching for the installation prefix is not successful, hard-coded absolute guesses are used, and one
of those returned. These guesses include the absolute path in CMAKE_INSTALL_PREFIX used during
compilation of libgromacs, which will be incorrect after relocation.

• The search for the installation prefix is based on the locating the executable. This does not work for programs
that link against libgromacs, but are not installed in the same prefix. For such cases, the hard-coded

8.5. Relocatable binaries 650

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

guesses will be used, so the search will not find the correct data files after relocation. The calling code can,
however, programmatically provide the GROMACS installation prefix, but ideally this would work without
offloading work to the calling code.

• One option to (partially) solve the two above issues would be to use the GMXDATA environment variable set
by GMXRC as the fallback (currently this environment variable is set, but very rarely used).

• Installed pkg-config files are not relocatable: they hardcode the absolute installation path.

8.6 Documentation generation

8.6.1 Building the GROMACS documentation

For now, there are multiple components, formats and tools for the GROMACS documentation, which is aimed
primarily at version-specific deployment of the complete documentation on the website and in the release tarball.

This is quite complex, because the dependencies for building the documentation must not get in the way of
building the code (particularly when cross-compiling), and yet the code must build and run in order for some
documentation to be generated. Also, man page documentation (and command-line completions) must be built
from the wrapper binary, in order to be bundled into the tarball. This helps ensure that the functionality and the
documentation remain in sync.

The outputs of interest to most developers are generally produced in the docs/html/ subdirectory of the build
tree.

You need to enable at least some of the following CMake options:

GMX_BUILD_MANUAL
Option needed for trying to build the PDF reference manual (requires LaTeX and ImageMagick). See
GMX_BUILD_MANUAL (page 640).

GMX_BUILD_HELP
Option that controls 1) whether shell completions are built automatically, and 2) whether built man pages
are installed if available (the user still needs to build the man target manually before installing). See GMX_-
BUILD_HELP (page 639).

To include the full Python package documentation with the webpage CMake target (see below), also con-
figure CMake with GMX_PYTHON_PACKAGE=ON, and install Python package dependencies from python_-
packaging/gmxapi/requirements.txt:

pip install -r python_packaging/gmxapi/requirements.txt

Some documentation cannot be built when cross-compiling, as it requires executing the gmx binary.

The following make targets are the most useful:

manual
Builds the PDF reference manual.

man
Makes man pages from the wrapper binary with Sphinx.

doxygen-all
Makes the code documentation with Doxygen.

install-guide
Makes the INSTALL file for the tarball with Sphinx.

webpage-sphinx
Makes all the components of the GROMACS webpage that require Sphinx, including install guide and user
guide.

8.6. Documentation generation 651

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

webpage
Makes the complete GROMACS webpage, requires everything. When complete, you can browse docs/
html/index.html to find everything.

If built from a release tarball, the SOURCE_MD5SUM, SOURCE_TARBALL, REGRESSIONTESTS_-
MD5SUM, and REGRESSIONTESTS_TARBALL CMake variables can be set to pass in the md5sum values
and names of those tarballs, for embedding into the final deployment to the GROMACS website.

8.6.2 Needed build tools

The following tools are used in building parts of the documentation. Make sure they are installed before configur-
ing the build system with CMake.

Doxygen
Doxygen is used to extract documentation from source code comments. Also some other overview content
is laid out by Doxygen from Markdown source files. Currently, version 1.8.5 is required for a warning-free
build. Thorough explanation of the Doxygen setup and instructions for documenting the source code can be
found on a separate page: Using Doxygen (page 665).

graphviz (dot)
The Doxygen documentation uses dot from graphviz for building some graphs. The tool is not mandatory,
but the Doxygen build will produce warnings if it is not available, and the graphs are omitted from the
documentation.

mscgen
The Doxygen documentation uses mscgen for building some graphs. As with dot, the tool is not mandatory,
but not having it available will result in warnings and missing graphs.

Doxygen issue checker
Doxygen produces warnings about some incorrect uses and wrong documentation, but there are many com-
mon mistakes that it does not detect. GROMACS uses an additional, custom Python script to check for such
issues. This is most easily invoked through a check-source target in the build system. The script also
checks that documentation for a header matches its use in the source code (e.g., that a header documented
as internal to a module is not actually used from outside the module). These checks are run in CI. Details
for the custom checker are on a separate page (common for several checkers): Source tree checker scripts
(page 689).

module dependency graphs
GROMACS uses a custom Python script to generate an annotated dependency graph for the code, showing
#include dependencies between modules. The generated graph is embedded into the Doxygen documen-
tation: Module dependency graph This script shares most of its implementation with the custom checkers,
and is documented on the same page: Source tree checker scripts (page 689).

Sphinx
Sphinx; at least version 4.0.0 is used for building some parts of the documentation from reStructuredText
source files. To install an appropriate version of sphinx-build and other required Python packages,
you can use the requirements.txt file in the docs repository directory. E.g. pip install -r
docs/requirements.txt

LaTeX
Also requires ImageMagick for converting graphics file formats.

linkchecker
linkchecker is used together with the docs/linkcheckerrc file to ensure that all the links in the docu-
mentation can be resolved correctly.

documentation exported from source files
For man pages, HTML documentation of command-line options for executables, and for shell completions,
the gmx binary has explicit C++ code to export the information required. The build system provides targets
that then invoke the built gmx binary to produce these documentation items. The generated items are
packaged into source tarballs so that this is not necessary when building from a source distribution (since in

8.6. Documentation generation 652

http://www.doxygen.org
http://www.graphviz.org
http://www.mcternan.me.uk/mscgen/
../doxygen/html-lib/page_modulegraph.xhtml
http://sphinx-doc.org/
http://wummel.github.io/linkchecker/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

general, it will not work in cross-compilation scenarios). To build and install these from a git distribution,
explicit action is required. See Doxygen documentation on the wrapper binary for some additional details.

8.7 Style guidelines

Different style guidelines are available under the respective sections of this page.

8.7.1 Guidelines for code formatting

Python code complies with PEP 8, but using the stricter Black code style.

The following list provides the general formatting/indentation rules for C++ GROMACS code:

• Basic indentation is four spaces.

• Keep lines at a reasonable length. Keep every line at least below 120 characters. If you end up indenting
very deeply, consider splitting the code into functions.

• Do not use tabs, only spaces. Most editors can be configured to generate spaces even when pressing tab.
Tabs (in particular when mixed with spaces) easily break indentation in contexts where settings are not
exactly equal (e.g., in git diff output).

• No trailing whitespace.

• Use braces always for delimiting blocks, even when there is only a single statement in an if block or
similar.

• Put braces on their own lines. The only exception is short one-line inline functions in C++ classes, which
can be put on a single line.

• Use spaces liberally.

• extern "C" and namespace blocks are not indented, but all others (including class and switch
bodies) are. Namespace blocks have to have a closing comment with the name of it.

Additionally:

• All source files and other non-trivial scripts should contain a copyright header with a predetermined format
and license information (check existing files). Copyright holder should be “the GROMACS development
team” for the years where the code has been in the GROMACS source repository, but earlier years can hold
other copyrights.

• Whenever you update a file, you should check that the current year is listed as a copyright year.

Most of the above guidelines are enforced using clang-format, an automatic source code formatting tool. The
copyright guidelines are enforced by a separate Python script. See Automatic source code formatting (page 692)
for details. Note that due to the nature of those scripts (they only do all-or-nothing formatting), all the noted
formatting rules are enforced at the same time.

Enforcing a consistent formatting has a few advantages:

• No one needs to manually review code for most of these formatting issues, and people can focus on content.

• A separate automatic script (see below) can be applied to re-establish the formatting after refactoring like
renaming symbols or changing some parameters, without needing to manually do it all.

Many IDEs will detect .clang-format configuration files and be able to format the code automatically. How-
ever, clang-format behavior is very version-dependent, so there still might be some minor differences from what
is enforced by our scripts and automated testing system.

8.7. Style guidelines 653

../doxygen/html-lib/page_wrapperbinary.xhtml
https://peps.python.org/pep-0008/
https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

8.7.2 Guidelines for #include directives

The following include order is used in GROMACS and enforced by clang-format. An empty line should
appear between each group, and headers within each group sorted alphabetically.

1. Each source file should include gmxpre.h first.

2. If a source file has a corresponding header, it should be included next. If the header is in the same directory
as the source, then it is included without any path (i.e., relative to the source). Otherwise, the canonical
include path of libraryname/modulename/header.h is used.

3. If the file depends on defines from config.h, that comes next.

4. This is followed by standard C/C++ headers, grouped as follows:

1. Standard C headers (e.g., <stdio.h>)

2. C++ versions of the above (e.g., <cstdio>)

3. Standard C++ headers (e.g., <vector>)

Preferably, only one of the first two groups is present, but this is not enforced.

5. This is followed by other system headers: platform-specific headers such as <unistd.h>, as well as
external libraries such as <gtest/gtest.h>.

6. GROMACS-specific libraries from src/external/, such as "thread_mpi/threads.h".

7. GROMACS headers that are not part of the including module.

8. Public GROMACS headers that are part of the including module.

9. Finally, GROMACS headers that are internal to the including module, executable, or test target (typically at
the same path as the source file).

All GROMACS headers are included with quotes ("gromacs/utility/path.h"), other headers with angle
brackets (<stdio.h>). Headers under src/external/ are generally included with quotes (whenever the
include path is relative to src/, as well as for thread-MPI and TNG), but larger third-party entities are included
as if they were provided by the system. The latter group currently includes gtest/gmock.

In some cases, the include paths available to build targets may leak visibility of headers inappropriately. This is
usually encountered as a header that can be used by an #includewith an unusual or long path. If a header cannot
be included as described above, check that the appropriate CMake target is referenced by a target_link_libraries()
command. Many modules provide their own CMake target. Additionally, note

• The common CMake target provides access to gmxpre.h, config.h, gmxpre-config.h,
buildinfo.h, and contributors.h

• legacy_api provides access to those of the old gromacs/modulename headers that are in api/
legacy/include

• legacy_modules adds src/ to the include path, exposing all headers in gromacs/ and gromacs/
*/ for #include lines that would appear to comply with the guidelines above, but which may not be
intended for “public” use. (This target was intended as a temporary measure while working towards Issue
3288.)

If there are any conditionally included headers (typically, only when some #defines from config.h are set),
these should be included at the end of their respective group. Note that the automatic checker/sorter script does
not act on such headers, nor on comments that are between #include statements; it is up to the author of the code
to put the headers in proper order in such cases. Trailing comments on the same line as #include statements are
preserved and do not affect the checker/sorter.

As part of the effort to build a proper API, a new scheme of separating between public, library and module
functionality in header files is planned. See also Source tree checker scripts (page 689) and API restructuring
issues for details.

Enforcing a consistent order and style has a few advantages:

8.7. Style guidelines 654

https://cmake.org/cmake/help/latest/command/target_link_libraries.html
https://gitlab.com/gromacs/gromacs/-/issues/3288
https://gitlab.com/gromacs/gromacs/-/issues/3288
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=API+restructuring
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=API+restructuring

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• It makes it easy at a quick glance to find the dependencies of a file, without scanning through a long list of
unorganized #includes.

• Including the header corresponding to the source file first makes most headers included first in some source
file, revealing potential problems where headers would not compile unless some other header would be
included first. With this order, the person working on the header is most likely to see these problems instead
of someone else seeing them later when refactoring unrelated code.

• Consistent usage of paths in #include directives makes it easy to use grep to find all uses of a header,
as well as all include dependencies between two modules.

• An automatic script can be used to re-establish clean code after semi-automatic refactoring like renaming
an include file with sed, without causing other unnecessary changes.

8.7.3 Naming conventions

The conventions here should be applied to all new code, and with common sense when modifying existing code.
For example, renaming a widely used, existing function to follow these conventions may not be justified unless
the whole code is getting a rework.

Currently, this only documents the present state of the code: no particular attempt has been made to consolidate
the naming.

Files

• C++ source files have a .cpp extension, C source files .c, and headers for both use .h.

• For source file file.c/file.cpp, declarations that are visible outside the source file should go into a
correspondingly named header: file.h. Some code may deviate from this rule to improve readability
and/or usability of the API, but this should then be clearly documented.

There can also be a file_impl.h file that declares classes or functions that are not accessible outside the
module. If the whole file only declares symbols internal to the module, then the _impl.h suffix is omitted.

In most cases, declarations that are not used outside a single source file are in the source file.

• Use suffix -doc.h for files that contain only Doxygen documentation for some module or such, for cases
where there is no natural single header for putting the documentation.

• For C++ files, prefer naming the file the same as the (main) class it contains. Currently all file names are all-
lowercase, even though class names contain capital letters. It is OK to use commonly known abbreviations,
and/or omit the name of the containing directory if that would cause unnecessary repetition (e.g., as a
common prefix to every file name in the directory) and the remaining part of the name is unique enough.

• Avoid having multiple files with the same name in different places within the same library. In addition to
making things harder to find, C++ source files with the same name can cause obscure problems with some
compilers. Currently, unit tests are an exception to the rule (there is only one particular compiler that had
problems with this, and a workaround is possible if/when that starts to affect more than a few of the test
files).

Common guidelines for C and C++ code

• Preprocessor macros should be all upper-case. Do not use leading underscores, as all such names are
reserved according to the C/C++ standard.

• Name include guards like GMX_DIRNAME_HEADERNAME_H.

• Avoid abbreviations that are not obvious to a general reader.

• If you use acronyms (e.g., PME, DD) in names, follow the Microsoft policy on casing: two letters is
uppercase (DD), three or more is lowercase (Pme). If the first letter would be lowercase in the context

8.7. Style guidelines 655

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

where it is used (e.g., at the beginning of a function name, or anywhere in a C function name), it is clearest
to use all-lowercase acronym.

C code

• All function and variable names are lowercase, with underscores as word separators where needed for clarity.

• All functions that are part of the public API should start with gmx_. Preferably, other functions should
as well. Some parts of the code use a _gmx_ prefix for internal functions, but strictly speaking, these are
reserved names, so, e.g., a trailing underscore would be better.

• Old C code and changes to it can still use the hungarian notation for booleans and enumerated variable
names, as well as enum values, where they are prefixed with b and e respectively, or you can gradually
move to the C++ practice below. Whatever you choose, avoid complex abbreviations.

C++ code

• Use CamelCase for all names. Start types (such as classes, structs, typedefs and enum values) with a capital
letter, other names (functions, variables) with a lowercase letter. You may use an all-lowercase name with
underscores if your class closely resembles an external construct (e.g., a standard library construct) named
that way.

• C++ interfaces are named with an I prefix, such as in ICommandLineModule. This keeps interfaces iden-
tifiable, without introducing too much clutter (as the interface is typically used quite widely, spelling out
Interface would make many of the names unnecessarily long).

• Abstract base classes are typically named with an Abstract prefix.

• Member variables are named with a trailing underscore.

• Accessors for a variable foo_ are named foo() and setFoo().

• Global variables are named with a g_ prefix.

• Global and file-static variables are named with a g_ prefix.

• Static class and function variables are named with an s_ prefix.

• Static constexpr file, class, or function members are named with a sc_ prefix.

• Global constants are often named with a c_ prefix.

• If the main responsibility of a file is to implement a particular class, then the name of the file should match
that class, except for possible abbreviations to avoid repetition in file names (e.g., if all classes within a
module start with the module name, omitting or abbreviating the module name is OK). Currently, all source
file names are lowercase, but this casing difference should be the only difference.

• For new C++ code, avoid using the hungarian notation that is a descendant from the C code (i.e., the practice
of using a b prefix for boolean variables and an e prefix for enumerated variables and/or values). Instead,
make the names long with a good description of what they control, typically including a verb for boolean
variables, like foundAtom.

• Prefer class enums over regular ones, so that unexpected conversions to int do not happen.

• Name functions to convert class enum values to strings as enumValueToString.

• When using a non-class enum, prefer to include the name of the enumeration type as a base in the name of
enum values, e.g., HelpOutputFormat_Console, in particular for settings exposed to other modules.

• Prefer to use enumerated types and values instead of booleans as control parameters to functions. It is
reasonably easy to understand what the argument HelpOutputFormat_Console is controlling, while
it is almost impossible to decipher TRUE in the same place without checking the documentation for the role
of the parameter.

The rationale for the trailing underscore and the global/static prefixes is that it is immediately clear whether a
variable referenced in a method is local to the function or has wider scope, improving the readability of the code.

8.7. Style guidelines 656

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Code for GPUs

Rationale: on GPUs, using the right memory space is often performance critical.

• In CUDA device code sm_, gm_, and cm_ prefixes are used for shared, global and constant memory. The
absence of a prefix indicates register space. Same prefixes are used in OpenCL code, where sm_ indicates
local memory and no prefixes are added to variables in private address space.

• Data transferred to and from host has to live in both CPU and GPU memory spaces. Therefore it is typical
to have a pointer or container (in CUDA), or memory buffer (in OpenCL) in host memory that has a device-
based counterpart. To easily distinguish these, the variables names for such objects are prefixed h_ and
d_ and have identical names otherwise. Example: h_masses, and d_masses.

• In all other cases, pointers to host memory are not required to have the prefix h_ (even in parts of the host
code, where both host and device pointers are present). The device pointers should always have the prefix
d_ or gm_.

• In case GPU kernel arguments are combined into a structure, it is preferred that all device memory pointers
within the structure have the prefix d_ (i.e. kernelArgs.d_data is preferred to d_kernelArgs.
data, whereas both d_kernelArgs.d_data and kernelArgs.data are not acceptable).

• Note that the same pointer can have the prefix d_ in the host code, and gm_ in the device code. For example,
if d_data is passed to the kernel as an argument, it should be aliased to gm_data in the kernel arguments
list. In case a device pointer is a field of a passed structure, it can be used directly or aliased to a pointer
with gm_ prefix (i.e. kernelArgs.d_data can be used as is or aliased to gm_data inside the kernel).

• Avoid using uninformative names for CUDA warp, thread, block indexes and their OpenCL analogs (i.e.
threadIndex is preferred to i or atomIndex).

Unit tests

• Test fixtures (the first parameter to TEST/TEST_F) are named with a Test suffix.

• Classes meant as base classes for test fixtures (or as names to be typedefed to be fixtures) are named with a
TestBase or Fixture suffix.

• The CTest test is named with CamelCase, ending with Tests (e.g., OptionsUnitTests).

• The test binary is named with the name of the module and a -test suffix.

8.7.4 Allowed language features

Most of these are not strict rules, but you should have a very good reason for deviating from them.

Portability considerations

Most GROMACS files compile as C++17, but some files remain that compile as C99. C++ has a lot of features,
but to keep the source code maintainable and easy to read, we will avoid using some of them in GROMACS code.
The basic principle is to keep things as simple as possible.

• MSVC supports only a subset of C99 and work-arounds are required in those cases.

• We should be able to use virtually all C++17 features; see “GPU API considerations” below for exceptions.

8.7. Style guidelines 657

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

C++ Standard Library

GROMACS code must support the lowest common denominator of C++17 standard library features available on
supported platforms. Some modern features are useful enough to warrant back-porting. Consistent and forward-
compatible headers are provided in src/gromacs/compat/ as described in the Library documentation

General considerations

As a baseline, GROMACS follows the C++ Core Guidelines c++ guidelines, unless our own more specific guide-
lines below say otherwise. We tend to be more restrictive in some areas, both because we depend on the code
compiling with a lot of different C++ compilers, and because we want to increase readability. However, GRO-
MACS is an advanced projects in constant development, and as our needs evolve we will both relax and tighten
many of these points. Some of these changes happen naturally as part of agreements in code review, while major
parts where we don’t agree should be pushed to a issue tracker thread. Large changes should be suggested early
in the development cycle for each release so we avoid being hit by last-minute compiler bugs just before a release.

• Use namespaces.

– Everything in the GROMACS, gmxapi, nblib libraries/layers should be in the respective gmx,
gmxapi, nblib namespaces. See also here

– Code used in testing should be in a nested test namespace so that it is clearly distinct from both the
code being tested and the testing namespace used by GoogleTest.

– Use anonymous namespaces in source files to describe symbols that should not have external linkage
(see here).

– Use the internal namespace in header files to denote implementation details that cannot be depen-
dend upon, because anonymous namespaces cannot be used (see here).

– Otherwise, avoid nested namespaces unless needing to expose a group of related free functions in a
module header.

– Don’t use using in headers except possibly for aliasing some commonly-used names, and avoid
file-level blanket using namespace gmx and similar. If only a small number of gmx namespace
symbols needed in a not-yet-updated file, consider importing just those symbols. See also here.

• Use STL, but do not use iostreams outside of the unit tests. iostreams can have a negative impact on
performance compared to other forms of string streams, depending on the use case. Also, they don’t always
play well with using C stdio routines at the same time, which are used extensively in the current code.
However, since Google tests rely on iostreams, you should use it in the unit test code.

• Don’t use non-const references as function parameters. They make it impossible to tell whether a variable
passed as a parameter may change as a result of a function call without looking up the prototype.

• Use not_null<T> pointers wherever possible to convey the semantics that a pointer to a valid is required,
and a reference is inappropriate. See also here and here.

• Use string_view in cases where you want to only use a read-only-sequence of characters instead of
using const std::string &. See also here. Because null termination expected by some C APIs (e.g.
fopen, fputs, fprintf) is not guaranteed, string_view should not be used in such cases.

• Use optional<T> types in situations where there is exactly one, reason (that is clear to all parties) for
having no value of type T, and where the lack of value is as natural as having any regular value of T, see here.
Good examples include the return type of a function that parses an integer value from a string, searching for
a matching element in a range, or providing an optional name for a residue type. Do use optional for lazy
loading of resources, e.g., objects that have no default constructor and are hard to construct. Prefer other
constructs when the logic requires an explanation of the reason why no regular value for T exists, e.g., do
not use optional<T> for error handling. optional<T> “models an object, not a pointer, even though
operator*() and operator->() are defined” (cppreference). No dynamic memory allocation ever takes place
and forward declaration of objects stored in optional<T> does not work. Thus refrain from optional
when passing handles; in contrast to unique_ptr, optional has value semantics, not reference semantics.

8.7. Style guidelines 658

../doxygen/html-lib/group__group__compatibility.xhtml
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://gitlab.com/gromacs/gromacs/-/issues/
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-namespace
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed2
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rs-unnamed
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#sf7-dont-write-using-namespace-in-a-header-file
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Ri-nullptr
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rf-nullptr
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines.html#Rstr-view
https://www.boost.org/doc/libs/release/libs/optional
https://en.cppreference.com/w/cpp/utility/optional

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• Don’t use C-style casts; use const_cast, static_cast or reinterpret_cast as appropriate.
See the point on RTTI for dynamic_cast. For emphasizing type (e.g. intentional integer division) use
constructor syntax. For creating real constants use the user-defined literal _real (e.g. 2.5_real instead
of static_cast<real>(2.5)).

• Use signed integers for arithmetic (including loop indices). Use ssize (available as free function and
member of ArrayRef) to avoid casting.

• Avoid overloading functions unless all variants really do the same thing, just with different types. Instead,
consider making the function names more descriptive.

• Avoid using default function arguments. They can lead to the code being less readable than without (see
here). If you think that your specific case improves readability (see here), you can justify their use.

• Don’t overload operators before thorough consideration whether it really is the best thing to do. Never
overload &&, ||, or the comma operator, because it’s impossible to keep their original behavior with respect
to evaluation order.

• Try to avoid complex templates, complex template specialization or techniques like SFINAE as much as
possible. If nothing else, they can make the code more difficult to understand.

• Don’t use multiple inheritance. Inheriting from multiple pure interfaces is OK, as long as at most one base
class (which should be the first base class) has any code. Please also refer to the explanation here and here.

• Don’t write excessively deep inheritance graphs. Try to not inherit implementation just to save a bit of
coding; follow the principle “inherit to be reused, not to reuse.” Also, you should not mix implementation
and interface inheritance. For explanation please see here.

• Don’t include unnecessary headers. In header files, prefer to forward declare the names of types used only
“in name” in the header file. This reduces compilation coupling and thus time. If a source file also only uses
the type by name (e.g. passing a pointer received from the caller to a callee), then no include statements are
needed!

• Make liberal use of assertions to help document your intentions (but prefer to write the code such that no
assertion is necessary).

• Prefer GMX_ASSERT() and GMX_RELEASE_ASSERT() to naked assert() because the former permit
you to add descriptive text.

• Use gmx::Mutex rather than pthreads, std or raw thread-MPI mutexes.

• Use proper enums for variable whose type can only contain one of a limited set of values. C++ is much
better than C in catching errors in such code. Ideally, all enums should be typed enums, please see here.

• When writing a new class, think whether it will be necessary to make copies of that class. If not, declare
the copy constructor and the assignment operator as private and don’t define them, making any attempt to
copy objects of that class fail. If you allow copies, either provide the copy constructor and the assignment
operator, or write a clear comment that the compiler-generated ones will do (and make sure that they do what
you want). src/gromacs/utility/classhelpers.h has some convenience macros for doing this
well. You can also use deleted functions in this case.

• Declare all constructors with one parameter as explicit unless you really know what you are doing. Oth-
erwise, they can be used for implicit type conversions, which can make the code difficult to understand,
or even hide bugs that would be otherwise reported by the compiler. For the same reason, don’t declare
operators for converting your classes to other types without thorough consideration. For an explanation,
please see here.

• Write const-correct code (no const_cast unless absolutely necessary).

• Avoid using RTTI (run-time type information, in practice dynamic_cast and typeid) unless you really
need it. The cost of RTTI is very high, both in binary size (which you always pay if you compile with it) and
in execution time (which you pay only if you use it). If your problem seems to require RTTI, think about
whether there would be an alternative design that wouldn’t. Such alternative designs are often better.

• Don’t depend on compiler metadata propagation. struct elements and captured lambda parameters tend to
have restrict and alignment qualifiers discarded by compilers, so when you later define an instance of
that structure or allocate memory to hold it, the data member might not be aligned at all.

8.7. Style guidelines 659

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#i23-keep-the-number-of-function-arguments-low
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#f51-where-there-is-a-choice-prefer-default-arguments-over-overloading
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c135-use-multiple-inheritance-to-represent-multiple-distinct-interfaces
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c136-use-multiple-inheritance-to-represent-the-union-of-implementation-attributes
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c129-when-designing-a-class-hierarchy-distinguish-between-implementation-inheritance-and-interface-inheritance
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Renum-class
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Rc-explicit

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• Plan for code that runs in compute-sensitive kernels to have useful data layout for re-use, alignment for
SIMD memory operations

• Recognize that some parts of the code have different requirements - compute kernels, mdrun setup code,
high-level MD-loop code, simulation setup tools, and analysis tools have different needs, and the trade-off
point between correctness vs reviewer time vs developer time vs compile time vs run time will differ.

• Be restrictive when using auto to define variables. It is fine to use auto if the variable type is immediately
apparent, or completely unnecessary, to a future reader of the code. In some case it may be necessary to use
auto, e.g., together with generic templates. It is recommended to use auto with lengthy types, such as
iterators or lambdas, where specifying the type explicitly would reduce readability. If in doubt, avoid using
auto.

Implementing exceptions for error handling

See Error handling (page 663) for the approach to handling run-time errors, ie. use exceptions.

• Write exception-safe code. All new code has to offer at least the basic or nothrow guarantee to make this
feasible.

• Use std (or custom) containers wherever possible.

• Use smart pointers for memory management. By default, use std::unique_ptr and
gmx::unique_cptr in association with any necessary raw new or snew calls. std::shared_ptr
can be used wherever responsibility for lifetime must be shared. Never use malloc.

• Use RAII for managing resources (memory, mutexes, file handles, . . .).

• It is preferable to avoid calling a function which might throw an exception from a legacy function which
is not exception safe. However, we make the practical exception to permit the use of features such as
std::vector and std::string that could throw std::bad_alloc when out of memory. In par-
ticular, GROMACS has a lot of old C-style memory handling that checking tools continue to issue valid
warnings about as the tools acquire more functionality, and fixing these with old constructs is an inefficient
use of developer time.

• Functions / methods should be commented whether they are exception safe, whether they might throw an
exception (even indirectly), and if so, which exception(s) they might throw.

GPU API considerations

• Write OpenCL as C (specifically, C99) code. Using C++ in OpenCL kernels is not well supported.

• Keep in mind that some combinations of CUDA and GCC do not handle the C++17 properly. This causes
minor issues like the need to use std::is_same::value (supported in C++14) instead of std::is_-
same_v (added in C++17) in the glue code. This is caught by our CI.

• Use SYCL 2020 standard. The vendor-specific extensions and backend-specific code can be used when
needed for performance, but a reasonable fallback must be provided for all other supported targets.

• Use USM and in-order queues in SYCL code instead of sycl::buffer. This makes the code more
uniform across all GPU backends. Besides, buffers are more challenging for the compilers to optimize in
kernels, leading to worse performance (as of 2022).

8.7. Style guidelines 660

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Preprocessor considerations

• Don’t use preprocessor defines for things other than directly related to configuring the build. Use templates
or inline functions to generate code, and enums or const variables for constants.

• Preprocessing variables used for configuring the build should be organized so that a valid value is always
defined, i.e. we never test whether one of our preprocessor variables is defined, rather we test what value
it has. This is much more robust under maintenance, because a compiler can tell you that the variable is
undefined.

• Avoid code with lengthy segments whose compilation depends on #if (or worse, #ifdef of symbols provided
from outside GROMACS).

• Prefer to organize the definition of a const variable at the top of the source code file, and use that in the code.
This helps keep all compilation paths built in all configurations, which reduces the incidence of silent bugs.

• Indent nested preprocessor conditions if nesting is necessary and the result looks clearer than without in-
denting.

• Please strongly consider a comment repeating the preprocessor condition at the end of the region, if a
lengthy region is necessary and benefits from that. For long regions this greatly helps in understanding and
debugging the code.

8.7.5 Guidelines for creating meaningful issue reports

This section gives some started on how to generate useful issues on the GROMACS issue tracker. The information
here comes to a large extent directly from there, to help you in preparing your reports.

What to report

Please only report issues you have confirmed to be caused by GROMACS behaving in an unintended way, and
that you have investigated to the best of your ability. If you have large simulations fail at some point, try to also
trigger the problem with smaller test cases that are more easily debuggable.

Bugs resulting from the use third-party software should be investigated first to make sure that the fault is in
GROMACS and not in other parts of the toolchain.

Please do not submit generic issues resulting from system instabilities and systems Blowing up (page 329).

What should be included

The report should include a general description of the problem with GROMACS indicating both the expected
behaviour and the actual outcome. If the issue causes program crashes, the report should indicate where the crash
happens and if possible include the stack trace right up to the crash.

All bugs should include the necessary information for the developers to reproduce the errors, including if needed
minimal input files (*tpr, *top, *mdp, etc), run commands or minimal version of run scripts, how you compiled
GROMACS and if possible the system architecture.

The emphasis should be on having a minimal working example that is easy to follow for the developers, that
does not result in any warnings or errors in itself. If your example generates errors, your issue will likely not be
considered as real, or at the minimum it will be much harder to analyse to find the actual issue.

If your inputs are sensitive, then it is possible to create private issues so that the developer team can have access
to solve the problem, while preventing widespread visibility on the internet.

8.7. Style guidelines 661

https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Supporting the developers

In general you should be able to answer questions posed to you by the developers working on the program, if
you want to help them in fixing the bug you found. This may include things such as explaining run scripts or
simulation set-up, as well as confirming issues with different versions of the program and different combinations
of supported libraries and compilers.

Please refrain from setting things such as target version or deciding on unreasonable priorities. If you decide to
fix the issue on your own, please adhere to the other standards mentioned on the related pages Guidelines for code
formatting (page 653) and Guidelines for formatting of git commits (page 662).

ã See also

Contribute to GROMACS (page 628)

General issue workflow

The general issue workflow is shown in the figure below:

Project maintainers will apply Status labels as the issue is processed.

• Status::Accepted: Bug confirmed / Desirable feature.

• Status::In Progress: Assignee starts to work.

• Status::Blocked: Progress requires feedback or other action.

• Status::Rejected: Invalid report or not a desirable feature.

• Status::Fix uploaded: Merge request is available for review

• Status::Feedback-wanted: Resolution pending additional feedback or response

• Status::Resolved: The issue will be closed if there is no further discussion.

8.7.6 Guidelines for formatting of git commits

While there is no true correct way on how to submit new commits for code review for GROMACS, following
these guidelines will help the review process go smoothly.

General rules for newly submitted code

New code should follow the other style rules (page 653) outlined above before submitting. This will make it less
likely that your change will be rejected due to that. If your change modifies some existing code that does not yet
conform to the style, then a preliminary patch that cleans up the surrounding area is a good idea. We like to slowly
improve the quality while we add or change functionality.

8.7. Style guidelines 662

https://gitlab.com/gromacs/gromacs/-/labels?search=status
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3AAccepted
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3AIn+Progress
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3ABlocked
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3ARejected
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3AFix+uploaded
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3AFeedback-wanted
https://gitlab.com/gromacs/gromacs/-/issues?label_name%5B%5D=Status%3A%3AResolved

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Guidelines for git commit messages

Commit messages should contain a quick explanation in verb form on what has been changed or what has been
the purpose of the change. If available, the final part of the message before the ChangeId should be a short section
like Fixes #issue-id to link the change to a possibly previously posted issue, or Refs #issue-id if the present patch
is somehow related to that work without necessarily fixing the whole issue.

Concerning inline code comments

New code should be sufficiently commented so that other people will be able to understand the purpose of the code,
and less about the current operation. Preferably the variable naming and code structure clarify the mechanics, and
comments should only refer to higher-level things, such as choice of algorithm, or the desire to be consistent with
some other part of the code.

For example, the following comment would be insufficient to explain the (made up example) of iteration over a
list of interactions:

/* Code takes each item and iterates over them in a loop

* to store them.

*/

A much better example would be explaining why the iteration takes place:

/* We iterate over the items in the list to get

* the specific interaction type for all of them

* and store them in the new data type for future

* use in function foo

*/

From the second example, someone debugging might be able to deduce better if an error observed in foo is actually
caused by the previous assignment.

8.7.7 Error handling

To make GROMACS behave like a proper library, we need to handle errors in a consistent and predictable way.
In this section, “user” refers to the end user of GROMACS whether via some command-line tool, or a workflow,
or a call to a public API. There are different types of errors, and the handling reflects this. This section is a work
in progress, particularly as the broader C++ community is a long way from consensus in these areas.

Brief summary on which method to use

More detailed rules and rationale are written below, but in short, when a reason exists that code is unable to do its
job:

• If the reason can be checked at compile-time, then use static_assert.

• If the reason is normal in context, then express that in the types used (e.g. return std::optional) and
document that this is normal.

• If the reason is that an internal invariant or pre-condition is violated (e.g. unexpected null pointer passed)
on a hot code path, then use GMX_ASSERT.

• Otherwise, if the reason is that an internal invariant or pre-condition is violated then use GMX_RELEASE_-
ASSERT.

• Otherwise, (typically an error returned from system call or GPU SDK, bad user input), then use GMX_-
THROW.

8.7. Style guidelines 663

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Guiding principles

• GROMACS should adopt approaches that have achieved consensus elsewhere, e.g. in the C++ Core Guide-
lines. In particular, be guided by its section on error handling

• The library should not print out anything to stdio/stderr unless it is part of the API specification, and even
then, there should be a way for the user to suppress or redirect the output.

• The library should normally not terminate the program without the user having control over this.

• Design interfaces of functions, classes, modules, and libraries so that values passed at run time are valid.
Pass const references or not_null pointers rather than raw pointers. Return objects where possible. Use
e.g. class enums for the type of passed values. Consider such enums as template parameters, rather than
passing run-time values. Refactor existing interfaces to improve such aspects when starting new work in an
area.

• Check user input at API boundaries and establish invariants as soon as possible, e.g. by expressing the
user’s choice in the type system. These form the pre-conditions that error handling will rely on.

• Use assertions to validate invariants and pre-conditions. There is value in using a different technique for
checking such violations in order to make the reason for the check clear to the maintainer.

Specific rules

• Use static_assert wherever possible to detect errors at compile time.

• Throw exceptions to indicate that a function cannot do its assigned task, per the C++ Core Guidelines E.2.
In particular, constructors should throw when they cannot construct a valid object, per C++ Core Guidelines
C.42. However, recognize that in some cases the underlying reason is that some other component has not
set up the correct pre-condition, and such cases should be handled with assertions (see below).

• At API boundaries, the assigned task of some code will be to validate the input, and that code should express
failure to validate by throwing.

• Many programming errors violate pre-conditions of other functions. Until there is language support for
contracts, the best that can be done is to check these with assertions. Note that only one component should
have the responsibility for validating any particular input from the user, and other components should rely
upon that validation in their pre-conditions.

• When asserting, use GMX_RELEASE_ASSERT by default. This macro will run its check in all build con-
figurations, including Release.

• When asserting in cases where the code is called in an inner loop of e.g. the MD step, GMX_ASSERT can
be used. This macro will run its check only when NDEBUG is not defined, including the RelWithAssert
build configuration (which is the default build type used in CI).

• It can be appropriate to provide both checked and unchecked interfaces, as std::vector does with at()
and operator[], respectively. Note that even the latter is checked if you build e.g. libstdc++ in the
right configuration!

• When calling low-level APIs (including C and C++ standard libraries, GPU SDKs) always check for suc-
cess/failure. Generally the correct thing to do upon failure will be to throw, perhaps including a descriptive
string obtained from an error code with another API call.

• Do catch exceptions from lower-level components memory or file system IO errors. As a general guideline,
incorrect user input should not produce an untrapped exception resulting in execution termination telling the
user an exception occured. Instead, you should catch exceptions in an earlier stack frame, make a suitable
decision about diagnostic messages, and then decide whether execution should be terminated (if that is in
the scope of the code making the decision) and, if so, how to terminate.

• There is a global list of possible exceptions in api/legacy/include/gromacs/utility/
exceptions.h, and the library should throw one of these when it fails, possibly providing a more detailed
description of the reason for the failure. The types of exceptions can be extended, and currently include:

– Out of memory (e.g. std::bad_alloc)

8.7. Style guidelines 664

http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#S-errors
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-throw
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Re-invariant

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

– File I/O error (e.g. not found)

– Invalid user input (could not be understood)

– Inconsistent user input (parsed correctly, but has internal conflicts)

– Simulation instability

– Invalid API call/value/internal error (an assertion might also be used in such cases)

– In the internals of a module called from code that is not exception safe, you can use exceptions for
error handling, but avoid propagating them to caller code.

• Avoid using exceptions to propagate errors across regions that start or join threads with OpenMP, since
OpenMP cannot make guarantees about whether exceptions are caught or if the program will crash. Cur-
rently we catch all exceptions before we leave an OpenMP threaded region. If you throw an exception,
make sure that it is caught and handled appropriately in the same thread/OpenMP section.

• Avoid using exceptions to propagate errors within regions where non-blocking API calls (e.g. to MPI or
GPU SDKs) have been made, because the possible advantage of catching at a higher level and continuing
execution is absent when the partner in the API call may be left blocked.

• There are also cases where a library routine wants to report a warning or a non-fatal error, but is still able to
continue processing. In this case you should try to collect all issues and report and report them (similar to
what grompp does with notes, warnings and errors) instead of just returning the first error. It is irritating to
users if they fix the reported error, but then they keep getting a new error message every time the rerun the
program.

• A function should not fail as part of its normal operation. However, doing nothing can be considered normal
operation. A function accessing data should typically also be callable when no such data is available, but
still return through normal means. If the failure is not normal, it is OK to rather throw an exception.

• Error handling with gmx_fatal, gmx_warning, gmx_incons, gmx_comm etc. is deprecated and
should generally be refactored to throw or assert according to the above guidelines.

• There is currently no attempt made to check for error states on other MPI ranks during the simulation and
provide a coordinated recovery. However setup code should do such checks routinely.

• We use GMX_RELEASE_ASSERT and GMX_ASSERT rather than assert to ensure that non-immediate
strings can be used to describe the problem when the error is reported. This is particularly useful when
troubleshooting issues where missing test coverage leads users to uncover such errors.

For coding guidelines to make this all work, see Implementing exceptions for error handling (page 660).

8.8 Development-time tools

8.8.1 Using Doxygen

This section documents how Doxygen is set up in the GROMACS source tree, as well as guidelines for adding
new Doxygen comments. Examples are included, as well as tips and tricks for avoiding Doxygen warnings. The
guidelines focus on C++ code and other new code that follows the new module layout. Parts of the guidelines are
still applicable to documenting older code (e.g., within gmxlib/ or mdlib/), in particular the guidelines about
formatting the Doxygen comments and the use of \internal. See Documentation organization (page 633) for
the overall structure of the documentation.

To get started quickly, you only need to read the first two sections to understand the overall structure of the docu-
mentation, and take a look at the examples at the end. The remaining sections provide the details for understanding
why the examples are the way they are, and for more complex situations. They are meant more as a reference
to look up solutions for particular problems, rather than single-time reading. To understand or find individual
Doxygen commands, you should first look at the Doxygen documentation (http://www.doxygen.nl/manual/).

8.8. Development-time tools 665

http://www.doxygen.nl/manual/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Documentation flavors

The GROMACS source tree is set up to produce several different levels of Doxygen documentation:

1. Public API documentation (suffix -user), which documents functions and classes exported from the li-
brary and intended for use outside the GROMACS library.

2. Library API documentation (suffix -lib), which additionally includes functions and classes that are de-
signed to be used from other parts of GROMACS, as well as some guidelines that are mostly of interest to
developers.

3. Full documentation (suffix -full), which includes (nearly) all (documented) functions and classes in the
source tree.

4. Maximally verbose documentation (suffix -dev) with everything doxygen can extract as well as additional
internal links.

Each subsequent level of documentation includes all the documentation from the levels above it. The suffixes
above refer to the suffixes of Doxygen input and output files, as well as the name of the output directory. When
all the flavors have been built, the front pages of the documentation contain links to the other flavors, and explain
the differences in more detail.

As a general guideline, the public API documentation should be kept free of anything that a user linking against
an unmodified GROMACS does not see. In other words, the public API documentation should mainly document
the contents of installed headers, and provide the necessary overview of using those. Also, verbosity requirements
for the public API documentation are higher: ideally, readers of the documentation could immediately start using
the API based on the documentation, without any need to look at the implementation.

Similarly, the library API documentation should not contain things that other modules in GROMACS can or
should never call. In particular, anything declared locally in source files should be only available in the full
documentation. Also, if something is documented, and is not identified to be in the library API, then it should not
be necessary to call that function from outside its module.

Building the documentation

If you want to see up-to-date documentation, you can download artifacts from the webpage job of the latest
scheduled pipeline for a corresponding branch (https://gitlab.com/gromacs/gromacs/-/pipelines?page=1&scope=
all&source=schedule). CI also runs Doxygen for all changes pushed to GitLab for release and main branches, and
the resulting documentation can be found in the artifacts of the corresponding webpage job. The Doxygen job
will fail if it introduces any Doxygen warnings.

You may need to build the documentation locally if you want to check the results after adding/modifying a signif-
icant amount of comments. This is recommended in particular if you do not have much experience with Doxygen.
It is a good idea to build with all the different settings to see that the result is what you want, and that you do not
produce any warnings. For local work, it is generally a good idea to set GMX_COMPACT_DOXYGEN=ON CMake
option, which removes some large generated graphs from the documentation and speeds up the process signifi-
cantly. There are also “fast” versions of the make targets that skip the additional diagrams built for the lib level
and lower.

All files related to Doxygen reside in the docs/doxygen/ subdirectory in the source and build trees. In a
freshly checked out source tree, this directory contains various Doxyfile-*.cmakein files. When you run
CMake, corresponding files Doxyfile-user, Doxyfile-lib, Doxyfile-full, Doxyfile-dev are
generated at the corresponding location in the build tree. There is also a Doxyfile-common.cmakein, which
is used to produce Doxyfile-common. This file contains settings that are shared between all the input files.
Doxyfile-compact provides the extra settings for GMX_COMPACT_DOXYGEN=ON.

You can run Doxygen directly with one of the generated files (all output will be produced under the current
working directory), or build one of the doxygen-user, doxygen-lib, doxygen-full, doxygen-dev
targets. The targets run Doxygen in a quieter mode and only show the warnings if there were any, and put the
output under docs/html/doxygen/ in the build tree, so that the Doxygen build cooperates with the broader
webpage target. The doxygen-all target builds all three targets with less typing.

8.8. Development-time tools 666

https://gitlab.com/gromacs/gromacs/-/pipelines?page=1&scope=all&source=schedule
https://gitlab.com/gromacs/gromacs/-/pipelines?page=1&scope=all&source=schedule

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The generated documentation is put under html-user/, html-lib/, html-full/, and/or html-dev/.
Open index.xhtml file from one of these subdirectories to start browsing (for GROMACS developers, the
html-lib/ is a reasonable starting point). Log files with all Doxygen warnings are also produced as docs/
doxygen/doxygen-*.log, so you can inspect them after the run.

You will need Doxygen 1.8.5 to build the current documentation. Other versions may work, but likely also
produce warnings. Additionally, graphviz and mscgen are required for some graphs in the documentation, and
latex for formulas. Working versions are likely available through most package managers. It is possible to build
the documentation without these tools, but you will see some errors and the related figures will be missing from
the documentation.

General guidelines for Doxygen markup

Doxygen provides quite a few different alternative styles for documenting the source code. There are subtleties in
how Doxygen treats the different types of comments, and this also depends somewhat on the Doxygen configura-
tion. It is possible to change the meaning of a comment by just changing the style of comment it is enclosed in.
To avoid such issues, and to avoid needing to manage all the alternatives, a single style throughout the source tree
is preferable. When it comes to treatment of styles, GROMACS uses the default Doxygen configuration with one
exception: JAVADOC_AUTOBRIEF is set ON to allow more convenient one-line brief descriptions in C code.

Majority of existing comments in GROMACS uses Qt-style comments (/*! and //! instead of /** and ///, \
brief instead of @brief etc.), so these should be used also for new documentation. There is a single exception
for brief comments in C code; see below.

Similarly, existing comments use /*! for multiline comments in both C and C++ code, instead of using multiple
//! lines for C++. The rationale is that since the code will be a mixture of both languages for a long time, it
is more uniform to use similar style in both. Also, since files will likely transition from C to C++ gradually,
rewriting the comments because of different style issues should not generally be necessary. Finally, multi-line
//! comments can work differently depending on Doxygen configuration, so it is better to avoid that ambiguity.

When adding comments, ensure that a short brief description is always produced. This is used in various listings,
and should briefly explain the purpose of the method without unnecessarily expanding those lists. The basic
guideline is to start all comment blocks with \brief (possibly after some other Doxygen commands). If you
want to avoid the \brief for one-liners, you can use //!, but the description must fit on a single line; otherwise,
it is not interpreted as a brief comment. Note in particular that a simple /*! without a \brief does not produce
a brief description. Also note that \brief marks the whole following paragraph as a brief description, so you
should insert an empty line after the intended brief description.

In C code, // comments must be avoided because some compilers do not like them. If you want to avoid the
\brief for one-liners in C code, use /** instead of //!. If you do this, the brief description should not contain
unescaped periods except at the end. Because of this, you should prefer //! in C++ code.

Put the documentation comments in the header file that contains the declaration, if such a header exists.
Implementation-specific comments that do not influence how a method is used can go into the source file, just
before the method definition, with an \internal tag in the beginning of the comment block. Doxygen-style
comments within functions are not generally usable.

At times, you may need to exclude some part of a header or a source file such that Doxygen does not see it at all.
In general, you should try to avoid this, but it may be necessary to remove some functions that you do not want
to appear in the public API documentation, and which would generate warnings if left undocumented, or to avoid
Doxygen warnings from code it does not understand. Prefer \cond and \endcond to do this. If \cond does
not work for you, you can also use #ifndef DOXYGEN. If you exclude a class method in a header, you also
need to exclude it in the source code to avoid warnings.

8.8. Development-time tools 667

http://www.graphviz.org
http://www.mcternan.me.uk/mscgen/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS specifics

The general guidelines on the style of Doxygen comments were given above. This section introduces GROMACS
specific constructs currently used in Doxygen documentation, as well as how GROMACS uses Doxygen groups
to organize the documentation.

Some consistency checks are done automatically using custom scripts. See Source tree checker scripts (page 689)
for details.

Controlling documentation visibility

To control in which level of documentation a certain function appears, three different mechanisms are used:

• Global Doxygen configuration. This is mainly used to include declarations local to source files only in the
full documentation. You can find the details from the Doxyfile-*.cmakein files, and some of them
are also mentioned below on individual code constructs.

• The standard Doxygen command \internal marks the documentation to be only extracted into the full
documentation (INTERNAL_DOCS is ON only for the full documentation). This should be used as a first
command in a comment block to exclude all the documentation. It is possible to use \internal and
\endinternal to exclude individual paragraphs, but \if internal is preferred (see below). In addi-
tion, GROMACS-specific custom Doxygen command \libinternal is provided, which should be used
the same way to exclude the documentation from the public API documentation. This command expands to
either \internal or to a no-op, depending on the documentation level.

• Doxygen commands \if and \cond can be used with section names libapi and internal to only
include the documentation in library API and the full documentation, respectively. libapi is also defined
in the full documentation. These are declared using ENABLED_SECTIONS in the Doxygen configuration
files.

Examples of locations where it is necessary to use these explicit commands are given below in the sections on
individual code constructs.

Modules as Doxygen groups

As described in Source code organization (page 631), each subdirectory under src/gromacs/ represents a
module, i.e., a somewhat coherent collection of routines. Doxygen cannot automatically generate a list of routines
in a module; it only extracts various alphabetical indexes that contain more or less all documented functions and
classes. To help reading the documentation, the routines for a module should be visible in one place.

GROMACS uses Doxygen groups to achieve this: for each documented module, there is a \defgroup definition
for the module, and all the relevant classes and functions need to be manually added to this group using \ingroup
and \addtogroup. The group page also provides a natural place for overview documentation about the module,
and can be navigated to directly from the “Modules” tab in the generated documentation.

Some notes about using \addtogroup are in order:

• \addtogroup only adds the elements that it directly contains into the group. If it contains a namespace
declaration, only the namespace is added to the group, but none of the namespace contents are. For this
reason, \addtogroup should go within the innermost scope, around the members that should actually be
added.

• If the module should not appear in the public API documentation, its definition (\defgroup) should be
prefixed with a \libinternal. In this case, also all \addtogroup commands for this module should
be similarly prefixed. Otherwise, they create the group in the public API documentation, but without any
of the content from the \defgroup definition. This may also cause the contents of the \addtogroup
section to appear in the public API documentation, even if it otherwise would not.

8.8. Development-time tools 668

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Public API and library API groups

In addition to the module groups, two fixed groups are provided: group_publicapi and group_-
libraryapi. Classes and files can be added to these groups using GROMACS specific custom \
inpublicapi and \inlibraryapi commands. The generated group documentation pages are not very
useful, but annotated classes and files show the API definition under the name, making this information more eas-
ily accessible. These commands in file-level comments are also used for some automatic intermodule dependency
validation (see below).

Note that functions, enumerations, and other entities that do not have a separate page in the generated documenta-
tion can only belong to one group; in such a case, the module group is preferred over the API group.

Documenting specific code constructs

This section describes the techical details and some tips and tricks for documenting specific code constructs such
that useful documentation is produced. If you are wondering where to document a certain piece of information, see
the documentation structure section in Documentation organization (page 633). The focus of the documentation
should be on the overview content: Doxygen pages and the module documentation. An experienced developer
can relatively easily read and understand individual functions, but the documentation should help in getting the
big picture.

Doxygen pages

The pages that are accessible through navigation from the front page are written using Markdown and are located
under docs/doxygen/. Each page should be placed in the page hierarchy by making it a subpage of another
page, i.e., it should be referenced once using \subpage. mainpage.md is the root of the hierarchy.

There are two subdirectories, user/ and lib/, determining the highest documentation level where the page
appears. If you add pages to lib/, ensure that there are no references to the page from public API documentation.
\if libapi can be used to add references in content that is otherwise public. Generally, the pages should be
on a high enough level and provide overview content that is useful enough such that it is not necessary to exclude
them from the library API documentation.

Modules

For each module, decide on a header file that is the most important one for that module (if there is no self-evident
header, it may be better to designate, e.g., module-doc.h for this purpose, but this is currently not done for any
module). This header should contain the \defgroup definition for the module. The name of the group should
be module_name, where name is the name of the subdirectory that hosts the module.

The module should be added to an appropriate group (see docs/doxygen/misc.cpp for definitions) using
\ingroup to organize the “Modules” tab in the generated documentation.

One or more contact persons who know about the contents of the module should be listed using \author com-
mands. This provides a point of contact if one has questions. Authors should be listed in chronological order of
contributions, where possible.

8.8. Development-time tools 669

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Classes/structs

Classes and structs in header files appear always in Doxygen documentation, even if their enclosing file is not
documented. So start the documentation blocks of classes that are not part of the public API with \internal
or \libinternal. Classes declared locally in source files or in unnamed namespaces only appear in the full
documentation.

If a whole class is not documented, this does not currently generate any warning. The class is simply exluded from
the documentation. But if a member of a documented class is not documented, a warning is generated. Guidelines
for documenting free functions apply to methods of a class as well.

For base classes, the API classification (\inpublicapi or \inlibraryapi) should be based on where the
class is meant to be subclassed. The visibility (\internal or \libinternal), in contrast, should reflect the
API classification of derived classes such that the base class documentation is always generated together with the
derived classes.

For classes that are meant to be subclassed and have protected members, the protected members should only
appear at the documentation level where the class is meant to be subclassed. For example, if a class is meant to
be subclassed only within a module, the protected members should only appear in the full documentation. This
can be accomplished using \cond (note that you will need to add the \cond command also to the source files to
hide the same methods from Doxygen, otherwise you will get confusing warnings).

Methods/functions/enums/macros

These items do not appear in the documentation unless their enclosing scope is documented. For class members,
the scope is the class; otherwise, it is the namespace if one exists, or the file. An \addtogroup can also define a
scope if the group has higher visibility than the scope outside it. So if a function is not within a namespace (mostly
applicable to C code) and has the same visibility as its enclosing file, it is not necessary to add a \internal or
\libinternal.

Static functions are currently extracted for all documentation flavors to allow headers to declare static
inline functions (used in, for example, math code). Functions in anonymous namespaces are only extracted
into the full documentation. Together with the above rules, this means that you should avoid putting a static
function within a documented namespace, even within source files, or it may inadvertently appear in the public
API documentation.

If you want to exclude an item from the documentation, you need to put in inside a \cond block such that
Doxygen does not see it. Otherwise, a warning for an undocumented function is generated. You need to enclose
both the declaration and the definition with \cond.

Files

Each documented file should start with a documentation block (right after the copyright notice) that documents
the file. See the examples section for exact formatting. Things to note:

• Please do not specify the file name explicitly after \file. By default, a file comment applies to the file it
is contained in, and an explicit file name only adds one more thing that can get out of date.

• \brief cannot appear on the same line as the \file, but should be on the next line.

• \internal or \libinternal should indicate where the header is visible. As a general guideline,
all installed headers should appear in the public API documentation, i.e., not contain these commands. If
nothing else, then to document that it does not contain any public API functions. Headers that declare
anything in the library API should be marked with \libinternal, and the rest with \internal.

• All source files, as well as most test files, should be documented with \internal, since they do not
provide anything to public or library API, and this avoids unintentionally extracting things from the file
into those documentations. Shared test files used in tests from other modules should be marked with \
libinternal.

8.8. Development-time tools 670

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• \inpublicapi or \inlibraryapi should be used to indicate where the header is meant to be directly
included.

• As with modules, one or more contact persons should be listed with \author. If you make significant
modifications or additions to a file, consider adding an \author line for yourself.

Directories

Directory documentation does not typically contain useful information beyond a possible brief description, since
they correspond very closely to modules, and the modules themselves are documented. A brief description is
still useful to provide a high-level overview of the source tree on the generated “Files” page. A reference to the
module is typically sufficient as a brief description for a directory. All directories are currently documented in
docs/doxygen/directories.cpp.

Examples

Basic C++

Here is an example of documenting a C++ class and its containing header file. Comments in the code and the
actual documentation explain the used Doxygen constructs.

/*! \libinternal \file

* \brief

* Declares gmx::MyClass.

*
* More details. The documentation is still extracted for the class even
→˓if

* this whole comment block is missing.

*
* \author Example Author <example@author.com>

* \inlibraryapi

* \ingroup module_mymodule

*/

namespace gmx
{

/*! \libinternal

* \brief

* Brief description for the class.

*
* More details. The \libinternal tag is required for classes, since they
→˓are

* extracted into the documentation even in the absence of documentation
→˓for

* the enclosing scope.

* The \libinternal tag is on a separate line because of a bug in Doxygen

* 1.8.5 (only affects \internal, but for clarity it is also worked around

* here).

*
* \inlibraryapi

* \ingroup module_mymodule

*/
class MyClass
{

public:
(continues on next page)

8.8. Development-time tools 671

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

// Trivial constructors or destructors do not require
→˓documentation.

// But if a constructor takes parameters, it should be documented
→˓like

// methods below.
MyClass();
~MyClass();

/*! \brief

* Brief description for the method.

*
* \param[in] param1 Description of the first parameter.

* \param[in] param2 Description of the second parameter.

* \returns Description of the return value.

* \throws std::bad_alloc if out of memory.

*
* More details describing the method. It is not an error to put

→˓this

* above the parameter block, but most existing code has it here.

*/
int myMethod(int param1, const char *param2) const;

//! Brief description for the accessor.
int simpleAccessor() const { return var_; }
/*! \brief

* Alternative, more verbose way of specifying a brief description.

*/
int anotherAccessor() const;
/*! \brief

* Brief description for another accessor that is so long that it
→˓does

* not conveniently fit on a single line cannot be specified with /
→˓/!.

*/
int secondAccessor() const;

private:
// Private members (whether methods or variables) are currently

→˓ignored
// by Doxygen, so they don't need to be documented. Documentation
// doesn't hurt, though.
int var_;

};

} // namespace gmx

8.8. Development-time tools 672

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Basic C

Here is another example of documenting a C header file (so avoiding all C++-style comments), and including free
functions. It also demonstrates the use of \addtogroup to add multiple functions into a module group without
repeated \ingroup tags.

/*! \file

* \brief

* Declares a collection of functions for performing a certain task.

*
* More details can go here.

*
* \author Example Author <example@author.com>

* \inpublicapi

* \ingroup module_mymodule

*/

/*! \addtogroup module_mymodule */
/*! \{ */

/*! \brief

* Brief description for the data structure.

*
* More details.

*
* \inpublicapi

*/
typedef struct {

/** Brief description for member. */
int member;
int second; /**< Brief description for the second member. */
/*! \brief

* Brief description for the third member.

*
* Details.

*/
int third;

} gmx_mystruct_t;

/*! \brief

* Performs a simple operation.

*
* \param[in] value Input value.

* \returns Computed value.

*
* Detailed description.

* \inpublicapi cannot be used here, because Doxygen only allows a single

* group for functions, and module_mymodule is the preferred group.

*/
int gmx_function(int value);

/* Any . in the brief description, except at the end, should be escaped as
→˓\. */
/** Brief description for this function. */
int gmx_simple_function();

/*! \} */

8.8. Development-time tools 673

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Scoping and visibility rules

The rules where Doxygen expects something to be documented, and when are commands like \internal
needed, can be complex. The examples below describe some of the pitfalls.

/*! \libinternal \file

* \brief

* ...

*
* The examples below assume that the file is documented like this:

* with an \libinternal definition at the beginning, with an intent to not

* expose anything from the file in the public API. Things work similarly
→˓for

* the full documentation if you replace \libinternal with \internal

* everywhere in the example.

*
* \ingroup module_example

*/

/*! \brief

* Brief description for a free function.

*
* A free function is not extracted into the documentation unless the
→˓enclosing

* scope (in this case, the file) is. So a \libinternal is not necessary.

*/
void gmx_function();

// Assume that the module_example group is defined in the public API.

//! \addtogroup module_example
//! \{

//! \cond libapi
/*! \brief

* Brief description for a free function within \addtogroup.

*
* In this case, the enclosing scope is actually the module_example group,

* which is documented, so the function needs to be explicitly excluded.

* \\libinternal does not work, since it would produce warnings about an

* undocumented function, so the whole declaration is hidden from Doxygen.

*/
void gmx_function();
//! \endcond

//! \}

// For modules that are only declared in the library API, \addtogroup
// cannot be used without an enclosing \cond. Otherwise, it will create
// a dummy module with the identifier as the name...

//! \cond libapi
//! \addtogroup module_libmodule
//! \{

/*! \brief
(continues on next page)

8.8. Development-time tools 674

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

* Brief description.

*
* No \libinternal is necessary here because of the enclosing \cond.

*/
void gmx_function();

//! \}
//! \endcond

// An alternative to the above is use this, if the enclosing scope is only
// documented in the library API:

//! \libinternal \addtogroup module_libmodule
//! \{

//! Brief description.
void gmx_function()

//! \}

/*! \libinternal \brief

* Brief description for a struct.

*
* Documented structs and classes from headers are always extracted into
→˓the

* documentation, so \libinternal is necessary to exclude it.

* Currently, undocumented structs/classes do not produce warnings, so \
→˓cond

* is not necessary.

*/
struct t_example
{

int member1; //!< Each non-private member should be documented.
bool member2; //!< Otherwise, Doxygen will produce warnings.

};

// This namespace is documented in the public API.
namespace gmx
{

//! \cond libapi
/*! \brief

* Brief description for a free function within a documented namespace.

*
* In this case, the enclosing scope is the documented namespace,

* so a \cond is necessary to avoid warnings.

*/
void gmx_function();
//! \endcond

/*! \brief

* Class meant for subclassing only within the module, but the subclasses
→˓will

* be public.

*
* This base class still provides public methods that are visible through

(continues on next page)

8.8. Development-time tools 675

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

→˓the

* subclasses, so it should appear in the public documentation.

* But it is not marked with \inpublicapi.

*/
class BaseClass
{

public:
/*! \brief

* A public method.

*
* This method also appears in the documentation of each subclass

→˓in

* the public and library API docs.

*/
void method();

protected:
// The \cond is necessary to exlude this documentation from the

→˓public
// API, since the public API does not support subclassing.
//! \cond internal
//! A method that only subclasses inside the module see.
void methodForSubclassToCall();

//! A method that needs to be implemented by subclasses.
virtual void virtualMethodToImplement() = 0;
//! \endcond

};

} // namespace gmx

Module documentation

Documenting a new module should place a comment like this in a central header for the module, such that the
“Modules” tab in the generated documentation can be used to navigate to the module.

/*! \defgroup module_example "Example module (example)"

* \ingroup group_utilitymodules

* \brief

* Brief description for the module.

*
* Detailed description of the module. Can link to a separate Doxygen
→˓page for

* overview, and/or describe the most important headers and/or classes in
→˓the

* module as part of this documentation.

*
* For modules not exposed publicly, \libinternal can be added at the

* beginning (before \defgroup).

*
* \author Author Name <author.name@email.com>

*/

// In other code, use \addtogroup module_example and \ingroup module_
→˓example to

(continues on next page)

8.8. Development-time tools 676

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

// add content (classes, functions, etc.) onto the module page.

Common mistakes

The most common mistake, in particular in C code, is to forget to document the file. This causes Doxygen to
ignore most comments in the file, so it does not validate the contents of the comments either, nor is it possible to
actually check how the generated documentation looks like.

The following examples show some other common mistakes (and some less common) that do not produce correct
documentation, as well as Doxygen “features”/bugs that can be confusing.

• The struct itself is not documented; other comments within the declaration are ignored.

struct t_struct {

// The comment tries to document both members at once, but it only
// applies to the first. The second produces warnings about

→˓missing
// documentation (if the enclosing struct was documented).

//! Angle parameters.
double alpha, beta;

};

• This does not produce any brief documentation. An explicit \brief is required, or //! (C++) or /**
*/ (C) should be used.

/*! Brief comment. */
int gmx_function();

• This does not produce any documentation at all, since a ! is missing at the beginning.

/* \brief

* Brief description.

*
* More details.

*/
int gmx_function();

• This puts the whole paragraph into the brief description. A short description is preferable, separated by an
empty line from the rest of the text.

/*! \brief

* Brief description. The description continues with all kinds of
→˓details about

* what the function does and how it should be called.

*/
int gmx_function();

• This may be a Doxygen bug, but this does not produce any brief description.

/** \internal Brief description. */
int gmx_function();

• If the first declaration below appears in a header, and the second in a source file, then Doxygen does not
associate them correctly and complains about missing documentation for the latter. The solution is to
explicitly add a namespace prefix also in the source file, even though the compiler does not require it.

8.8. Development-time tools 677

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

// Header file
//! Example function with a namespace-qualified parameter type.
int gmx_function(const gmx::SomeClass ¶m);

// Source file
using gmx::SomeClass;

int gmx_function(const SomeClass ¶m);

• This puts the namespace into the mentioned module, instead of the contents of the namespace. \
addtogroup should go within the innermost scope.

//! \addtogroup module_example
//! \{

namespace gmx
{

//! Function intended to be part of module_example.
int gmx_function();

}

Existing code

More examples you can find by looking at existing code in the source tree. In particular new C++ code such as
that in the src/gromacs/analysisdata/ and src/gromacs/options/ subdirectories contains a large
amount of code documented mostly along these guidelines. Some comments in src/gromacs/selection/
(in particular, any C-like code) predate the introduction of these guidelines, so those are not the best examples.

8.8.2 Automation and Infrastructure

Starting from 2020 release, automated testing and documentation builds are performed by GitLab and GitLab
Runner.

GitLab CI Pipeline Execution

The repository contains DockerFiles and GitLab Runner configuration files to support automated testing and
documentation builds. General information on configuring GitLab CI pipelines can be found in the official Gitlab
documentation.

The GitLab CI configuration entry point is the .gitlab-ci.yml file at the root of the source tree. Configuration
templates are found in the files in the admin/ci-templates/ directory.

Docker images used by GitLab Runner are available in our GitLab Container Registry. (See Containers
(page 682).) Images are (re)built manually using details in admin/containers. (See Tools (page 683).)

ò Note

Full automated testing is only available for merge requests originating from branches of the main https://gitlab.
com/gromacs/gromacs repository. GitLab CI pipelines created for forked repositories will include fewer jobs
in the testing pipeline. Non-trivial merge requests may need to be issued from a branch in the gromacs
project namespace in order to receive sufficient testing before acceptance.

8.8. Development-time tools 678

https://docs.gitlab.com/ee/ci/yaml/
https://docs.gitlab.com/ee/ci/yaml/
https://gitlab.com/gromacs/gromacs/container_registry
https://gitlab.com/gromacs/gromacs
https://gitlab.com/gromacs/gromacs

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Configuration files

At the root of the repository, .gitlab-ci.yml defines the stages and some default parameters, then includes
files from admin/gitlab-ci/ to define jobs to be executed in the pipelines.

Note that job names beginning with a period (.) are “hidden”. Such jobs are not directly eligible to run, but may
be used as templates via the *extends* job property.

Job parameters

Refer to https://docs.gitlab.com/ee/ci/yaml for complete documentation on GitLab CI job parameters, but note the
following GROMACS-specific conventions.

before_script
Used by several of our templates to prepend shell commands to a job script parameter. Avoid using before-
script directly, and be cautious about nested extends overriding multiple before_script definitions.

job cache
There is no global default, but jobs that build software will likely set cache. To explicitly unset cache
directives, specify a job parameter of cache: {}. Refer to GitLab docs for details. In particular, note
the details of cache identity according to cache:key

image
See Containers (page 682) for more about the Docker images used for the CI pipelines. If a job depends on
artifacts from previous jobs, be sure to use the same (or a compatible) image as the dependency!

rules
only
except
when

Job parameters for controlling the circumstances under which jobs run. (Some key words may have different
meanings when occurring as elements of other parameters, such as archive:when, to which this note is not
intended to apply.) Rules in GitLab are special, since the first matching rule will cause a job to trigger, and
then all remaining rules are ignored. To create rules to skip jobs, write rules that use the execution time
“never”. Errors or unexpected behavior will occur if you specify more than one .rules:. . . template, or if
you use these parameters in combination with a .rules. . . template - it is thus NOT possible to combine
rules through inheritance with the extends tag. Instead, to combine sequences of rules we recommend
using a plain rules tag where you reference rule entries with the !reference tag, e.g. !reference [.
rules:<something>, rules]. Each such reference can be used as an individual rule in the list. To
reduce errors and unexpected behavior, restrict usage of these controls to regular job definitions (do not use
in “hidden” or parent jobs). Note that rules is not compatible with the older only and except parameters. We
have standardized on the (newer) rules mechanism.

tags
We no longer use any special tags for general (meaning CPU-only) GROMACS CI jobs, to make sure at
least the CPU jobs can still run even if somebody clones the repo. For testing you can still add a default tag
at the start of the top-level .gitlab-ci.yml, but this should only be used to check that a specific runner
works - for production we handle it in GitLab instead by selecting what runners accept untagged jobs. By
default we currently run those on the infrastructure in Stockholm for the GROMACS project, but please
design all CPU jobs so they will work on the shared runners too.

variables
Many job definitions will add or override keys in variables. Refer to GitLab for details of the merging
behavior. Refer to Updating regression tests (page 681) for local usage.

8.8. Development-time tools 679

https://docs.gitlab.com/ee/ci/yaml/#hidden-keys-jobs
https://docs.gitlab.com/ee/ci/yaml/#extends
https://docs.gitlab.com/ee/ci/yaml
https://docs.gitlab.com/ee/ci/yaml/#cache
https://docs.gitlab.com/ee/ci/yaml/#cachekey
https://docs.gitlab.com/ee/ci/yaml/#variables

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Schedules and triggers

Pipeline schedules are configured through the GitLab web interface. Scheduled pipelines may provide different
variable definitions through the environment to jobs that run under the schedules condition.

Nightly scheduled pipelines run against main and release branches in the GROMACS repository.

Some of the rules defined in rules.gitlab-ci.yml restrict jobs to run only for scheduled pipelines, or
only for specific schedules according to the variables defined for that schedule in the web interface. For exam-
ple, the rule element if-weekly-then-on-success causes a job to run only if the schedule sets GMX_-
PIPELINE_SCHEDULE=weekly.

ò Running post-merge-acceptance pipelines

The Gitlab CI for GROMACS runs a set of jobs by default only after a MR has been accepted and the resulting
commit is included in the target branch if it is main or one of the release branches. Those jobs can be triggered
manually using the POST_MERGE_ACCEPTANCE input variable documented below when executing a new
pipeline through the Gitlab web interface.

See also trigger-post-merge.py (page 684).

Global templates

In addition to the templates in the main job definition files, common “mix-in” functionality and behavioral tem-
plates are defined in admin/gitlab-ci/global.gitlab-ci.yml. For readability, some parameters may
be separated into their own files, named according to the parameter (e.g. rules.gitlab-ci.yml).

Jobs beginning with .use- provide mix-in behavior, such as boilerplate for jobs using a particular tool chain.

Jobs beginning with a parameter name allow parameters to be set in a single place for common job characteristics.
If providing more than a default parameter value, the job name should be suffixed by a meaningful descriptor and
documented within admin/gitlab-ci/global.gitlab-ci.yml

Job names

Job names should

1. Indicate the purpose of the job.

2. Indicate relationships between multi-stage tasks.

3. Distinguish jobs in the same stage.

4. Distinguish job definitions throughout the configuration.

Jobs may be reassigned to different stages over time, so including the stage name in the job name is not helpful,
generally. If tags like “pre” and “post,” or “build” and “test” are necessary to distinguish phases of, say, “webpage,”
then such tags can be buried at the end of the job name.

Stylistically, it is helpful to use delimiters like : to distinguish the basic job name from qualifiers or details. Also
consider grouping jobs

8.8. Development-time tools 680

https://gitlab.com/help/ci/pipelines/schedules
https://gitlab.com/help/ci/pipelines/schedules#using-only-and-except
https://docs.gitlab.com/ee/ci/yaml
https://docs.gitlab.com/ee/ci/pipelines/index.html#grouping-jobs

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Updating regression tests

Changes in GROMACS that require changes in regression-tests are notoriously hard, because a merge request that
tests against the non-updated version of the regression tests will necessarily fail, while updating regression tests
while the current change is not integrated into main, might cause other merge request pipelines to fail.

The solution is a new regression-test branch or commit, uploaded to gitlab. Then set that regression test branch
with REGRESSIONTESTBRANCH or the specific commit with REGRESSIONTESTCOMMIT when running
the specific pipeline that requires the regressiontest-update. See below on how to set variables for specific
pipelines.

Variables

The GitLab CI framework, GitLab Runner, plugins, and our own scripts set and use several variables.

Default values are available from the top level variables definition in global.gitlab-ci.yml. Many of
the mix-in / template jobs provide additional or overriding definitions. Other variables may be set when making
final job definitions.

Variables may control the behvior of GitLab-CI (those beginning with CI_), GitLab Runner and supporting in-
frastructure, or may be used by job definitions, or passed along to the environment of executed commands.

variables keys beginning with KUBERNETES_ relate to the GitLab Runner Kubernets executor

Other important variable keys are as follows.

BUILD_DIR
GROMACS specific directory to perform configuration, building and testing in. Usually job dependent,
needs to be the same for all tasks of dependent jobs.

CI_PROJECT_NAMESPACE
Distinguishes pipelines created for repositories in the gromacs GitLab project space. May be used to
pre-screen jobs to determine whether GROMACS GitLab infrastructure is available to the pipeline before
the job is created.

COMPILER_MAJOR_VERSION
Integer version number provided by toolchain mix-in for convenience and internal use.

CMAKE
gromacs/ci-...Docker images built after October 2020 have several versions of CMake installed. The
most recent version of CMake in the container will be appear first in PATH. To allow individual jobs to use
specific versions of CMake, please write the job script sections using $CMAKE instead of cmake and begin
the script section with a line such as - CMAKE=${CMAKE:-$(which cmake)}. Specify a CMake
version by setting the CMAKE variable to the full executable path for the CMake version you would like to
use. See also Containers (page 682).

CMAKE_COMPILER_SCRIPT
CMake command line options for a tool chain. A definition is provided by the mix-in toolchain definitions
(e.g. .use-gcc8) to be appended to cmake calls in a job’s script.

CMAKE_MPI_OPTIONS
Provide CMake command line arguments to define GROMACS MPI build options.

DRY_RUN
Read-only environment variable used to control behaviour of script uploading artifact files to the ftp and
web servers. Set to false to actually upload files. This is usually done through the pipeline submission
script, but can be done manual as well through the web interface.

GROMACS_MAJOR_VERSION
Read-only environment variable for CI scripts to check the library API version to expect from the
build job artifacts. Initially, this variable is only defined in admin/gitlab-ci/api-client.
matrix/gromacs-main.gitlab-ci.yml but could be moved to admin/gitlab-ci/global.
gitlab-ci.yml if found to be of general utility.

8.8. Development-time tools 681

https://docs.gitlab.com/ee/ci/variables/README.html
https://docs.gitlab.com/runner/executors/kubernetes.html#the-kubernetes-executor

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS_RELEASE
Read-only environment variable that can be checked to see if a job is executing in a pipeline for preparing
a tagged release. Can be set when launching pipelines via the GitLab web interface. For example, see rules
mix-ins in admin/gitlab-ci/global.gitlab-ci.yml.

REGRESSIONTESTBRANCH
Use this branch of the regressiontests rather than main to allow for merge requests that require updated
regression tests with valid CI tests.

REGRESSIONTESTCOMMIT
Use this commit to the regressiontests rather than the head on main to allow for merge requests that require
updated regression tests with valid CI tests.

POST_MERGE_ACCEPTANCE
Read-only environment variable that indicates that only jobs scheduled to run after a commit has been
merged into its target branch should be executed. Can be set to run pipelines through the web interface or
as schedules. For use please see the rules mix-ins in admin/gitlab-ci/global.gitlab-ci.yml.

GMX_PIPELINE_SCHEDULE
Read-only environment variable used exclusively by job rules. Rule elements of the form
if-<value>-then-on-success check whether GMX_PIPELINE_SCHEDULE==value. Allowed
values are determined by the rule elements available in admin/gitlab-ci/rules.gitlab-ci.
yml, and include nightly and weekly to restrict jobs to only run in the corresponding schedules.

Setting variables

Variables for individual piplelines are set in the gitlab interface under CI/CD; Pipelines. Then chose in the
top right corner Run Piplelines. Under Run for, the desired branch may be selected, and variables may
be set in the fields below.

Using GPUs in Gitlab-runner

Previously, GROMACS used a hacked local version of Gitlab-runner where we had added support for Kubernetes
extended resources. However, Gitlab has unfortunately not shown interest in merging these, and as the runner has
evolved it is difficult to keep up. In the future it might be possible to select GPUs directly in the job configuration,
but for now we use the ability to specify it in each Gitlab-runner configuration and thus have separate runners
going for CPU-only as well as single or dual GPU devices from Nvidia, AMD, and Intel.

To enable both us and other users to also use the shared Gitlab runners, the top-level configuration .gitlab-ci.
yml now contains a few variables where you can select what tags to use for Gitlab-runners to get single or dual
devices from each vendor. There are also variables that allow you to set the largest number of devices you have
(on single nodes) in these runners; if any tests cannot be run because you do not have the right hardware, we will
simply skip those tests.

Containers

GROMACS project infrastructure uses Docker containerization to isolate automated tasks. A number of images
are maintained to provide a breadth of testing coverage.

Scripts and configuration files for building images are stored in the repository under admin/containers/
. Images are (re)built manually by GROMACS project staff and pushed to DockerHub and GitLab. See https:
//hub.docker.com/u/gromacs and https://gitlab.com/gromacs/gromacs/container_registry

8.8. Development-time tools 682

https://hub.docker.com/u/gromacs
https://hub.docker.com/u/gromacs
https://gitlab.com/gromacs/gromacs/container_registry

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GitLab Container Registry

CI Pipelines use a GitLab container registry instead of pulling from Docker Hub.

Project members with role Developer or higher privilege can push images to the container registry.

Steps:

1. Create a personal access token (docs) with write_registry and read_registry scopes. Save the
hash!

2. Authenticate from the command line with docker login registry.gitlab.com -u <user
name> -p <hash>

3. docker push registry.gitlab.com/gromacs/gromacs/<imagename>

Refer to buildall.sh in the main branch for the set of images currently built.

Within pipeline jobs (page 678), jobs specify a Docker image with the image property. For image naming con-
vention, see utility.image_name() (page 688). Images from the GitLab registry are easily accessible with
the same identifier as above. For portability, CI environment variables may be preferable for parts of the image
identifier. Example:

some_job:
image: ${CI_REGISTRY_IMAGE}/ci-<configuration>
...

For more granularity, consider equivalent expressions ${CI_REGISTRY}/${CI_PROJECT_PATH} or
${CI_REGISTRY}/${CI_PROJECT_NAMESPACE}/${CI_PROJECT_NAME} Ref: https://docs.gitlab.
com/ee/ci/variables/predefined_variables.html

Tools

(in admin/)

make-release-build.py

Automatic release options.

usage: make-release-build.py [-h] (--local | --server) [--token TOKEN]
[--ssh-key SSH_KEY] [--release | --no-release]
[--dry-run | --no-dry-run] [--branch BRANCH]

-h, --help

show this help message and exit

--local

Set when running in local (submit pipeline) mode.

--server

Set when running in server (upload artefacts) mode.

--token <token>

GitLab access token needed to launch pipelines

--ssh-key <ssh_key>

Path to SSH key needed to upload things to server. Pass in local mode to have it during the job

--release

8.8. Development-time tools 683

https://docs.gitlab.com/ee/user/packages/container_registry/index.html#build-and-push-images-by-using-docker-commands
https://gitlab.com/-/profile/personal_access_tokens
https://docs.gitlab.com/ee/user/profile/personal_access_tokens.html
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html
https://docs.gitlab.com/ee/ci/variables/predefined_variables.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

--no-release

--dry-run

--no-dry-run

--branch <branch>

Branch to run pipeline for (default “main”)

trigger-post-merge.py

Options for manually submitting pipelines.

usage: trigger-post-merge.py [-h] [--type TYPE] --token TOKEN
[--branch BRANCH]
[--regtest-branch REGTEST_BRANCH]
[--regtest-commit REGTEST_COMMIT]

-h, --help

show this help message and exit

--type <type>

What kind of pipeline to run (default is “POST_MERGE_ACCEPTANCE”)

--token <token>

GitLab access token needed to launch pipelines

--branch <branch>

Branch to run pipeline for (default “main”)

--regtest-branch <regtest_branch>

Regressiontest branch to use to for running regression tests (default none, which means fall back to main)

--regtest-commit <regtest_commit>

Commit to use instead of the regtest-branch tip for running tests (default empty)

admin/containers/buildall.sh

Uses NVidia’s HPC Container Maker to generate DockerFiles using our scripted_gmx_docker_builds
(page 686) module. Refer to the contents of admin/buildall.sh for the flags currently in use. Run the script
to see the tagged images currently being produced.

scripted_gmx_docker_builds.py

(in admin/containers/)

GROMACS CI image creation script

usage: scripted_gmx_docker_builds.py [-h] [--cmake [CMAKE ...]]
[--gcc GCC | --llvm [LLVM] | --oneapi
[ONEAPI] | --intel-llvm [INTEL_LLVM]]
[--ubuntu [UBUNTU] | --centos

→˓[CENTOS]]
[--cuda [CUDA]] [--mpi [MPI]]
[--tsan [TSAN]]

(continues on next page)

8.8. Development-time tools 684

https://github.com/NVIDIA/hpc-container-maker/tree/master/docs

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

(continued from previous page)

[--adaptivecpp [ADAPTIVECPP]]
[--rocm [ROCM]] [--intel-compute-

→˓runtime]
[--oneapi-plugin-nvidia]
[--oneapi-plugin-amd] [--clfft

→˓[CLFFT]]
[--heffte [HEFFTE]]
[--nvhpcsdk [NVHPCSDK]]
[--doxygen [DOXYGEN]] [--cp2k [CP2K]]
[--hdf5] [--plumed] [--venvs [VENVS ..

→˓.]]
[--format {docker,singularity}]

Named Arguments

--cmake Selection of CMake version to provide to base image. (default: [‘3.28.0’,
‘3.29.8’, ‘3.30.3’])

--gcc Select GNU compiler tool chain. (default: 11) Some checking is imple-
mented to avoid incompatible combinations

--llvm Select LLVM compiler tool chain. Some checking is implemented to avoid
incompatible combinations

--oneapi Select Intel oneAPI package version.

--intel-llvm Select Intel LLVM release (GitHub tag).

--ubuntu Select Ubuntu Linux base image. (default: “24.04”)

--centos Select Centos Linux base image.

--cuda Select a CUDA version for a base Linux image from NVIDIA.

--mpi Enable MPI (default disabled) and optionally select distribution (default:
openmpi)

--tsan Build special compiler versions with TSAN OpenMP support

--adaptivecpp Select AdaptiveCpp repository tag/commit/branch.

--rocm Select AMD compute engine version.

--intel-compute-runtime Include Intel Compute Runtime.

--oneapi-plugin-nvidia Install Codeplay oneAPI NVIDIA plugin.

--oneapi-plugin-amd Install Codeplay oneAPI AMD plugin.

--clfft Add external clFFT libraries to the build image

--heffte Select heffte repository tag/commit/branch.

--nvhpcsdk Select NVIDIA HPC SDK version.

--doxygen Add doxygen environment for documentation builds. Also adds other re-
quirements needed for final docs images.

--cp2k Add build environment for CP2K QM/MM support

--hdf5 Install an HDF5 library.

--plumed Install PLUMED library.

--venvs List of Python versions (“major.minor.patch”) for which to install venvs. (de-
fault: [‘3.9.13’, ‘3.12.5’])

8.8. Development-time tools 685

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

--format Possible choices: docker, singularity

Container specification format (default: “docker”)

Supporting modules in admin/containers

scripted_gmx_docker_builds.py

Building block based Dockerfile generation for CI testing images.

Generates a set of docker images used for running GROMACS CI on Gitlab. The images are prepared according
to a selection of build configuration targets that hope to cover a broad enough scope of different possible systems,
allowing us to check compiler types and versions, as well as libraries used for accelerators and parallel com-
munication systems. Each combinations is described as an entry in the build_configs dictionary, with the script
analysing the logic and adding build stages as needed.

Based on the example script provided by the NVidia HPCCM repository.

Reference:
NVidia HPC Container Maker

Authors:

• Paul Bauer <paul.bauer.q@gmail.com>

• Eric Irrgang <ericirrgang@gmail.com>

• Joe Jordan <e.jjordan12@gmail.com>

• Mark Abraham <mark.j.abraham@gmail.com>

• Gaurav Garg <gaugarg@nvidia.com>

Usage:

$ python3 scripted_gmx_docker_builds.py --help
$ python3 scripted_gmx_docker_builds.py --format docker > Dockerfile &&

→˓docker build .
$ python3 scripted_gmx_docker_builds.py | docker build -

ã See also

buildall.sh

scripted_gmx_docker_builds.add_base_stage(name: str, input_args, output_stages:
MutableMapping[str, hpccm.Stage])

Establish dependencies that are shared by multiple parallel stages.

scripted_gmx_docker_builds.add_documentation_dependencies(input_args,
output_stages:
MutableMapping[str,
hpccm.Stage])

Add appropriate layers according to doxygen input arguments.

scripted_gmx_docker_builds.add_intel_llvm_compiler_build_stage(input_args,
output_stages:
Mapping[str,
hpccm.Stage])

Isolate the Intel LLVM (open-source oneAPI) preparation stage.

This stage is isolated so that its installed components are minimized in the final image (chiefly /opt/intel)
and its environment setup script can be sourced. This also helps with rebuild time and final image size.

8.8. Development-time tools 686

https://github.com/NVIDIA/hpc-container-maker
mailto:paul.bauer.q@gmail.com
mailto:ericirrgang@gmail.com
mailto:e.jjordan12@gmail.com
mailto:mark.j.abraham@gmail.com
mailto:gaugarg@nvidia.com
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

scripted_gmx_docker_builds.add_oneapi_compiler_build_stage(input_args,
output_stages:
Mapping[str,
hpccm.Stage])

Isolate the oneAPI preparation stage.

This stage is isolated so that its installed components are minimized in the final image (chiefly /opt/intel)
and its environment setup script can be sourced. This also helps with rebuild time and final image size.

scripted_gmx_docker_builds.add_python_stages(input_args: Namespace, *, base: str,
output_stages: MutableMapping[str,
hpccm.Stage])

Add the stage(s) necessary for the requested venvs.

One intermediate build stage is created for each venv (see –venv option).

Each stage partially populates Python installations and venvs in the home directory. The home directory is
collected by the ‘pyenv’ stage for use by the main build stage.

scripted_gmx_docker_builds.add_tsan_compiler_build_stage(input_args, output_stages:
Mapping[str,
hpccm.Stage])

Isolate the expensive TSAN preparation stage.

This is a very expensive stage, but has few and disjoint dependencies, and its output is easily compartmen-
talized (/usr/local) so we can isolate this build stage to maximize build cache hits and reduce rebuild time,
bookkeeping, and final image size.

scripted_gmx_docker_builds.base_image_tag(args)→ str
Generate image for hpccm.baseimage().

scripted_gmx_docker_builds.build_stages(args)→ Iterable[hpccm.Stage]
Define and sequence the stages for the recipe corresponding to args.

scripted_gmx_docker_builds.get_cmake_stages(*, input_args: Namespace, base: str)

Get the stage(s) necessary for the requested CMake versions.

One (intermediate) build stage is created for each CMake version, based on the base stage. See --cmake
option.

Each stage uses the version number to determine an installation location:
/usr/local/cmake-{version}

The resulting path is easily copied into the main stage.

Returns
dict of isolated CMake installation stages with keys from cmake-{version}

scripted_gmx_docker_builds.hpccm_distro_name(args)→ str
Generate _distro for hpccm.baseimage().

Convert the linux distribution variables into something that hpccm understands.

The same format is used by the lower level hpccm.config.set_linux_distro().

scripted_gmx_docker_builds.prepare_venv(version: Version)→ Sequence[str]
Get shell commands to set up the venv for the requested Python version.

8.8. Development-time tools 687

https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Sequence
https://docs.python.org/3/library/stdtypes.html#str

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

utility.py

A utility module to help manage the matrix of configurations for CI testing and build containers.

When called as a stand alone script, prints a Docker image name based on the command line arguments. The
Docker image name is of the form used in the GROMACS CI pipeline jobs.

Example:

$ python3 -m utility --llvm --doxygen
gromacs/ci-ubuntu-24.04-llvm-14-docs

ã See also

buildall.sh

As a module, provides importable argument parser and docker image name generator.

Note that the parser is created with add_help=False to make it friendly as a parent parser, but this means that
you must derive a new parser from it if you want to see the full generated command line help.

Example:

import utility.parser
utility.parser does not support `-h` or `--help`
parser = argparse.ArgumentParser(

description='GROMACS CI image creation script',
parents=[utility.parser])

ArgumentParser(add_help=True) is default, so parser supports `-h` and `--
→˓help`

ã See also

scripted_gmx_docker_builds.py

Authors:

• Paul Bauer <paul.bauer.q@gmail.com>

• Eric Irrgang <ericirrgang@gmail.com>

• Joe Jordan <e.jjordan12@gmail.com>

• Mark Abraham <mark.j.abraham@gmail.com>

• Gaurav Garg <gaugarg@nvidia.com>

utility.image_name(configuration: Namespace)→ str
Generate docker image name.

Image names have the form ci-<slug>, where the configuration slug has the form:

<distro>-<version>-<compiler>-<major version>[-<gpusdk>-<version>][-
→˓<use case>]

This function also applies an appropriate Docker image repository prefix.

Parameters
configuration – Docker image configuration as described by the parsed arguments.

8.8. Development-time tools 688

mailto:paul.bauer.q@gmail.com
mailto:ericirrgang@gmail.com
mailto:e.jjordan12@gmail.com
mailto:mark.j.abraham@gmail.com
mailto:gaugarg@nvidia.com
https://docs.python.org/3/library/argparse.html#argparse.Namespace
https://docs.python.org/3/library/stdtypes.html#str

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

utility.parser = ArgumentParser(prog='sphinx-build', usage=None,
description='GROMACS CI image slug options.', formatter_class=<class
'argparse.HelpFormatter'>, conflict_handler='error', add_help=False)

A parent parser for tools referencing image parameters.

This argparse parser is defined for convenience and may be used to partially initialize parsers for tools.

. Warning

Do not modify this parser.

Instead, inherit from it with the parents argument to argparse.ArgumentParser

8.8.3 Source tree checker scripts

. Warning

This section is out of date. Several of the checks described are no longer performed or are deprecated per Issue
3288 and related issues.

There is a set of Python scripts, currently under docs/doxygen/, that check various aspects of the source
tree for consistency. The script is based on producing an abstract representation of the source tree from various
sources:

• List of files in the source tree (for overall layout of the source tree)

• List of installed headers (extracted from the generated build system)

• git attributes (to limit the scope of some checks)

• Doxygen XML documentation:

– For tags about public/private nature of documented headers and other constructs

– For actual documented constructs, to check them for consistency

• Hard-coded knowledge about the GROMACS source tree layout

This representation is then used for various purposes:

• Checking Doxygen documentation elements for common mistakes: missing brief descriptions, mismatches
in file and class visibility, etc.

• Checking for consistent usage and documentation of headers: e.g., a header that is documented as internal
to a module should not be used outside that module.

• Checking for module-level cyclic dependencies

• Generating dependency graphs between modules and for files within modules

The checks are run as part of a single check-source target, but are described in separate sections below. In
addition to printing the issues to stderr, the script also writes them into docs/doxygen/check-source.
log for later inspection. CI runs the checks as part of all pipelines and CI will fail if any issues are found.

For correct functionality, the scripts depend on correct usage of Doxygen annotations described in Using Doxygen
(page 665), in particular the visibility and API definitions in file-level comments.

For some false positives from the script, the suppression mechanism described below is the easiest way to silence
the script, but otherwise the goal would be to minimize the number of suppressions.

The scripts require Python 2.7 (other versions may work, but have not been tested).

To understand how the scripts work internally, see comments in the Python source files under docs/doxygen/.

8.8. Development-time tools 689

https://docs.python.org/3/library/argparse.html#argparse.ArgumentParser
https://gitlab.com/gromacs/gromacs/-/issues/3288
https://gitlab.com/gromacs/gromacs/-/issues/3288

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Checker details

The check-source target currently checks for a few different types of issues. These are listed in detail below,
mainly related to documentation and include dependencies. Note in particular that the include dependency checks
are much stricter for code in modules/directories that are documented with a \defgroup: all undocumented code
is assumed to be internal to such modules. The rationale is that such code has gotten some more attention, and
some effort should also have been put into defining what is the external interface of the module and documenting
it.

• For all Doxygen documentation (currently does not apply for members that do not appear in the documen-
tation):

– If a member has documentation, it should have a brief description.

– A note is issued for in-body documentation for functions, since this is ignored by our current settings.

– If a class has documentation, it should have public documentation only if it appears in an installed
header.

– If a class and its containing file has documentation, the class documentation should not be visible if
the file documentation is not.

• For all files:

– Consistent usage of

#include "..." // This should be used for internal (gromacs)
→˓headers

and

#include <...> // This should be used for system and external
→˓headers

– When we again have installed headers, they must not include non-installed headers. Headers should
be marked for install within CMakeLists.txt files of their respective modules.

– All source files must include “gmxpre.h” as the first header.

– A source/header file should include “config.h,” “gromacs/simd/simd.h”, or “gromacs/ewald/pme_-
simd.h” if and only if it uses a macro declared in such files.

• For documented files:

– Installed headers should have public documentation, and other files should not.

– The API level specified for a file should not be higher than where its documentation is visible. For
example, only publicly documented headers should be specified as part of the public API.

– If an \ingroup module_foo exists, it should match the subdirectory that the file is actually part
of in the file system.

– If a \defgroup module_foo exists for the subdirectory where the file is, the file should contain
\ingroup module_foo.

– Files should not include other files whose documentation visibility is lower (if the included file is not
documented, the check is skipped).

• For files that are part of documented modules (\defgroup module_foo exists for the subdirectory), or
are explicitly documented to be internal or in the library API:

– Such files should not be included from outside their module if they are undocumented (for documented
modules) or are not specified as part of library or public API.

• For all modules:

– There should not be cyclic include dependencies between modules.

8.8. Development-time tools 690

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

As a side effect, the XML extraction makes Doxygen parse all comments in the code, even if they do not appear
in the documentation. This can reveal latent issues in the comments, like invalid Doxygen syntax. The messages
from the XML parsing are stored in docs/doxygen/doxygen-xml.log in the build tree, similar to other
Doxygen runs.

Suppressing issues

The script is not currently perfect (either because of unfinished implementation, or because Doxygen bugs or
incompleteness of the Doxygen XML output), and the current code also contains issues that the script detects, but
the authors have not fixed. To allow the script to still be used, doxygen/suppressions.txt contains a list
of issues that are filtered out from the report. The syntax is simple:

<file>: <text>

where <file> is a path to the file that reports the message, and <text> is the text reported. Both support *
as a wildcard. If <file> is empty, the suppression matches only messages that do not have an associated file.
<file> is matched against the trailing portion of the file name to make it work even though the script reports
absolute paths. Empty lines and lines starting with # are ignored.

To add a suppression for an issue, the line that reports the issue can be copied into suppressions.txt, and
the line number (if any) removed. If the issue does not have a file name (or a pseudo-file) associated, a leading :
must be added. To cover many similar issues, parts of the line can then be replaced with wildcards.

Include dependency graphs

The same set of Python scripts can also produce include dependency graphs with some additional annotations
compared to what, e.g., Doxygen produces for a directory dependency graph. Currently, a module-level graph
is automatically built when the Doxygen documentation is built and embedded in the documentation (not in the
public API documentation). The graph, together with a legend, is on a separate page: Module dependency graph

The Python script produces the graphs in a format suitable for dot (from the graphviz package) to lay them
out. The build system also provides a dep-graphs target that generates PNG files from the intermediate dot
files. In addition to the module-level graph, a file-level graph is produced for each module, showing the include
dependencies within that module. The file-level graphs can only be viewed as the PNG files, with some expla-
nation of the notation below. Currently, these are mostly for eye candy, but they can also be used for analyzing
problematic dependencies to clean up the architecture.

Both the intermediate .dot files and the final PNG files are put under docs/doxygen/depgraphs/ in the
build tree.

File graphs

The graphs are written to module_name-deps.dot.png.

Node colors:

light blue
public API (installed) headers

dark blue
library API headers

gray
source files

light green
test files

white
other files

8.8. Development-time tools 691

../doxygen/html-lib/page_modulegraph.xhtml

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Each edge signifies an include dependency; there is no additional information currently included.

8.8.4 Automatic source code formatting

Python sources can be automatically formatted with Black from Python 3.9.3.

C++ source code can be automatically formatted using clang-format since GROMACS 2020. It automatically
applies the guidelines in Guidelines for code formatting (page 653) and in Guidelines for #include directives
(page 654). Additionally, other Python scripts are used for a few other automatic formatting/checking tasks. This
page provides more details for clang-format, clang-tidy and copyright scripts.

Our CI uses these same scripts (in particular, clang-format.sh, copyright.sh, clang-tidy.sh and
the check-source target) to enforce that the code stays invariant under such formatting.

Setting up clang-format

GROMACS formatting is enforced with clang-format 18.0.1. clang-format is one of the core clang tools. It
may be included in a clang or llvm package from your favorite packaging system or you may find a standalone
clang-format package, but you should confirm that the provided command is version 18.0.0 or 18.0.1. Example:

$ clang-format --version
clang-format version 18.0.0

If you use a different version of clang-format, you will likely get different formatting results than the GROMACS
continuous integration testing system, and the commits that you push will fail the automated tests.

ò Note

Refer to LLVM for source and binary downloads. If downloading sources, note that you will need to download
both the LLVM source code and the Clang source code. As per the clang INSTALL.txt, place the expanded
clang source into a tools/clang subdirectory within the expanded llvm archive, then run CMake against
the llvm source directory.

In order to use the installed version of clang-format for clang-format.sh and for the pre-commit hook, you
also need to run this in each of your GROMACS repositories:

git config hooks.clangformatpath /path/to/clang-format

Alternatively, if you just want to use clang-format.sh, you can set the CLANG_FORMAT environment vari-
able to /path/to/clang-format.

Using the pre-commit hook or git filters needs additional setup; see the respective sections below.

clang-format discovers which formatting rules to apply from the .clang-format configuration file(s) in project
directories, which will be automatically updated (if necessary) when you git pull from the GROMACS repos-
itory. For more about the tool and the .clang-format configuration file, visit https://releases.llvm.org/18.0.1/
tools/clang/docs/ClangFormat.html

8.8. Development-time tools 692

https://black.readthedocs.io/en/stable/
http://releases.llvm.org/download.html#18.0.0
https://github.com/llvm/llvm-project/blob/release/18.x/clang/INSTALL.txt
https://releases.llvm.org/18.0.1/tools/clang/docs/ClangFormat.html
https://releases.llvm.org/18.0.1/tools/clang/docs/ClangFormat.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

What is automatically formatted?

To identify which files are subject to automatic formatting, the scripts use git filters, specified in .
gitattributes files. Only files that have the attribute filter set to one of the below values are processed:

•filter=complete_formatting: Performs all formatting. Uses clang-format for code
formatting.

Files included here are also passed to the clang-tidy code checker.

• filter=clangformat: clang-format is run. Again also runs clang-tidy.

• filter=includesort: include order is enforced and copyright headers are checked.

• filter=copyright: only copyright headers are checked.

Other files are ignored by clang-tidy.sh, clang-format.sh, copyright.sh and reformat_all.
sh scripts (see below).

Setting up clang-tidy

GROMACS source code tidiness checking is enforced with clang-tidy provided alongside clang compiler version
18. clang-tidy is one of the core clang tools. It may be included in a clang or llvm package from your favorite
packaging system or you may find a standalone clang-tidy or clang-tools package, but you should confirm that the
provided command is version 18. Example:

$ clang-tidy --version
LLVM (http://llvm.org/):

LLVM version 18.1.3

If you use a different version of clang-tidy, you will likely get different checking results than the GROMACS
continuous integration testing system, and the commits that you push will fail the automated tests.

ò Note

Refer to LLVM for source and binary downloads. If downloading sources, note that you will need to download
both the LLVM source code and the Clang source code. As per the clang INSTALL.txt, place the expanded
clang source into a tools/clang subdirectory within the expanded llvm archive, then run CMake against
the llvm source directory.

In order to use the installed version of clang-tidy for clang-tidy.sh and for the pre-commit hook, you also
need to run this in each of your GROMACS repositories:

git config hooks.runclangtidypath /path/to/run-clang-tidy.py

Alternatively, if you just want to use clang-tidy.sh, you can set the RUN_CLANG_TIDY environment vari-
able to /path/to/run-clang-tidy.py.

As above, see the sections below for using the pre-commit hook or git filters.

clang-tidy discovers which formatting rules to apply from the .clang-tidy configuration file(s) in project
directories, which will be automatically updated (if necessary) when you git pull from the GROMACS repos-
itory. For more about the tool and the .clang-tidy configuration file, visit https://releases.llvm.org/18.1.1/
tools/clang/tools/extra/docs/clang-tidy/index.html.

8.8. Development-time tools 693

https://releases.llvm.org/download.html#18.1.0
https://github.com/llvm/llvm-project/blob/release/18.x/clang/INSTALL.txt
https://releases.llvm.org/18.1.1/tools/clang/tools/extra/docs/clang-tidy/index.html
https://releases.llvm.org/18.1.1/tools/clang/tools/extra/docs/clang-tidy/index.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Tools

copyright.py

This script provides low-level functionality to check and update copyright headers in C/C++ source files, as well
as in several other types of files like CMake and Python scripts.

This file is also used as a loadable Python module for kernel generators, and provides the functionality to generate
conformant copyright headers for such scripts.

You should rarely need to run this directly, but instead the bash scripts below use it internally. You can run the
script with --help option if you want to see what all options it provides if you need to do some maintenance on
the copyright headers themselves.

copyright.sh

This script runs copyright.py on modified files and reports/applies the results. By default, the current HEAD
commit on the source branch is compared to the work tree, and files that

1. are different between these two trees and

2. change under have outdated copyright header

are reported. This behavior can be changed by

1. Specifying an --rev=REV argument, which uses REV instead of HEAD as the base of the comparison. A
typical use case is to specify --rev=HEAD^ to check the HEAD commit.

2. Specifying --copyright=<mode>, which alters the level of copyright checking is done:

off
does not check copyright headers at all

year
only update copyright year in new-format copyright headers

add
in addition to year, add copyright headers to files that do not have any

update
in addition to year and add, also update new-format copyright headers if they are broken or outdated

replace
replace any copyright header with a new-format copyright header

full
do all of the above

By default, update-* refuses to update dirty files (i.e., that differ between the disk and the index) to make it
easy to revert the changes. This can be overridden by adding a -f/--force option.

clang-format.sh

This script runs clang-format on modified files and reports/applies the results. By default, the current HEAD
commit on the source branch is compared to the work tree, and files that

1. are different between these two trees and

2. change under clang-format

are reported. This behavior can be changed by

1. Specifying an --rev=REV argument, which uses REV instead of HEAD as the base of the comparison. A
typical use case is to specify --rev=HEAD^ to check the HEAD commit.

8.8. Development-time tools 694

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

2. Specifying an action:

• check-*: reports the files that clang-format changes

• diff-*: prints the actual diff of what would change

• update-*: applies the changes to the repository

• *-workdir: operates on the working directory (files on disk)

• *-index: operates on the index of the repository

For convenience, if you omit the workdir/index suffix, workdir is assumed (i.e., diff equals
diff-workdir).

3. Specifying --format=off, which does not run clang-format.

By default, update-* refuses to update dirty files (i.e., that differ between the disk and the index) to make it
easy to revert the changes. This can be overridden by adding a -f/--force option.

Since the behaviour of clang-format can change between versions even when using the same options, only clang-
format from Clang 18 will give correct results. The path to the correct clang-format binary can be spec-
ified via CLANG_FORMAT environment variable or by running git config hooks.clangformatpath
/path/to/clang-format-18 in the repository root.

clang-tidy.sh

This script runs the clang-tidy source code checker on modified files and either reports or applies resulting
changes. By default, the current HEAD commit on the source branch is compared to the work tree, and files that

1. are different between these two trees and

2. change when applying clang-tidy

are reported. This behavior can be changed by

1. Specifying an --rev=REV argument, which uses REV instead of HEAD as the base of the comparison. A
typical use case is to specify --rev=HEAD^ to check the HEAD commit.

2. Specifying an action:

• check-*: reports the files that clang-format changes

• diff-*: prints the actual diff of what would change

• update-*: applies the changes to the repository

• *-workdir: operates on the working directory (files on disk)

• *-index: operates on the index of the repository

For convenience, if you omit the workdir/index suffix, workdir is assumed (i.e., diff equals
diff-workdir).

3. Specifying --tidy=off, which does not run clang-tidy.

By default, update-* refuses to update dirty files (i.e., that differ between the disk and the index) to make it
easy to revert the changes. This can be overridden by adding a -f/--force option.

8.8. Development-time tools 695

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Black

The Black tool reformats Python files in place, by default. To check and update the entire repository, use the
.black.toml config file in the root directory of the repository:

pip install black
black --config .black.toml .

git pre-commit hook

If you want to run copyright.sh, clang-tidy.sh and/or clang-format.sh automatically for changes
you make, you can configure a pre-commit hook using admin/git-pre-commit:

1. Copy the git-pre-commit script to .git/hooks/pre-commit.

2. Specify the paths to run-clang-tidy and clang-format for the hook if you have not already done
so:

git config hooks.runclangtidypath /path/to/run-clang-tidy.py
git config hooks.clangformatpath /path/to/clang-format

3. Set the operation modes for the hook:

git config hooks.clangtidymode check
git config hooks.clangformatmode check
git config hooks.copyrightmode update

With this configuration, all source files modified in the commit are run through the code formatting tool, are
checked with clang-tidy and also checked for correct copyright headers. If any file would be changed by
clang-tidy.sh, clang-format.sh or copyright.sh, the names of those files are reported and the
commit is prevented. The issues can be fixed by running the scripts manually.

To disable the hook without removing the pre-commit file, you can set

git config hooks.clangtidymode off
git config hooks.copyrightmode off
git config hooks.clangformatmode off

To disable it temporarily for a commit, set NO_FORMAT_CHECK environment variable. For example,

NO_FORMAT_CHECK=1 git commit -a

You can also run git commit --no-verify, but that also disables other hooks.

Note that when you run git commit --amend, the hook is only run for the changes that are getting amended,
not for the whole commit. During a rebase, the hook is not run.

The actual work is done by the admin/clang-tidy.sh, admin/clang-format.sh and admin/
copyright.sh scripts, which get run with the check-index action, and with --copyright and
--format getting set according to the git config settings.

8.8. Development-time tools 696

https://black.readthedocs.io/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

reformat_all.sh

This script runs clang-format, copyright.py, or the include sorter for all applicable files in the source tree.
See reformat_all.sh -h for the invocation.

The script can also produce the list of files for which these commands would be run. To do this, specify
list-files on the command line and use --filter=<type> to specify which command to get the file
list for. This can be used together with, e.g., xargs to run other scripts on the same set of files.

For all the operations, it is also possible to apply patters (of the same style that various git commands ac-
cept, i.e., src/*.cpp matches all .cpp files recursively under src/). The patterns can be specified with
--pattern=<pattern>, and multiple --pattern arguments can be given.

-f/--force is necessary if the working tree and the git index do not match.

Using git filters

An alternative to using a pre-commit hook to automatically apply clang-format on changes is to use a git filter
(does not require either of the scripts, only the .gitattributes file). You can run

git config filter.clangformat.clean \
"/path/to/clang-format -i"

To configure a filter for all files that specify filter=complete_formatting attribute that indicates that all
formatting steps should be performed.

The pre-commit hook + manually running the scripts gives better/more intuitive control (with the filter, it is
possible to have a work tree that is different from HEAD and still have an empty git diff) and provides
better performance for changes that modify many files. It is the only way that currently also checks the copyright
headers.

The filter allows one to transparently merge branches that have not been run through the source checkers, and is
applied more consistently (the pre-commit hook is not run for every commit, e.g., during a rebase).

Hiding formatting commits from git blame

A large-scale code reformatting, for example, when switching to a new clang-format version, might make the
output of git blame/git praise hard to parse, since many lines will be touched by reformatting without
any functional change.

A manually-managed list of such formatting-only commits is kept in the .git-blame-ignore-revs file.
Please run the following command in the repository root to instruct Git to “skip” the listed commits and instead
show the earlier commit from which the line originates

git config blame.ignoreRevsFile .git-blame-ignore-revs

To temporarily disable this option, use git blame --ignore-revs-file= (without any argument).

8.8.5 Unit testing

The main goal of unit tests in GROMACS is to help developers while developing the code. They focus on testing
functionality of a certain module or a group of closely related modules. They are designed for quick execution,
such that they are easy to run after every change to check that nothing has been broken.

8.8. Development-time tools 697

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Finding, building and running

As described in Source code organization (page 631), src/gromacs/ is divided into modules, each correspond-
ing to a subdirectory. If available, unit tests for that module can be found in a tests/ subdirectory under the
top-level module directory. Typically, tests for code in file.h in the module is in a corresponding tests/
file.cpp. Not all files have corresponding tests, as it may not make sense to test that individual file in isolation.
Focus of the tests is on functionality exposed outside the module. Some of the tests, in particular for higher-level
modules, are more like integration tests, and test the functionality of multiple modules. Shared code used to
implement the tests is in src/external/googletest/ and src/testutils/ (see below).

The tests are built if BUILD_TESTING=ON (the default) and GMX_BUILD_UNITTESTS=ON (the default) in
CMake. Each module produces at least one separate unit test binary (module-test) under bin/, which can
execute tests for that module.

The tests can be executed in a few different ways:

• Build the test target (e.g., make test): This runs all the tests using CTest. This includes also the
regression tests if CMake has been told where to find them (regression tests are not discussed further on
this page). If some of the tests fail, this only prints basic summary information (only a pass/fail status for
each test binary or regression test class). You can execute the failing test binaries individually to get more
information on the failure. Note that make test does not rebuild the test binaries if you have changed the
source code, so you need to separately run make or make tests. The latter only builds the test binaries
and their dependencies.

• Build the check target (e.g., make check): This behaves the same as the test target, with a few
extensions:

1. Test binaries are rebuilt if they are outdated before the tests are run.

2. If a test fails, the output of the test binary is shown.

3. If unit tests and/or regression tests are not available, a message is printed.

• The implementation of make check calls CTest via the ctest binary to run all the individual test bina-
ries. More fine-grained control is available there, e.g. filtering by test name or label, or increasing verbosity.

• Directly executing a test binary. This provides the most useful output for diagnosing failures, and allows
debugging test failures. The output identifies the individual test(s) that fail, and shows the results of all
failing assertions. Some tests also add extra information to failing assertions to make it easier to identify
the reason. Some tests are skipped because they cannot run with the number of MPI ranks or GPU devices
detected. Explicit information about such cases can be obtained by using the -echo-reasons flag to the
test binary. It is possible to control which tests are run using command line options. Execute the binary with
--help to get additional information.

When executed using CTest, the tests produce XML output in Testing/Temporary/, containing the result of
each test as well as failure messages. This XML is used by GitLab CI for reporting the test status for individual
tests. Note that if a test crashes or fails because of an assert or a gmx_fatal() call, no XML is produced for the
binary, and CI does not report anything for the test binary. The actual error is only visible in the console output.

Unit testing framework

The tests are written using Google Test, which provides a framework for writing unit tests and compiling them
into a test binary. Most of the command line options provided by the test binaries are implemented by Google
Test. See the Google Test Primer for an introduction. Google Test is included in the source tree under src/
external/googletest/, and is compiled as part of the unit test build.

src/testutils/ contains GROMACS-specific shared test code. This includes a few parts:

• CMake macros for declaring test binaries. These take care of providing the main() method for the test
executables and initializing the other parts of the framework, so that the test code in modules can focus on
the actual tests. This is the only part of the framework that you need to know to be able to write simple tests:
you can use gmx_add_unit_test() in CMake to create your test binary and start writing the actual

8.8. Development-time tools 698

https://github.com/google/googletest
https://google.github.io/googletest/primer.html
https://github.com/google/googletest

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

tests right away. See src/testutils/TestMacros.cmake and existing CMake code for examples
how to use them.

• Generic test fixtures and helper classes. The C++ API is documented on Doxygen page for testutils. Func-
tionality here includes locating test input files from the source directory and constructing temporary files,
adding custom command line options to the test binary, some custom test assertions for better exception and
floating-point handling, utilities for constructing command line argument arrays, and test fixtures for tests
that need to test long strings for correctness and for tests that execute legacy code where stdin reading
etc. cannot be easily mocked.

• Some classes and functions to support the above. This code is for internal use of the CMake machinery to
build and set up the test binaries, and to customize Google Test to suit our environment.

• Simple framework for building tests that check the results against reference data that is generated by the
same test code. This can be used if it is not easy to verify the results of the code with C/C++ code alone, but
manual inspection of the results is manageable. The general approach is documented on the Doxygen page
on using the reference data.

In addition to src/testutils/, some of the module test directories may provide reusable test code that is
used in higher-level tests. For example, the src/gromacs/analysisdata/tests/ provides test fixtures, a
mock implementation for gmx::IAnalysisDataModule, and some helper classes that are also used in src/
gromacs/trajectoryanalysis/tests/. These cases are handled using CMake object libraries that are
linked to all the test binaries that need them.

Getting started with new tests

To start working with new tests, you should first read the Google Test documentation to get a basic understanding
of the testing framework, and read the above description to understand how the tests are organized in GROMACS.
It is not necessary to understand all the details, but an overall understanding helps to get started.

Writing a basic test is straightforward, and you can look at existing tests for examples. The existing tests have a
varying level of complexity, so here are some pointers to find tests that use certain functionality:

• src/gromacs/utility/tests/stringutil.cpp contains very simple tests for functions. These
do not use any fancy functionality, only plain Google Test assertions. The only thing required for these tests
is the TEST() macro and the block following it, plus headers required to make them compile.

• The same file contains also simple tests using the reference framework to check line wrapping (the tests
for gmx::TextLineWrapper). The test fixture for these tests is in src/testutils/include/
testutils/stringtest.h/.cpp. The string test fixture also demonstrates how to add a custom
command line option to the test binary to influence the test execution.

• src/gromacs/selection/tests/ contains more complex use of the reference framework. This
is the code the reference framework was originally written for. src/gromacs/selection/tests/
selectioncollection.cpp is the main file to look at.

• For more complex tests that do not use the reference framework, but instead do more complex verification
in code, you can look at src/gromacs/selection/tests/nbsearch.cpp.

• For complex tests with mock-up classes and the reference framework, you can look at src/gromacs/
analysisdata/tests/.

Here are some things to keep in mind when working with the unit tests:

• Try to keep the execution time for the tests as short as possible, while covering the most important paths
in the code under test. Generally, tests should take seconds instead of minutes to run, so that no one
needs to hesitate before running the tests after they have done some changes. Long-running tests should go
somewhere else than in the unit test set. Note that CI will run the tests in several build configuration and
slow tests will significantly slow down the pipelines and can even cause them to timeout.

• Try to produce useful messages when a test assertion fails. The assertion message should tell what went
wrong, with no need to run the test itself under a debugger (e.g., if the assertion is within a loop, and
the loop index is relevant for understanding why the assertion fails, it should be included in the message).

8.8. Development-time tools 699

../doxygen/html-lib/group__module__testutils.xhtml
../doxygen/html-lib/page_refdata.xhtml
../doxygen/html-lib/page_refdata.xhtml
https://github.com/google/googletest

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Even better if even a user can understand what goes wrong, but the main audience for the messages is the
developer who caused the test to fail.

MPI tests

If your test makes specific requirements on the number of MPI ranks, or needs a communicator as part of its im-
plementation, then there are GROMACS-specific extensions that make normal-looking GoogleTests work well in
these cases. Use GMX_TEST_MPI(RankRequirement) and declare the test with gmx_add_mpi_unit_-
test to teach CTest how to run the test regardless of whether the build is with thread-MPI or real MPI. See
src/testutils/include/mpitest.h for details.

8.8.6 Physical validation

Physical validation tests check whether simulation results correspond to physical (or mathematical) expectations.

Unlike the existing tests, we are not be able to keep these tests in the “seconds, not minutes” time frame, rather
aiming for “hours, not days”. They should therefore be ran periodically, but probably not for every build.

Also, given the long run time, it will in many cases be necessary to separate running of the systems (e.g. to run it
at a specific time, or on a different resource), such that the make script does give the option to

• prepare run files and an execution script,

• analyze already present simulations,

• or prepare, run and analyze in one go.

Test description

Currently, simulation results are tested against three physically / mathematically expected results:

• Integrator convergence: A symplectic integrator can be shown to conserve a constant of motion (such
as the energy in a micro-canonical simulation) up to a fluctuation that is quadratic in time step chosen.
Comparing two or more constant-of-motion trajectories realized using different time steps (but otherwise
unchanged simulation parameters) allows a check of the symplecticity of the integration. Note that lack of
symplecticity does not necessarily imply an error in the integration algorithm, it can also hint at physical
violations in other parts of the model, such as non-continuous potential functions, imprecise handling of
constraints, etc.

• Kinetic energy distribution: The kinetic energy trajectory of a (equilibrated) system sampling a canonical
or an isothermal-isobaric ensemble is expected to be Maxwell-Boltzmann distributed. The similarity be-
tween the physically expected and the observed distribution allows to validate the sampled kinetic energy
ensemble.

• Distribution of configurational quantities: As the distribution of configurational quantities like the potential
energy or the volume are in general not known analytically, testing the likelihood of a trajectory sampling
a given ensemble is less straightforward than for the kinetic energy. However, generally, the ratio of the
probability distribution between samples of the same ensemble at different state points (e.g. at different
temperatures, different pressures) is known. Comparing two simulations at different state points therefore
allows a validation of the sampled ensemble.

The physical validation included in GROMACS tests a range of the most-used settings on several systems. The
general philosophy is to leave most settings to default values with the exception of the ones explicitly tested in
order to be sensitive to changes in the default values. The test set will be enlarged as we discover interesting test
systems and corner cases. Under double precision, some additional tests are run, and some other tests are run
using a lower tolerance.

8.8. Development-time tools 700

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Integrator convergence

All simulations performed under NVE on Argon (1000 atoms) and water (900 molecules) systems. As these tests
are very sensitive to numerical imprecision, they are performed with long-range corrections for both Lennard-
Jones and electrostatic interactions, with a very low pair-list tolerance (verlet-buffer-tolerance =
1e-10), and high LINCS settings where applicable.

Argon:

• Integrators: - integrator = md - integrator = md-vv

• Long-range corrections LJ: - vdwtype = PME - vdwtype = cut-off, vdw-modifier =
force-switch, rvdw-switch = 0.8

Water:

• Integrators: - integrator = md - integrator = md-vv

• Long-range corrections LJ: - vdwtype = PME - vdwtype = cut-off, vdw-modifier =
force-switch, rvdw-switch = 0.8

• Long-range corrections electrostatics: - coulombtype = PME, fourierspacing = 0.05

• Constraint algorithms: - constraint-algorithm = lincs, lincs-order = 6, lincs-iter
= 2 - constraint-algorithm = none - SETTLE

Ensemble tests

The generated ensembles are tested with Argon (1000 atoms) and water (900 molecules, with SETTLE and PME)
systems, in the following combinations:

• integrator = md, tcoupl = v-rescale, tau-t = 0.1, ref-t = 87.0 (Argon) or ref-t
= 298.15 (Water)

• integrator = md, tcoupl = v-rescale, tau-t = 0.1, ref-t = 87.0 (Argon) or ref-t
= 298.15 (Water), pcoupl = parrinello-rahman, ref-p = 1.0, compressibility =
4.5e-5

• integrator = md-vv, tcoupl = v-rescale, tau-t = 0.1, ref-t = 87.0 (Argon) or
ref-t = 298.15 (Water)

• integrator = md-vv, tcoupl = nose-hoover, tau-t = 1.0, ref-t = 87.0 (Argon) or
ref-t = 298.15 (Water), pcoupl = mttk, ref-p = 1.0, compressibility = 4.5e-5

All thermostats are applied to the entire system (tc-grps = system). The simulations run for 1ns at 2fs time
step with Verlet cut-off. All other settings left to default values.

Building and testing using the build system

Since these tests can not be ran at the same frequency as the current tests, they are kept strictly opt-in via -DGMX_-
PHYSICAL_VALIDATION=ON, with -DGMX_PHYSICAL_VALIDATION=OFF being the default. Indepen-
dently of that, all previously existing build targets are unchanged, including make check.

If physical validation is turned on, a number of additional make targets can be used:

• make check is unchanged, it builds the main binaries and the unit tests, then runs the unit tests and, if
available, the regression tests.

• make check-phys builds the main binaries, then runs the physical validation tests. Warning: This
requires to simulate all systems and might take several hours on a average machine!

• make check-all combines make check and make check-phys.

As the simulations needed to perform the physical validation tests may take long, it might be advantageous to run
them on an external resource. To enable this, two additional make targets are present:

8.8. Development-time tools 701

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• make check-phys-prepare prepares all simulation files under tests/physicalvalidation
of the build directory, as well as a rudimentary run script in the same directory.

• make check-phys-analyze runs the same tests as make check-phys, but does not simulate the
systems. Instead, this target assumes that the results can be found under tests/physicalvalidation
of the build directory.

The intended usage of these additional targets is to prepare the simulation files, then run them on a different
resource or at a different time, and later analyze them. If you want to use this, be aware (i) that the run script
generated is very simple and might need (considerable) tuning to work with your setup, and (ii) that the analysis
script is sensitive to the folder structure, so make sure to preserve it when copying the results to / from another
resource.

Additionally to the mentioned make targets, a number of internal make targets are defined. These are not in-
tended to be used directly, but are necessary to support the functionality described above, especially the com-
plex dependencies. These internal targets include run-ctest, run-ctest-nophys, run-ctest-phys
and run-ctest-phys-analyze running the different tests, run-physval-sims running the sim-
ulations for physical validation, and missing-tests-notice, missing-tests-notice-all,
missing-phys-val-phys, missing-phys-val-phys-analyze and missing-phys-val-all
notifying users about missing tests.

Direct usage of the python script

The make commands mentioned above are calling the python script tests/physicalvalidation/gmx_-
physicalvalidation.py, which can be used independently of the make system. Use the -h flag for the
general usage information, and the --tests for more details on the available physical validations.

The script requires a json file defining the tests as an input. Among other options, it allows to define the
GROMACS binary and the working directory to be used, and to decide whether to only prepare the simulations,
prepare and run the simulations, only analyze the simulations, or do all three steps at once.

Adding new tests

The available tests are listed in the systems.json (tests standardly used for single precision builds) and
systems_d.json (tests standardly used for double precision builds) files in the same directory, the GROMACS
files are in the folder systems/.

The json files lists the different test. Each test has a "name" attribute, which needs to be unique, a "dir"
attribute, which denotes the directory of the system (inside the systems/ directory) to be tested, and a "test"
attribute which lists the validations to be performed on the system. Additionally, the optional "grompp_args"
and "mdrun_args" attributes allow to pass specific arguments to gmx grompp or gmx mdrun, respectively.
A single test can contain several validations, and several independent tests can be performed on the same input
files.

To add a new test to a present system, add the test name and the arguments to the json file(s). To use a new system,
add a subfolder in the systems/ directory containing input/system.{gro,mdp,top} files defining your
system.

8.9 Known issues relevant for developers

This is a non-exhaustive list of known issues that have been observed and can be of interest for developers. These
have not been solved because they are either outside the scope of the GROMACS project or are are simply too
difficult or tedious to address ourselves.

8.9. Known issues relevant for developers 702

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

8.9.1 Issues with GPU timer with OpenCL

When building using OpenCL in Debug mode, it can happen that the GPU timer state gets corrupted, leading to
an assertion failure during the mdrun (page 215). This seems to be related to the load of other, unrelated tasks on
the GPU.

8.9.2 GPU emulation does not work

The non-bonded GPU emulation mode does not work, at least for builds with GPU support; then a GPU setup call
is called. Also dynamic pruning needs to be implemented for GPU emulation.

8.9.3 OpenCL on NVIDIA Volta and later broken

The OpenCL code produces incorrect results on Volta and Turing GPU architectures from NVIDIA (CC 7.0 and
7.5). This is an issue that affects certain flavors of the nonboded kernels, most likely a result of miscompilation,
and there is no known workaround.

8.9.4 PME decomposition automated task assignment broken

When there are two or more ranks on a node doing combined PP and PME work (i.e no separate PME ranks) and
more GPUs are detected than ranks, the automated task assignment fails and GROMACS aborts with “Error in
user input” message. You can work around this by using -gpu_id or GMX_GPU_ID or limiting the number of
visible GPUs.

Issue 4684

8.9. Known issues relevant for developers 703

https://gitlab.com/gromacs/gromacs/-/issues/4684

CHAPTER

NINE

DOXYGEN DOCUMENTATION

The doxygen code documentation is available on the GROMACS webpage.

704

CHAPTER

TEN

C++ API

10.1 Public C++ API

10.1.1 Overview

Trajectory analysis tools and pluggable MD extensions (such as code based on the sample_restraint example) use
gromacs/ headers supported by libgromacs.

Software that uses new public API facilities (such as gmxapi (page 607)) uses CMake and find_-
package(gmxapi) to configure a build system to use the gmxapi/ headers and link to the library supporting
the ::gmxapi C++ namespace.

Currently, the gmxapi library conveys an indirect dependency on libgromacs. Due to a bug in
CMake 3.24.0, find_package(gmxapi) must implicitly call find_package(gromacs${GROMACS_-
SUFFIX}) to avoid a spurious error, even though client software does not generally need to explicitly use
Gromacs::libgromacs (page 707) or its details.

10.1.2 Client build system support

GROMACS relies heavily on CMake to configure and manage the build system. The GROMACS installa-
tion directly supports CMake configured client software through configuration and “hints” files installed to
$GROMACS_ROOT/share/cmake/.

gmx --version (or the appropriate gmx$GROMACS_SUFFIX) includes notes on the original build toolchain
that may or may not be sufficient for configuring the client software build system.

Compiler toolchain

Though not explicitly required, it is highly recommended that client software build with a toolchain that closely
matches that of the GROMACS build to avoid binary incompatibilities.

Each GROMACS installation (since 2022) provides a CMake “hints” file that can be used to initialize your cmake
cache with the -C option.

For a GROMACS installation in $GROMACS_ROOT/, the hints file for a given GROMACS_SUFFIX
(page 707) can be found at $GROMACS_ROOT/share/cmake/gromacs$GROMACS_SUFFIX/
gromacs-hints$GROMACS_SUFFIX.cmake

The hints file is completely separate from the CMake configuration files that support find_package(gmxapi)
and find_package(GROMACS).

However, using -C path/to/gromacs-hints$GROMACS_SUFFIX.cmake in your client cmake config-
uration command line can help set appropriate compiler options so that you have a better chance of building a
compatible binary. (I.e. it helps gromacs_check_compiler() (page 708) succeed.)

705

https://gitlab.com/gromacs/gromacs/-/tree/main/python_packaging/sample_restraint
https://gitlab.kitware.com/cmake/cmake/-/issues/23838
https://gitlab.kitware.com/cmake/cmake/-/issues/23838
https://cmake.org/documentation/
https://cmake.org/cmake/help/v3.24/manual/cmake.1.html#options

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

In addition to hints variables for CMake enable_language and find_package, the hints file sets GMX_-
CMAKE_VERSION in case the client build system needs to know the version of CMake that was used to build the
GROMACS installation.

MPI support

GROMACS uses FindMPI (the module that supports CMake find_package(MPI ...)) to locate and con-
figure compiler and linker options for MPI support. Client software is advised to do the same.

If software support for MPI was detected by GROMACS when built, the gromacs-hints file (see above) will define
input variables to help find_package locate the same MPI installation.

Caveats

If GROMACS is installed from a package built in a different environment, the embedded toolchain information
may be inaccurate. This could make the gmx --version output misleading and the gromacs-hints file useless.
You may encounter spurious warnings when configuring the client build system, and the client software may or
may not interact properly with the GROMACS installation.

In a computing environment with multiple toolchains available (such as a typical High Performance Computing
(HPC) cluster), the toolchain may depend on environment variables for consistent behavior. If environment mod-
ules were used when setting up the GROMACS build environment (e.g. module load gcc openmpi/gcc),
it may be necessary to load the same environment modules before building the client software.

10.1.3 gmxapi CMake package

The CMake configuration files installed with GROMACS support the “Config mode” of CMake find_package.
Unlike the gromacs$GROMACS_SUFFIX packages, CMake configuration files only support a single gmxapi
package name.

The gmxapi API and ABI hide most of the differences possible in libgromacs from different build options.
However, the gmxapi/mpi/resourceassignment.h interface is affected by the original choice of GMX_-
MPI (page 638). A stable interface is available to MPI-enabled client software through the gmxapi/mpi/
gmxapi_mpi.h template header.

Some GROMACS installations include multiple builds. For instance, there may be a libgromacs.so,
libgromacs_d.so, libgromacs_mpi.so, and libgromacs_mpi_d.so, (according to build-time
values of GMX_DOUBLE (page 637) and GMX_MPI (page 638)) any one of which might be provided by
the Gromacs::libgromacs CMake target. Until resolution of Issue 4334, only one version of the
Gromacs::gmxapi is importable from a GROMACS installation. Each GROMACS installation (with GMXAPI
(page 640) ON) overwrites the CMake configuration files for the previously installed gmxapi support.

Imported target

Gromacs::gmxapi

The gmxapi package provides a single Gromacs::gmxapi target that conveys access to the installed
gmxapi/ headers. The associated shared object library will be differently named, depending on the build
system configuration options. (See GMX_DOUBLE (page 637) and GMX_MPI (page 638)).

10.1. Public C++ API 706

https://cmake.org/cmake/help/latest/module/FindMPI.html
https://cmake.org/cmake/help/latest/command/find_package.html
https://gitlab.com/gromacs/gromacs/-/issues/4334

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

10.1.4 gromacs (and gromacs$GROMACS_SUFFIX packages)

The CMake machinery to support find_package(GROMACS) has two parts: a FindGROMACS.cmake
find module (found in share/gromacs/template/cmake/ in the installation and share/template/
cmake/ in the source tree), and actual package configuration files (gromacs-config.cmake and supporting
files installed to share/cmake/ from input files in src/gromacs/).

FindGROMACS.cmake is a simple wrapper over the package configuration files, providing a somewhat more
convenient interface to the machinery that supports multiple suffixed GROMACS installations in the same instal-
lation prefix (see GROMACS_SUFFIX variable below). This file is intended to be version-agnostic and remain
both forward- and backward-compatible even between major GROMACS releases. All version-specific informa-
tion and the actual details about the compilation and linking settings is in the package configuration files. Build
systems willing to utilize FindGROMACS.cmake can create a local copy of it and use it like it is used in the in-
stalled share/gromacs/template/CMakeLists.txt. The package configuration files can also be used
directly if desired, bypassing FindGROMACS.cmake.

When using FindGROMACS.cmake, find_package(GROMACS) is able to find configurations for any of the
gromacs, gromacs_d, gromacs_mpi, or gromacs_mpi_d CMake package names. Otherwise, you must
use the exact package name that you are looking for. E.g. find_package(gromacs_d).

Imported targets

Gromacs::libgromacs

Provides access to the installed core GROMACS library and gromacs/ headers: target_link_-
libraries(foo PRIVATE Gromacs::libgromacs).

Gromacs::gmx

Represents the command line executable. For example, to set a local CMake variable _gmx_executable
to the executable path (with the correct GROMACS_SUFFIX (page 707)) you can use get_target_-
property(_gmx_executable Gromacs::gmx LOCATION) in your CMakeLists.txt

Input options

Input options for influencing what to find

GROMACS_SUFFIX

(only for FindGROMACS.cmake)

This CMake variable can be set before calling find_package(GROMACS) to specify the GROMACS
suffix to search for. If not set, an unsuffixed version is searched for. If using the package configuration files
directly, the suffix must be set using find_package(GROMACS NAMES gromacs<suffix>).

GROMACS_PREFER_STATIC

This CMake variable can be set before calling find_package(GROMACS) to specify whether static
or shared libraries are preferred if both are available. It does not affect which GROMACS installation is
chosen, but if that installation has both static and shared libraries available (installed from two different
builds with the same suffix), then this chooses the library to be returned in GROMACS_LIBRARIES.

GROMACS_DIR

This CMake (cache) variable is a standard mechanism provided by find_package, and can be used to
specify a hint where to search for GROMACS. Also CMAKE_PREFIX_PATH can be used for this purpose;
see CMake documentation for find_package for more details. GROMACS_DIR can also be set as an
environment variable, and this is done by GMXRC.

10.1. Public C++ API 707

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Output variables

Output variables that specify how the found libgromacs and header should be used:

GROMACS_INCLUDE_DIRS

List of include directories necessary to compile against the GROMACS headers. Currently, this includes
the path to GROMACS headers.

GROMACS_LIBRARIES

List of libraries to link with to link against GROMACS. Under the hood, this uses imported CMake targets
to represent libgromacs.

GROMACS_DEFINITIONS

List of compile definitions (with -D in front) that are required to compile the GROMACS headers.

GROMACS_IS_DOUBLE

Whether the found GROMACS was compiled in double precision.

GROMACS_CXX_FLAGS

Required compiler flags.

Macros/functions

Declared macros/functions that can be used for checking for correctness of some settings:

gromacs_check_double(GMX_DOUBLE)

Checks that the found GROMACS is in the expected precision. The parameter GMX_DOUBLE should be the
name of a cache variable that specified whether double-precision was requested.

gromacs_check_compiler(LANG)

Checks that the found GROMACS was compiled with the same compiler that is used by the current CMake
system. Currently only LANG=CXX is supported.

Public C++ application programming interfaces are available for GROMACS installations depending on the de-
tected environment and user options when the GROMACS build is configured with CMake.

•Public C++ API (page 705)

– CMake target Gromacs::gmxapi, enabled by GMXAPI (page 640) (default, when BUILD_-
SHARED_LIBS on non-Windows platforms), provides gmxapi/ headers and ::gmxapi C++
namespace.

– CMake target Gromacs::libgromacs, enabled by GMX_INSTALL_LEGACY_API
(page 640) (default OFF), provides gromacs/ headers and ::gmx C++ namespace.

• (Non-)Bonded LIBrary (NB-LIB) API (page 621): Enabled by GMX_INSTALL_NBLIB_API (page 640).
(default, when BUILD_SHARED_LIBS on non-Windows platforms)

10.1. Public C++ API 708

CHAPTER

ELEVEN

RELEASE NOTES

These release notes record the changes made in all major and patch releases of GROMACS. Major releases con-
tain changes to the functionality supported, whereas patch releases contain only fixes for issues identified in the
corresponding major releases.

Two version series of GROMACS are under active maintenance and within support lifetime at any time. In 2026,
they are the 2026 series and the 2025 series. In the latter, only highly conservative fixes will be made, and only to
address issues that affect scientific correctness. Naturally, some of those releases will be made after the year 2025
ends, but we keep the year of the original release in the version name so that users understand how up to date their
version is. Such fixes will also be incorporated into the more recent release series, as appropriate. Around the time
the 2027 release is made, the 2025 series will no longer be maintained.

Where issue numbers are reported in these release notes, more details can be found on the issue tracker at that
issue number.

11.1 GROMACS 2026 series

11.1.1 Patch releases

11.1.2 Major release

Highlights

GROMACS 2026 was released on INSERT DATE HERE. Patch releases may have been made since then, please
use the updated versions! Here are some highlights of what you can expect, along with more detail in the links
below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

•

New and improved features

Performance improvements

Changes to the API

Improvements to GROMACS tools

Bugs fixed

Deprecated functionality

709

https://gitlab.com/gromacs/gromacs/-/issues/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Changes anticipated to GROMACS 2026 functionality

Functionality deprecated in GROMACS 2026

Removed functionality

Portability

Miscellaneous

11.2 GROMACS 2025 series

11.2.1 Patch releases

11.2.2 Major release

Highlights

GROMACS 2025 was released on INSERT DATE HERE. Patch releases may have been made since then, please
use the updated versions! Here are some highlights of what you can expect, along with more detail in the links
below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

•

New and improved features

A feature-limited version of the PLUMED interface is available

A basic version of the PLUMED interface is now bundled by default in GROMACS. With a non-Windows instal-
lation, it is possible to invoke PLUMED directly from the command line using the -plumed option of the gmx
mdrun command, followed by the path to a PLUMED input file. This can be done without the need to apply a
patch as in previous GROMACS versions. Importantly, this interface is not feature complete, see the section in
the manual (page 547) for the details.

Support for amino-acid-specific energy correction maps (CMAPs)

Previously, energy correction map (CMAP) types could only be specified using atom types and were applied to
atoms in an amino-acid-agnostic way. CMAP types can now be specified using both atom types and residue types,
which enables support for recent Amber force fields (ff19SB and later versions).

Issue 4430

11.2. GROMACS 2025 series 710

https://www.plumed.org/
https://gitlab.com/gromacs/gromacs/-/issues/4430

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Neural Network Potential support

Basic support has been added to perform simulations with Neural Network Potentials (NNPs). These models can
be trained to reproduce forces and energies at ab initio levels of accuracy, based on training data from electronic
structure calculations with e.g. DFT or CCSD(T). Importantly, GROMACS does not include any pretrained mod-
els, so users need to train their own models or load pre-trained models from external sources. As of now, the
interface supports NNP models trained in PyTorch. For details on usage and building GROMACS with LibTorch
support, please see the NNPot section in the reference manual (page 548).

Add Custom Improper Dihedrals in specbond.dat

This change allows users to specify an improper dihedral resulting for a special bond (i.e. a thioester connection
resulting in a SP2 group) in the specbond.dat file which is read during the pdb2gmx preprocessing step.

Issue 5113

Performance improvements

Instant-submission mode enabled by default when building with AdaptiveCpp

In GROMACS 2024, one had to manually enable the instant-submission mode of AdaptiveCpp when building
GROMACS (-DSYCL_CXX_FLAGS_EXTRA=-DHIPSYCL_ALLOW_INSTANT_SUBMISSION=1). Now it is
enabled by default, improving performance by up to 20% when running on GPU and slightly reducing the CPU
usage when using SYCL/AdaptiveCpp backend.

Changes to the API

Improvements to GROMACS tools

gmx grompp now checks dihedral coefficients sum

The sum of dihedral parameters of type 3 (i.e Ryckaert-Bellemans or Fourier dihedrals) is now checked during
preprocessing. In free energy simulations, this sum must be equal in both states as it affects final results through
dH/dl. Additionally, this sum should be zero when comparing potential energy values with other force field ports
and simulation codes, but a non-zero sum does not otherwise affect the simulation (a simple note is emitted).

If gmx grompp rejects an interaction that was previously accepted, then change the first coefficient to make the
total zero. This leading coefficient has no effect on the derivative of the energy (ie. the forces), and thus no effect
on the dynamics.

No parameters in default force fields in GROMACS were affected, so none have changed.

Issue 4253

Added support for DSSP v.2 in gmx dssp

There is now the ability to choose between two different output modes: with polyproline helices search enabled
(option “-polypro”, default and corresponds to the output of DSSP v.4) and with polyproline helices search dis-
abled (option “-nopolypro”, corresponds to the output of DSSP v.2).

11.2. GROMACS 2025 series 711

https://pytorch.org/
https://gitlab.com/gromacs/gromacs/-/issues/5113
https://gitlab.com/gromacs/gromacs/-/issues/4253

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The number of averaging blocks for -evisco is now chosen by the user

The number of averaging blocks used when computing viscosity using Einstein formula was previously hard-
coded to 4. This number can now be chosen by the user via the -einstein_blocks flag of gmx energy.
When computing viscosity from very long trajectories, it may be preferable to have several averaging blocks to
obtain a more accurate average and avoid the long-time diffusive behavior of the pressure integral.

Issue 5114

New features in gmx hbond

A set of additional functionality has been added: dynamic selections are now available (as well as detailed output
for them in an atomic index file); added the ability to customize the geometric criterion for hydrogen bond for-
mation using custom distances and angles (via “-hbr” and “-hba” flags respectively); added the ability to add any
atomic elements as donors or acceptors of hydrogen bonds (via “-de” and “-ea” flags respectively).

Improve reading performance of large .gro files

gmx grompp is now up to 30% faster when reading system coordinates from a large gro (page 486) file.

Bugs fixed

Deprecated functionality

Changes anticipated to GROMACS 2025 functionality

Functionality deprecated in GROMACS 2025

MTTK pressure coupling is deprecated

Issue 5072

The TNG trajectory format is deprecated

The TNG file format will be removed in a future release. It will be replaced by the more widely used HDF5-
based H5MD format. There will be at least one version of GROMACS supporting both H5MD and TNG to allow
conversions between the two formats.

Issue 5225

Removed functionality

Portability

Added support to compile GROMACS using AMD HIP as GPU backend

It is now possible to use AMD HIP directly as the GPU backend to run simulations on AMD devices. For now
only the NBNxM kernels are can be offloaded to the device using this backend.

Issue 4947

11.2. GROMACS 2025 series 712

https://gitlab.com/gromacs/gromacs/-/issues/5114
https://gitlab.com/gromacs/gromacs/-/issues/5072
https://gitlab.com/gromacs/gromacs/-/issues/5225
https://gitlab.com/gromacs/gromacs/-/issues/4947

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Added support for the oneMKL interface library for GPU FFTs

This enables cross-vendor support for GPU FFTs to the GROMACS SYCL backend. Either cuFFT or rocFFT can
now be used with Intel DPC++ and Codeplay’s plugins for NVIDIA and AMD GPUs.

Issue 4744

Update of required CMake version

Updated required CMake version to 3.28

Issue 5014

Miscellaneous

Internal build of FFTW now uses version 3.3.10

When the -DGMX_BUILD_OWN_FFTW=ON option is enabled, we now compile FFTW 3.3.10 instead of the
previous 3.3.8 version. For more details, please refer to the FFTW release notes.

Increased AWH parameter ‘awh-nsamples-update’ default value from 10 to 100

This is to decrease the overhead of updating the bias, in particular with multiple walkers.

Support for continuing expanded ensemble equilibration across simulation parts

The mdp options init-lambda-counts (page 76) and init-wl-histogram-counts (page 76) can now
initialize the number of counts at each sampled lambda state and the Wang-Landau histograms used to determine
simulation equilibration. These are most useful when running short simulation parts, so that the information about
how the system is equilibrating can be carried over between simulations. Otherwise, chains of short simulation
parts would never converge when using expanded-ensemble methods. The information is now also carried over
through the checkpoint file.

11.3 Older (unmaintained) GROMACS series

11.4 GROMACS 2024 series

11.4.1 Patch releases

GROMACS 2024.5 release notes

This version was released on TODO, 2024. These release notes document the changes that have taken place in
GROMACS since the previous 2024.4 version, to fix known issues. It also incorporates all fixes made in version
2023.5 and earlier, which you can find described in the Release notes (page 709).

11.3. Older (unmaintained) GROMACS series 713

https://gitlab.com/gromacs/gromacs/-/issues/4744
https://gitlab.com/gromacs/gromacs/-/issues/5014
https://www.fftw.org/release-notes.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Fixes for gmx tools

Fixes that affect portability

Miscellaneous

GROMACS 2024.4 release notes

This version was released on October 31st, 2024. These release notes document the changes that have taken place
in GROMACS since the previous 2024.3 version, to fix known issues. It also incorporates all fixes made in version
2023.5 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix missing non-bonded interactions close to cut-off with GPUs

The GPU rolling pruning employed with the dual pair list setup used an incorrect list part calculation. This
caused a few parlist entries not to be updated after the initial pruning, leading to a small number of missing pair
interactions. Unless the pair list lifetime nstlist was very large, these interactions were close to the cut-off and
therefore the errors were small.

Affected simulations: all GPU accelerated runs using GROMACS versions starting with the 2018 release with
dual pair list enabled. This is enabled automatically with default Verlet buffering, but it is disabled if the Verlet
buffer is manually set (or if the GMX_DISABLE_DYNAMICPRUNING environment variable is set).

Impact: Our analysis shows that the error caused by the missing interactions does not have a measurable effect
on either forces or energy conservation in most atomistic simulations with default simulation settings. While a
manually increased nstlist, hence increased (outer) pair list lifetime, leads to an increase in the number of
missing interactions, for useful value of nstlist the effect is still negligible. There can be measurable effects in
systems with vacuum, gas, or with excessively large nstlist values. In our testing we could not detect artifacts
apart from systems crashing, so the chance of undetected incorrect results is small.

Issue 5138

Add effect of perturbed masses to foreign Hamiltonian differences

The effect of perturbed masses was missing from the foreign Hamiltonian differences. This meant that effects of
perturbed masses were ignored by gmx bar. Note that perturbed masses did contribute to dH/dlambda.

Issue 5195

Fix illegal memory access with more VCM than T-coupling groups

When there were more center of mass motion removal groups than temperature coupling groups, mdrun could
crash due to illegal memory access. This bug did not affect the simulation results.

Issue 5167

11.4. GROMACS 2024 series 714

https://gitlab.com/gromacs/gromacs/-/issues/5138
https://gitlab.com/gromacs/gromacs/-/issues/5195
https://gitlab.com/gromacs/gromacs/-/issues/5167

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix crashes when some atoms are not part of a VCM group

Uninitialized memory was read when some atoms were not part of a center of mass motion removal group. Often
this memory contained zero and everything would work as it should. But when this memory was not zero, the
simulation would crash within a few steps.

Issue 5181

Fix parameter handling for coarse-grained bonded potentials

Free-energy perturbation has never been supported for restraint angle, restraint dihedral, and combined bending-
torsion potentials sometimes used in coarse-grained force fields. This led to the hypothetical B-state parameters
being incorrectly handled in gmx grompp and then incorrectly serialized to/from the .tpr file.

This was generally benign, even when such functional forms were in use. However, when other interactions were
perturbed, the incorrect parameter handling made it look like the interactions with wrongly implemented param-
eters were intended to be perturbed. This condition was sometimes achieved when using alchemical-embedding
system-preparation workflows.

Now the hypothetical B-state parameters are handled correctly, so FEP-based workflows can succeed. Perturbation
of the above-mentioned interaction types is still not supported, however.

Issue 5129 Issue 5144 Issue 5147

Fix Colvars output files always written to the working directory.

Colvars output files are now written in the same folder as edr file.

Issue 5122

Forbid the usage of triangle constraints with -update gpu

Prevent using update on GPU if there are triangle constraints.

Issue 5123

gmx_mpi mdrun could hang when using GPUs and separate PME ranks

A logic error in task assignment for -nb gpu -pme cpu and separate PME ranks made the (default)
-ddorder interleave hang. Now it works.

Issue 4345

Dynamic load balancing was ineffective when special forces were present

The timing for DLB included the calculation of special forces, e.g. pull code and rotation. As these require
communication, imbalance might not have been measured. Now special forces are excluded from the timings.

Issue 5188

11.4. GROMACS 2024 series 715

https://gitlab.com/gromacs/gromacs/-/issues/5181
https://gitlab.com/gromacs/gromacs/-/issues/5129
https://gitlab.com/gromacs/gromacs/-/issues/5144
https://gitlab.com/gromacs/gromacs/-/issues/5147
https://gitlab.com/gromacs/gromacs/-/issues/5122
https://gitlab.com/gromacs/gromacs/-/issues/5123
https://gitlab.com/gromacs/gromacs/-/issues/4345
https://gitlab.com/gromacs/gromacs/-/issues/5188

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix incorrect memory access with perturbed non-bonded and OpenMP

Old, invalid indices could be flagged for reduction of force buffers over OpenMP threads for perturbed non-bonded
interactions. This could never lead to incorrect results or crashes. But performance might be improved now.

Issue 5220

Fixes for gmx tools

grompp checked incorrect B-state charges with free-energy decoupling

When the couple-moltype (page 73) options was used, gmx grompp would check the A-state charges
instead of the B-state charges. This would lead to incorrect or no warnings when B-state of the system had
non-zero net charge.

Issue 5200

grompp, and mdrun, could exit with large mass differences

When masses of atoms differed more than a factor 327, both gmx grompp and gmx mdrun could exit with an
assertion failure about an infinite enery drift estimate.

Issue 5222

Fix dump crash with Colvars values

Fix gmx dump crash when trying to output the binary Colvars state file.

Issue 5034

Fix element and atom number deduction in during preprocessing

Two-letter atom names like BR or CL were not correctly handled in the preprocessing during gmx editconf,
gmx pdb2gmx and gmx grompp, leading to incorrect element and atom number assignment. This could lead
to incorrect element names in output files and possibly incorrect behaviour in QMMM simulations.

Issue 5182

Fix hang observed with NVSHMEM enabled PME-PP force transfers

A hang in PME-PP force transfers during NVSHMEM runs was resolved, occurring in certain conditions. It
should also be noted that the NVSHMEM enabled PME-PP force transfers does not support charge perturbation.

Issue 5136

11.4. GROMACS 2024 series 716

https://gitlab.com/gromacs/gromacs/-/issues/5220
https://gitlab.com/gromacs/gromacs/-/issues/5200
https://gitlab.com/gromacs/gromacs/-/issues/5222
https://gitlab.com/gromacs/gromacs/-/issues/5034
https://gitlab.com/gromacs/gromacs/-/issues/5182
https://gitlab.com/gromacs/gromacs/-/issues/5136

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes that affect portability

Fix physical validation with Pymbar version 4

Pymbar version 4 has a different API compared to version 3. Now we support using either of those versions and
internally handle the API differences.

Issue 5130

Fix compatibility with VkFFT 1.3.5

Fix crash on GROMACS shutdown when external VkFFT 1.3.5 is used.

Issue 5184

Miscellaneous

Work around FetchContent warnings in CMake 3.30 and newer

CMake 3.30 began to complain about GROMACS use of FetchContent, so now we tell such new versions to use
the old policy.

Issue 5140

Fix various crashes when GMX_USE_COLVARS=NONE

Colvars MDModule did not defined the Colvars custom mdp variables when the Colvars library was not compiled,
preventing tools read correctly a tpr file generated with a GROMACS-Colvars version. Prevent also the creation
of a tpr file if Colvars module is activated whereas GROMACS was not compiled with Colvars. Proper exit if a
Colvars simulation is launched whereas GROMACS was not compiled with Colvars.

Issue 5055

Fix reading cgroups in some kubernetes containers

Modern versions of kubernetes/docker do not appear to mount /etc/mtab in the containers, and if we did not find
cgroups we would not detect CPU limits set through cgroups. Fixed by reading /proc/mounts instead. This will
only influence performance when running in (some) containers.

Issue 5148

Collected fixes in the Colvars library

Several bugs, both recent and long-standing, have recently been fixed in the Colvars library: in the list below, the
links corresponds to issues or pull request in the Colvars repository.

• Fixed undefined behavior when getting the current working directory from std::filesystem, which
could have affected multiple-walkers metadynamics runs (Colvars PR 728).

• Fixed the gradients and the metric functions of collective variables of distanceDir type (Colvars PR
724).

• Fixed the definition of an orientation type collective variable in a rotated frame of reference (Colvars
PR 715).

• Implemented the contribution of fitting to the forces applied onto of variables with vector values defined in
a rotated fram (Colvars PR 713).

11.4. GROMACS 2024 series 717

https://gitlab.com/gromacs/gromacs/-/issues/5130
https://gitlab.com/gromacs/gromacs/-/issues/5184
https://gitlab.com/gromacs/gromacs/-/issues/5140
https://gitlab.com/gromacs/gromacs/-/issues/5055
https://gitlab.com/gromacs/gromacs/-/issues/5148
https://github.com/Colvars/colvars
https://github.com/Colvars/colvars/pull/728
https://github.com/Colvars/colvars/pull/724
https://github.com/Colvars/colvars/pull/724
https://github.com/Colvars/colvars/pull/715
https://github.com/Colvars/colvars/pull/715
https://github.com/Colvars/colvars/pull/713

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• Fixed a crash in certain metadynamics simulations without using interpolating grids (Colvars PR 706).

• More consistent behavior when defining multiple biases and running with more than one thread per task
(Colvars PR 694).

• Prevented the creation of spurious output files for runtime histograms (Colvars PR 675).

Enable NVCC flags checks for Windows

When building GROMACS for Windows with CUDA support, the checks for testing compatible compute archi-
tectures were disabled. Hence, GROMACS was trying to compile for all of them which can induced failed builds
when CUDA is not compatible anymore with old compute architectures.

Issue 5152

GROMACS 2024.3 release notes

This version was released on August 29th, 2024. These release notes document the changes that have taken place
in GROMACS since the previous 2024.2 version, to fix known issues. It also incorporates all fixes made in version
2023.5 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Remove double dispersion correction with MTTK barostat

When the MTTK barostat was used with dispersion correction, the pressure correction was applied twice. This
caused the density to be too high.

Issue 5072

Correct zero Verlet buffer for system with only large masses

For system with most masses much larger than zero, the Verlet buffer estimate could be zero. Coarse-grained
simulations could be affected by this issue.

Issue 5098

Fix incorrect energy group pair assignment of pair interactions

Energies for bonded pair interactions, typically 1-4 interactions, would be assigned to incorrect energy group pairs.
With free-energy calculations this could lead to illegal memory access.

Issue 5109

Correct AWH metric with free-energy and Beutler soft-core

The AWH metric was incorrect for free-energy dimensions when Beutler soft-core interactions were used. The
free-energies themselves were unaffected by this issue.

Issue 5107

11.4. GROMACS 2024 series 718

https://github.com/Colvars/colvars/pull/706
https://github.com/Colvars/colvars/pull/694
https://github.com/Colvars/colvars/pull/675
https://gitlab.com/gromacs/gromacs/-/issues/5152
https://gitlab.com/gromacs/gromacs/-/issues/5072
https://gitlab.com/gromacs/gromacs/-/issues/5098
https://gitlab.com/gromacs/gromacs/-/issues/5109
https://gitlab.com/gromacs/gromacs/-/issues/5107

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Implement Lennard-Jones force-switch in free-energy kernel

Perturbed non-bonded Lennard-Jones interactions would use plain cut-off with potential shift when force-switch
was specified. The errors this causes on the potential and force are negligible with the typical Charmm setup.
When (de)coupling a complete, dense system there is a measurable error in the pressure, but this is again negligible
when coupling a single molecule.

Issue 5016

mdrun now computes the initial bonded distances with periodic molecules

When using periodic molecules, mdrun could quit with an error message about multiple assignments of bonded
interactions telling the user to report the issue. The actual source of this was that mdrun did not determine the
communication distance required for bonded interactions. Now this distance is determined.

Issue 5086

Avoid using invalid device streams

Issue has only been seen via assertions in the GCC 13 standard library that guard against null-pointer dereferences.
The dereferenced null pointers were never used in actual simulations.

Issue 5087

Fix masks and alignment checks in Arm SVE SIMD

The double precision SVE implementation contained an incorrect mask for SVE implementations of 256 bits or
more. This would lead to instantaneous extreme forces/crashes on the first step, so it should never have influenced
any production simulations unnoticed. The alignment checks for some SVE routines have also been modified to
correspond to the SIMD width, although this is formally not required on Arm, so it will not have caused any errors.

Issue 5080 Issue 5120

Added an assert to ensure valid cutoff when calculating atom density

Simulations with rvdw (page 52) and rcoulomb (page 50) set to 0 could crash with a segmentation fault when
calculating the effective atom density. This is now handled by asserting valid values and halting with a proper
explanation.

Issue 5095

Fixes for gmx tools

Permit gmx tune_pme to understand md.log files

The format of md.log files changed in 2024 which broke the ability of gmx tune_pme to understand how
previous runs worked by parsing that file. Now gmx tune_pme understands better.

11.4. GROMACS 2024 series 719

https://gitlab.com/gromacs/gromacs/-/issues/5016
https://gitlab.com/gromacs/gromacs/-/issues/5086
https://gitlab.com/gromacs/gromacs/-/issues/5087
https://gitlab.com/gromacs/gromacs/-/issues/5080
https://gitlab.com/gromacs/gromacs/-/issues/5120
https://gitlab.com/gromacs/gromacs/-/issues/5095

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid crash of convert-tpr on velocity-less tpr files

The convert-tpr now works on tpr files that do not contain velocities, as generated for, e.g., energy minimization.

Issue 5080

Avoid premature termination when using gmx hbond

Fixed an error that caused gmx hbond to prematurely terminate if there were no donors or acceptors of hydrogen
bonds in the chosen selection.

Issue 5059 Issue 4985

Add grompp warning about zero AWH cover diameter when sharing a bias

Fix TPR generation with Andersen Massive thermostat and constraints

A restriction to not generate TPR files for the Andersen thermostat with constraints was incorrectly applied to also
the Andersen Massive thermostat.

Issue 5093

Fixed filenames of generated CP2K files in QMMM MdModule

If there were no files provided with grompp -qmi option, module used topol/_cp2k.inp instead of
topol_cp2k.inp

Added a check in gmx grompp to ensure that cutoffs are valid

At least one of rvdw (page 52) and rcoulomb (page 50) must be > 0 when using the Verlet cutoff scheme. This
is now checked by gmx grompp.

Issue 5095

Fix gmx dump with options -sys and -orgir

These gmx dump options had no effect. This has now been fixed.

Issue 5124

Fixes that affect portability

Fix build when GoogleTest is installed system-wide

In some cases (e.g., on FreeBSD), GROMACS build system can mix up different versions of GoogleTest leading
to compilation errors. Now we always prefer the bundled version.

Issue 5046

11.4. GROMACS 2024 series 720

https://gitlab.com/gromacs/gromacs/-/issues/5080
https://gitlab.com/gromacs/gromacs/-/issues/5059
https://gitlab.com/gromacs/gromacs/-/issues/4985
https://gitlab.com/gromacs/gromacs/-/issues/5093
https://gitlab.com/gromacs/gromacs/-/issues/5095
https://gitlab.com/gromacs/gromacs/-/issues/5124
https://gitlab.com/gromacs/gromacs/-/issues/5046

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

Fix detection of rocFFT installed in non-standard locations

Fix performance regression on PVC with oneAPI 2024.2

oneAPI 2024.2 enabled automatic GRF selection by the device compiler, causing up to 50% worse NBNxM kernel
performance on Intel Data Center GPU Max (Ponte Vecchio) devices. We now force the use of small GRF mode
on PVC to avoid that. Arc GPUs were not affected.

Issue 5105

GROMACS 2024.2 release notes

This version was released on May 10th, 2024. These release notes document the changes that have taken place in
GROMACS since the previous 2024.1 version, to fix known issues. It also incorporates all fixes made in version
2023.5 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Prevent crashes with AdaptiveCpp/hipSYCL

In some cases, GROMACS could randomly crash on neighbor-search steps with hip_queue:
hipMemsetAsync() failed (error code = HIP:1) error. This was caused by a GPU buffer re-
allocation while an operation on the buffer was pending. We add an explicit synchronization to avoid it.

Only AdaptiveCpp/hipSYCL builds are affected. This should not have caused any incorrect physics, only the
mdrun crash.

Issue 5078

Fixes for gmx tools

Improve errors and warnings to avoid poor results with gmx msd

Fail properly if -trestart is not divisible by -dt or if -dt > -trestart. A warning is generated if the two
values are equal.

Issue 5051

Improve error messages from editconf and trjconv

Fail properly if a tpr file is not supplied when using the -conect option. Also avoid a “File input/output error:”
when no tpr file is supplied when it is required for -pbc options.

Issue 5032

11.4. GROMACS 2024 series 721

https://gitlab.com/gromacs/gromacs/-/issues/5105
https://gitlab.com/gromacs/gromacs/-/issues/5078
https://gitlab.com/gromacs/gromacs/-/issues/5051
https://gitlab.com/gromacs/gromacs/-/issues/5032

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid floating point exception with corrupted xtc files

Reading a corrupted xtc file could cause a floating point exception. Now the gmx binary will exit with an error
message.

Issue 5037

Make Colvars file backup scheme consistent with GROMACS

Colvars output files in GROMACS versions 2024.0 and 2024.1 were backed up only once, regardless of the value
of GMX_MAXBACKUP. This is corrected in 2024.2 and later releases, by letting Colvars back up existing output
files consistently with other files produced by GROMACS itself.

Issue 5071

Fixes that affect portability

Enable usage of Intel compiler with AVX-512 SIMD on AMD Zen 4

The fix is to use newer style compiler flags for Intel oneAPI DPC++/C++ Compiler and AVX-512. Older style
flag -xCORE-AVX512 supports only Intel CPUs, while newer style -march=skylake-avx512 additionally
supports AMD CPUs. This fixes building with Intel compiler on AMD CPUs with Zen 4 cores.

Issue 5043

Warn about unsupported compilers sooner

Now CMake reports that a user’s compiler is broken or unsupported before running into other fatal issues that
would have obscured a critical problem.

Issue 5056

Enable specification of custom install rpath during build configuration

CMake build and installation steps will now append to the CMAKE_INSTALL_RPATH value provided by the user
at the configuration time (if any) instead of overwriting it.

Issue 5064

Permit dpcpp to appear in the path to the compiler

The compiler named dpcpp is no longer supported, so CMake prohibits its use. However previously we inadver-
tently also prohibited any compiler whose full path also contained the string “dpcpp,” which was not intended.

Issue 4716

11.4. GROMACS 2024 series 722

https://gitlab.com/gromacs/gromacs/-/issues/5037
https://gitlab.com/gromacs/gromacs/-/issues/5071
https://gitlab.com/gromacs/gromacs/-/issues/5043
https://gitlab.com/gromacs/gromacs/-/issues/5056
https://gitlab.com/gromacs/gromacs/-/issues/5064
https://gitlab.com/gromacs/gromacs/-/issues/4716

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

NBLIB always used geometric Lennard-Jones combination rules

Now NBLIB detects the Lennard-Jones combination rules (or none) from the Lennard-Jones parameters set by the
user.

Issue 5015

Fix cuFFTMp compilation issue

The cuFFTMp build is now more likely to compile because the compiler now sees the correct path.

Fix performance regression for some cases on latest NVIDIA GPUs

In version 2024.0 we included optimizations to non-bonded force calculations on NVIDIA GPUs which improved
performance for a range of cases, through loop unrolling tuning. Here, we tweak the optimization to fix a regres-
sion in a specific case, which was discovered to be caused by this tuning.

Issue 4867

Address performance regression on ARM with clang and SVE

The non-bonded CPU SIMD kernels contained loops which were not unrolled, in particular with the LLVM
backend of clang on ARM SVE. Other combinations of compilers and architectures might also have been affected.
Note that there are still other performance regressions in certain versions of these kernels on multiple platforms.

Issue 5036

Fix crash in NbnxmSetupTest.CanCreateNbnxmGPU

NbnxmSetupTest.CanCreateNbnxmGPU could crash in GPU builds with an error in
freeDeviceBuffer function during pairlist deinitialization.

Issue 4888

Fix incorrect mdp keyword for mass repartitioning in documentation

The mdp keyword for mass repartitioning was incorrect in the list of mdp options in the documentation.

Issue 5007

Report AdaptiveCpp/hipSYCL compiler path in gmx -version

In 2024.0 and 2024.1 it was empty.

Issue 5045

11.4. GROMACS 2024 series 723

https://gitlab.com/gromacs/gromacs/-/issues/5015
https://gitlab.com/gromacs/gromacs/-/issues/4867
https://gitlab.com/gromacs/gromacs/-/issues/5036
https://gitlab.com/gromacs/gromacs/-/issues/4888
https://gitlab.com/gromacs/gromacs/-/issues/5007
https://gitlab.com/gromacs/gromacs/-/issues/5045

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Prevented CTest from running racy test cases concurrently

Issue 4654 Issue 4975

GROMACS 2024.1 release notes

This version was released on February 28th, 2024. These release notes document the changes that have taken
place in GROMACS since the previous 2024.0 version, to fix known issues. It also incorporates all fixes made in
version 2023.4 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Avoid rounding errors with Parrinello-Rahman coupling of triclinic boxes

With triclinic boxes and isotropic or diagonal Parrinello-Rahman pressure coupling, the off-diagonal scaling ma-
trix arguments could be non-zero. This was harmless, apart from causing an assertion failure when update was
executed on a GPU.

Issue 4974

Fixes for gmx tools

Fixed parsing of phases in gmx nmtraj

Issue 4968

Fixes that affect portability

Fix compiler flag check with oneAPI DPC++

Some compiler warning flags were not tested properly when compiling for NVIDIA/AMD GPUs using Intel
oneAPI. No user-facing impact expected.

Issue 5005

Miscellaneous

Address mdrun performance regression with non-bonded interactions on CPU

The heuristics for choosing the inner pair-list interval has been improved to regain or improve the performance on
non-bonded interactions on the CPU. Correctness is unaffected.

Issue 4988

11.4. GROMACS 2024 series 724

https://gitlab.com/gromacs/gromacs/-/issues/4654
https://gitlab.com/gromacs/gromacs/-/issues/4975
https://gitlab.com/gromacs/gromacs/-/issues/4974
https://gitlab.com/gromacs/gromacs/-/issues/4968
https://gitlab.com/gromacs/gromacs/-/issues/5005
https://gitlab.com/gromacs/gromacs/-/issues/4988

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed nbnxm-test failure when bounds checking was enabled for stdlib

Issue 4966 Issue 4973

Increase tolerance of mdrun continuation tests in double precision

The mdrun continuation tests could fail in double precision with errors just above the tolerance.

Issue 4788 Issue 4931

Fix missing OpenMP initialization in grompp

The problem only manifested as a pop-up message when running gmx grompp built with Visual Studio. Since
this message was blocking the application, it could mess up with test suite or automated scripts. No other delete-
rious effects noted.

Issue 4961

Fix grompp & mdrun crash when GMX_USE_COLVARS=NONE

Colvars MDModule was not properly constructed when the Colvars library was not compiled. Colvars mdp fields
handler was returning a nullptr.

Issue 4980

Fix broken completion script on zsh-5.9 (Mac OS Sonoma)

The compinit command must be loaded by the script before loading bashcompinit, or there will be an error message
when sourcing GMXRC on some zsh versions.

Issue 4986

11.4.2 Major release

Highlights

GROMACS 2024.0 was released on January 30th, 2024. Patch releases may have been made since then, please
use the updated versions! Here are some highlights of what you can expect, along with more detail in the links
below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

• The Colvars library can now be used natively from GROMACS. This simplifies the use of advanced en-
hanced sampling simulations.

• Reduced artifacts from Lennard-Jones pair interactions on the pressure by a configurable increase of the
Verlet buffer. Can lead to a slight performance loss, especially for coarse-grained systems.

• Corrected several aspects of the deform option. Now simulations with box deformation behave correctly
under high shear or when a solid or membrane fractures. This also means that the deform option is now
suitable for computing viscosities.

• New option for hydrogen mass repartitioning in grompp enables easy access to performance improvements.

• Improvements to AWH, such as better control of the histogram growth factor as well as enabling automatic
scaling of the target distribution based on the AWH friction metric.

11.4. GROMACS 2024 series 725

https://gitlab.com/gromacs/gromacs/-/issues/4966
https://gitlab.com/gromacs/gromacs/-/issues/4973
https://gitlab.com/gromacs/gromacs/-/issues/4788
https://gitlab.com/gromacs/gromacs/-/issues/4931
https://gitlab.com/gromacs/gromacs/-/issues/4961
https://gitlab.com/gromacs/gromacs/-/issues/4980
https://gitlab.com/gromacs/gromacs/-/issues/4986
https://colvars.github.io

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• Configurable HeFFTe multi-GPU FFT options lets users fine-tune the settings for specific use-cases.

New and improved features

The AWH exponential histogram growth can now be controlled

The accelerated weight histogram growth factor during the initial phase was hard-coded to 3. Now this value can
be controlled by the user. It is set to 2 by default for increased stability.

If the TPR was generated with an earlier GROMACS version, the old default value of 3 will be used.

Added support for instrumentation based on wallcycle regions using NVTX/ROCTX/ITT

Basic support has been added for GPU tracing libraries so wallcycle main and sub-regions will show up in tracing
timelines which can help with performance analysis. The tracing instrumentation support can be enabled with one
of the following CMake variables: GMX_USE_NVTX, GMX_USE_ROCTX, GMX_USE_ITT.

Issue 4446

Collective variables (Colvars) module support

The collective variables (Colvars) library for enhanced sampling simulations has a new and improved interface,
which simplifies greatly its use and distribution with current and future GROMACS releases. The new interface
requires no patching and supports a full integration of the Colvars input and of its restart data with the GROMACS
TPR and CPT files, respectively.

For documentation and details, please see this section (page 546) of the GROMACS doc along with the Colvars
doc page for GROMACS. Additionally, messages in the GROMACS discussion forum can also be tagged with the
colvars keyword for easier consultation.

Automatic metric scaled AWH target distribution

The AWH target distribution can now be automatically scaled by sqrt(AWH friction metric). Regions with higher
friction (slower diffusion) will get a higher target distribution. This should generally lower the statistical error of
the estimated free energy landscape. The new option is called ‘awh1-target-metric-scaling’ and can be applied
to further modify all AWH target distributions and/or AWH user input, but is not recommended in general in
combination with Boltzmann or Local-Boltzmann target distributions, due to the risk of feedback loops between
the two adaptive update mechanisms.

Performance improvements

Improved performance for inhomogeneous systems

The performance of systems with a lot of empty space is improved by optimizing the pair search grid for the
effective atom density.

Issue 4805

11.4. GROMACS 2024 series 726

https://gitlab.com/gromacs/gromacs/-/issues/4446
https://colvars.github.io
https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html
https://colvars.github.io/gromacs-2024/colvars-refman-gromacs.html
https://gromacs.bioexcel.eu/tag/colvars
https://gitlab.com/gromacs/gromacs/-/issues/4805

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Flexible hydrogen mass repartitioning using grompp

Instead of using pdb2gmx, which modifies the topology, a flexible scheme for hydrogen mass repartitioning is
now available in grompp through the mass-repartition-factor mdp option. This provides easy access
to a performance improvement of close to a factor two.

Issue 4866

Small performance regression to achieve more accurate pressure

To lower the effect on Lennard-Jones pair interaction on the pressure, the Verlet buffer has been increased for most
simulations using default mdp settings. This can lead to a few percent performance loss, in particular when using
GPUs. The effect will be strongest for systems with no or weak electrostatics, which includes most coarse-grained
systems.

Issue 4861

Reduced grompp and mdrun setup time for systems with many atom types

The Verlet buffer calculation could take many minutes for systems with thousands of different Verlet buffer atom
types (different atom type and charge). Such times have now been reduced to seconds.

Issue 4892

With wall potentials, bonded interactions can now be run on GPUs

HeFFTe multi-GPU FFT plan options are now configurable

New environment variables GMX_HEFFTE_RESHAPE_ALGORITHM, GMX_HEFFTE_USE_GPU_AWARE,
GMX_HEFFTE_USE_PENCILS, and GMX_HEFFTE_USE_REORDER permit the HeFFTe plan options to be con-
figured at run time. The performance obtained can vary with the quality of implementation of e.g. the GPU-aware
MPI library, as well as the layout and number of the GPUs participating in the 3D-FFT. Users can now find and
use the best settings for their case. See the HeFFTe documentation for more details.

Changes to the API

Improvements to GROMACS tools

Improved Einstein viscosity calculation in gmx energy

Viscosity calculation using the Einstein formula is convenient as this does not require extremely frequent pressure
tensor data. However, the implementation of the calculation was inconvenient for long simulations and could take
hours to complete. Improved stepping through the data reduces the computational time to minutes and provides
much clearer output.

11.4. GROMACS 2024 series 727

https://gitlab.com/gromacs/gromacs/-/issues/4866
https://gitlab.com/gromacs/gromacs/-/issues/4861
https://gitlab.com/gromacs/gromacs/-/issues/4892

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

XVG output from gmx rdf now uses 6 decimal places

The output from gmx rdf now uses more decimal places in order to avoid rounding issues. These issues led to
perceived erroneous shifts in the results.

Issue 4647

Handle CYX-CYX disulfide bonds in gmx pdb2gmx

Naming CYS residues as CYX shows that they should form a disulfide bond. gmx pdb2gmx will now correctly
interpret them as disulfide bond forming residues.

Issue 4929

Bugs fixed

The deform option was unsuited for flow simulations

The deform option now only deforms the box and does not modify atom positions anymore. In contrast to previous
versions, it instead corrects the velocities of particles when they are shifted by a periodic box vector. Now, deform
is also useful for shear flows. Applications where the system was stretched until some interactions broke were
probably not affected measurably by these issues. Note that a velocity profile should be generated when using
deform with the current or later versions. An mdp option has been added to let grompp do this.

Issue 4607

mdrun now checks for excluded pairs beyond the cut-off with reaction-field and FEP

With reaction-field electrostatics and free-energy calculations, excluded atom pairs are not allowed to be beyond
the Coulomb cut-off distance. Now mdrun checks for this and throws an error when this occurs.

Issue 4667

Limit pressure deviations due to missing Lennard-Jones interactions

For systems dominated by Lennard-Jones interactions, i.e. with no or very weak electrostatics, e.g. most coarse-
grained systems, the Verlet buffer was often set such that missing Lennard-Jones interactions could lead to the
pressure increasing by more than 1 bar over the lifetime of the pair list. Now an mdp parameter has been added to
limit the deviation in the average pressure. The default tolerance is 0.5 bar.

Issue 4861

enemat now prints correct headers when using -free or -eref options

Fixed a long-standing bug when gmx enemat would output incorrect headers to XVG.

Issue 4812

11.4. GROMACS 2024 series 728

https://gitlab.com/gromacs/gromacs/-/issues/4647
https://gitlab.com/gromacs/gromacs/-/issues/4929
https://gitlab.com/gromacs/gromacs/-/issues/4607
https://gitlab.com/gromacs/gromacs/-/issues/4667
https://gitlab.com/gromacs/gromacs/-/issues/4861
https://gitlab.com/gromacs/gromacs/-/issues/4812

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmxapi.commandline_operation implicitly converts input_files to absolute paths

Relative paths in the input_files mapping are now explicitly relative to the working directory of the caller.

Issue 4827

Deprecated functionality

Changes anticipated to GROMACS 2024 functionality

The analysis tool gmx chi no longer deprecated

Given the community interest, the decision was made to keep gmx chi.

Issue 4108

Functionality deprecated in GROMACS 2024

The analysis tool gmx gyrate-legacy deprecated

gmx gyrate has been partly re-implemented in the modern GROMACS analysis framework. The old imple-
mentation is still available as gmx gyrate-legacy. Please plan to update to the new version. Please let the
GROMACS developers know of desired functionality missing from, or broken in, the new implementation.

Issue 4927

The analysis tool gmx hbond-legacy deprecated

gmx hbond has been partly re-implemented in the modern GROMACS analysis framework. The old imple-
mentation is still available as gmx hbond-legacy. Please plan to update to the new version. Please let the
GROMACS developers know of desired functionality missing from, or broken in, the new implementation.

Issue 4927

The analysis tools gmx sans and gmx saxs deprecated

gmx sans and gmx saxs has been partly re-implemented under new name gmx scattering in the modern
GROMACS analysis framework. The old implementations are still available as gmx sans-legacy and gmx
saxs-legacy. Please plan to update to the new version. Please let the GROMACS developers know of desired
functionality missing from, or broken in, the new implementation.

Issue 4927

The Xeon Phi support will be removed

Intel Xeon Phi series of accelerators has been discontinued in 2020, and most supercomputers using it are now
retired. The support for Xeon Phi is deprecated in GROMACS 2024 and will be removed in the next release.

Issue 4740

11.4. GROMACS 2024 series 729

https://gitlab.com/gromacs/gromacs/-/issues/4827
https://gitlab.com/gromacs/gromacs/-/issues/4108
https://gitlab.com/gromacs/gromacs/-/issues/4927
https://gitlab.com/gromacs/gromacs/-/issues/4927
https://gitlab.com/gromacs/gromacs/-/issues/4927
https://gitlab.com/gromacs/gromacs/-/issues/4740

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Functionality deprecated in GROMACS 2022

GMX_OPENCL_NB_CLUSTER_SIZE CMake variable deprecated in favor of GMX_GPU_NB_-
CLUSTER_SIZE

Both OpenCL and SYCL support different cluster sizes, so GMX_GPU_NB_CLUSTER_SIZE should be used
going forward.

Guessing masses and atomic radii from atom names is deprecated

When atom masses or van-der-Waals radii are needed, we suggest building a proper GROMACS topology instead
of using PDB files directly, even if the tool supports it.

Issue 3368 Issue 4288

Functionality deprecated in GROMACS 2021

mdrun -deffnm to be removed

This functionality is convenient when running very simple simulations, because it permits grouping of a set of files
that then differ only their suffix. However, it does not work in the wider case of an mdrun module (or modules)
writing multiple .xvg output files. The resulting filenames collide. That, and its interaction with checkpointing
and appending, have led to quite a few bug reports.

Because users can use a folder to group files (a standard mechanism that they understand from experience outside
of GROMACS), we can build and test better software for them if we remove the erstwhile convenience of mdrun
-deffnm. Please update your workflows accordingly.

Issue 3818

OpenCL to be removed as a GPU framework

Issue 3818 Work is underway for ports to AMD and Intel GPUs, and it is likely that those ports will not be based on
the current GROMACS OpenCL port. Nvidia GPUs are targeted by the CUDA port, and no changes are expected
there. The core team can’t maintain, test, and extend up to 4 ports with current resource levels. Since there are no
prospects of an emerging GPU vendor in HPC needing OpenCL support, we will remove the OpenCL port once
AMD and Intel support is established in other ways.

Support for version 1 of the hardware locality library hwloc

Issue 3818 Version 2 has been supported in GROMACS for several years. The capabilities of newer hardware and
hardware-support APIs are of most interest for GROMACS moving forward, so we should minimize our testing
work and encourage clusters to upgrade older hwloc installations.

11.4. GROMACS 2024 series 730

https://gitlab.com/gromacs/gromacs/-/issues/3368
https://gitlab.com/gromacs/gromacs/-/issues/4288
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Legacy API

Issue 3818 The legacy installed headers have been deprecated for a while, however we wish to state more broadly
that all headers found within the src directory tree of GROMACS are intended for internal consumption only,
and are thus subject to change without notice. Further, the form and contents of the libgromacs library and
related CMake targets may change as we move towards building APIs and supporting machinery that can be stable
and supported in the long term.

Functionality deprecated in GROMACS 2019

Generation of virtual sites to replace aromatic rings in standard residues

Issue 3254 These are thought to produce artefacts under some circumstances (unpublished results), were never
well tested, are not widely used, and we need to simplify pdb2gmx.

Benchmarking options only available with gmx benchmark

Issue 3255 Options such as -confout, -resethway, -resetstep are not intended for use by regular mdrun
users, so making them only available with a dedicated tool is more clear. Also, this permits us to customize defaults
for e.g. writing files at the end of a simulation part in ways that suit the respective mdrun and benchmark use cases,
so -confout will no longer be required.

gmx mdrun -nsteps

Issue 3256 The number of simulation steps described by the .tpr file can be changed with gmx convert-tpr,
or altered in .mdp file before the call to gmx grompp. The convenience of this mdrun option was outweighed by
the doubtful quality of its implementation, no clear record in the log file, and lack of maintenance.

Removed functionality

Portability

Always use the Boost version bundled with GROMACS

Boost 1.83 is known to have compatibility issues when using Clang compiler on FreeBSD and Linux. This changes
to always use the bundled Boost version, even if another version is present on the system.

Issue 4893

Miscellaneous

Changed default value of tau-p to 5 ps

The new default value for the pressure coupling time of 5 ps is larger than tau-t, as is recommended, and should
work well for most simulations.

11.4. GROMACS 2024 series 731

https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3254
https://gitlab.com/gromacs/gromacs/-/issues/3255
https://gitlab.com/gromacs/gromacs/-/issues/3256
https://gitlab.com/gromacs/gromacs/-/issues/4893

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

11.5 GROMACS 2023 series

11.5.1 Patch releases

GROMACS 2023.6 release notes

This version was released on TODO, 2024. These release notes document the changes that have taken place in
GROMACS since the previous 2023.5 version, to fix known issues. It also incorporates all fixes made in version
2022.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fixes for gmx tools

Fixes that affect portability

Miscellaneous

GROMACS 2023.5 release notes

This version was released on May 3rd, 2024. These release notes document the changes that have taken place in
GROMACS since the previous 2023.4 version, to fix known issues. It also incorporates all fixes made in version
2022.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

The Verlet buffer estimate could be wrong with initial coordinates out of the box

Due to incorrect periodic boundary treatment in the density estimate for the Verlet buffer calculation, the Verlet
buffer could be off when many atoms were outside the rectangular unit cell. In nearly all cases this would lead to
a slightly too large buffer and almost never to a too short buffer.

Issue 5002

With energy minimization, dispersion correction energies were double counted

The only affected the reported energies, as dispersion correction does not affect the forces on the atoms.

Issue 5031

Correct forces with virtual_sites1

Virtual sites with a single constructing atom did not have their force distributed to the constructing atom. This
likely did not cause silent errors, as this completely defeats the purpose of such virtual sites.

Issue 4978

11.5. GROMACS 2023 series 732

https://gitlab.com/gromacs/gromacs/-/issues/5002
https://gitlab.com/gromacs/gromacs/-/issues/5031
https://gitlab.com/gromacs/gromacs/-/issues/4978

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid rounding errors with Parrinello-Rahman coupling of triclinic boxes

With triclinic boxes and isotropic or diagonal Parrinello-Rahman pressure coupling, the off-diagonal scaling ma-
trix arguments could be non-zero. This was harmless, apart from causing an assertion failure when update was
executed on a GPU.

Issue 4974

Fixes for gmx tools

Fix grompp crash with atoms far out of the box

The Verlet buffer tolerance code did not put atoms correctly in the box, which could lead to illegal memory access
in grompp

Issue 5002

Fix LJ combination rules mixup in nonbonded-benchmark tool

The gmx nonbonded-benchmark tool would use geometric LH combination rules instead of Lorentz-Berthelot and
Lorentz-Berthelot instead of no combination rules.

Issue 4963

Fix make_ndx behavior with splitres

Since GROMACS 2023, gmx make_ndx would only output the first atom in each residue when using
splitres command. Now the old behavior is restored, where all atoms in the residue are printed.

Issue 5049

Fix invalid memory access in gmx make_ndx when using splitres/splitat

Could manifest in application crashes or garbled output data (for example, the output group names had empty
prefix).

Issue 5050

Fixed references to old tool names in some commands

There were references to old tool names, e.g., g_energy and g_bar in some commands.

Issue 5074

Fixes that affect portability

Use RDTIME instead of RDCYCLE on RISC-V

Starting with Linux 6.6, the rdcycle instruction cannot be called from userland for security reasons, making
GROMACS fail with SIGILL. Now it is replaced with rdtime.

Issue 4967

11.5. GROMACS 2023 series 733

https://gitlab.com/gromacs/gromacs/-/issues/4974
https://gitlab.com/gromacs/gromacs/-/issues/5002
https://gitlab.com/gromacs/gromacs/-/issues/4963
https://gitlab.com/gromacs/gromacs/-/issues/5049
https://gitlab.com/gromacs/gromacs/-/issues/5050
https://gitlab.com/gromacs/gromacs/-/issues/5074
https://gitlab.com/gromacs/gromacs/-/issues/4967

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

Fix crashes with GPU direct communication for some atypical run configurations

When GPU direct communication was used in combination with atypical run conditions (e.g. many thread-MPI
tasks on each GPU), crashes could occur when the tasks became very out of sync. This has now been made more
robust.

Issue 5024

GROMACS 2023.4 release notes

This version was released on January 24th, 2024. These release notes document the changes that have taken place
in GROMACS since the previous 2023.3 version, to fix known issues. It also incorporates all fixes made in version
2022.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Freezing AWH simulations with multiple MPI ranks per walker

AWH simulations with biases shared by multiple walkers and using multiple MPI ranks per walker would hang
when outputting energy, i.e., already at step 0.

There would not be any incorrect results.

Issue 4925

With AWH for FE, mdrun could exit with an assertion failure

The would happen e.g. when using soft-core only for LJ, whereas it was also needed for Coulomb or when
decoupling large molecules. Now proper error messages are generated.

Issue 4938

Missing force contribution on neighbor search steps with GPU update

On a neighbor search step, when virial is _not_ computed (i.e., when nstlist (page 48) is not a multiple of
nstpcouple (page 56)) and GPU update is used, there could have been a race between GPU buffer clearing and
copying of forces computed on the CPU, leading to missing some of the force contribution on this step.

This should not have ever happened unless the GPU was heavily oversubscribed or hipSYCL/AdaptiveCpp was
used, and even in those cases, the problem was very unlikely to manifest.

Issue 4937

Fixes for gmx tools

GROMACS error messages no longer include broken links

Two error messages used to contain links to the contents that are no longer available on the GROMACS website.
These links have been replaced with the links to the relevant pages in the current documentation.

11.5. GROMACS 2023 series 734

https://gitlab.com/gromacs/gromacs/-/issues/5024
https://gitlab.com/gromacs/gromacs/-/issues/4925
https://gitlab.com/gromacs/gromacs/-/issues/4938
https://gitlab.com/gromacs/gromacs/-/issues/4937

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed a segmentation fault in grompp with AWH and FEP without FEP states

Issue 4932

gmx msd now raises a proper error when given incompatible trajectory

gmx msd internally converts frame times to picoseconds. As a consequence, if the time cannot be expressed as
an integral number of picoseconds (usually due to too frequent trajectory output), the tool would crash or produce
an incorrect result.

Now, an error is printed in such cases.

Issue 4694

Fixes that affect portability

Fixed compilation with Boost 1.83

Issue 4909

Miscellaneous

A grompp warning when using Parrinello-Rahman pressure coupling combining with position restraints suggested
to use Berendsen instead. This suggestion has now been changed to C-rescale.

GROMACS 2023.3 release notes

This version was released on October 19th, 2023. These release notes document the changes that have taken place
in GROMACS since the previous 2023.2 version, to fix known issues. It also incorporates all fixes made in version
2022.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

mdrun now prints an estimate of the pressure deviation due to cut-off effects

Missing pair interactions due to using a constant pairlist over nstlist-1 steps cause a minor energy drift, but can
in certain cases cause a measurable increase in pressure over the nstlist-1 steps due to missing Lennard-Jones
interactions close to the cut-off. Now mdrun prints the average error in the pressure due to these missing LJ
interactions.

Issue 4861

The pressure deviation due to cut-off effects can now be controlled

As a temporary solution, the effect of missing Lennard-Jones interactions on the pressure can be limited by setting
the environment variable GMX_VERLET_BUFFER_PRESSURE_TOLERANCE to the desired tolerance in bar.

Issue 4861

11.5. GROMACS 2023 series 735

https://gitlab.com/gromacs/gromacs/-/issues/4932
https://gitlab.com/gromacs/gromacs/-/issues/4694
https://gitlab.com/gromacs/gromacs/-/issues/4909
https://gitlab.com/gromacs/gromacs/-/issues/4861
https://gitlab.com/gromacs/gromacs/-/issues/4861

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Enable AWH to read 3D or higher-dimension user data

Mdrun could not start due to an error when reading in awh input data with dimensionality larger than two.

Issue 4828

Allow restraining the rotation of a group of atoms during energy minimization

Avoid a segfault when using energy minimization together with enforced rotation.

Issue 4865

Fix missing force buffer clearing with GPU DD and CPU bonded interactions

In simulations with domain decomposition using direct GPU communication for halo exchange (feature enabled
with the GMX_ENABLE_DIRECT_GPU_COMM variable), a missing force buffer clearing prior to force halo
exchange could lead to incorrect forces in cases where during a decomposition phase CPU-computed bonded
interactions are not present whereas during the previous decomposition there were. Such errors are made signifi-
cantly less likely by the lack of dynamic load balancing support with GPU-resident simulations that use GPU halo
exchange.

Issue 4858

Improve Verlet buffer estimation for systems with no or weak electrostatics

For systems which are dominated by LJ interactions, e.g. coarse-grained, the Verlet buffer estimate could be too
small, because only the first derivative of the potential was taken into account. Now also the second and third
derivatives are added. This can have a minor negative effect on performance.

Issue 4885

Update virtual site velocities to avoid constraint instabilities

Virtual site velocities were only re-computed when writing velocities, but they are still integrated. This causes
errors to accumulate. Now the velocities are updated at regular intervals in order to avoid (too) large velocities.
This could cause runs to crash with a segmentation fault or domain decomposition error. Note that virtual site
velocities are only used for output, they do not affect the positions.

Issue 4879

Add workaround for OpenCL bug on AppleSilicon GPUs

After a resource leak was fixed in 2023.2, the OpenCL became broken on M1 Macs (and likely other AppleSilicon
GPUs).

Issue 4852

11.5. GROMACS 2023 series 736

https://gitlab.com/gromacs/gromacs/-/issues/4828
https://gitlab.com/gromacs/gromacs/-/issues/4865
https://gitlab.com/gromacs/gromacs/-/issues/4858
https://gitlab.com/gromacs/gromacs/-/issues/4885
https://gitlab.com/gromacs/gromacs/-/issues/4879
https://gitlab.com/gromacs/gromacs/-/issues/4852

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes for gmx tools

Fix legends in AWH data XVG extracted from AWH energy file

To avoid confusion, dimension legends, in the AWH data file XVG extracted from the AWH energy file with gmx
awh, now start from the second dimension (the first column cannot have a legend). Dimension legends have also
been modified to awh-dim%d (where %d is the dimension number).

Issue 4873

Correctly dump VSITE2FD virtual sites

Systems with virtual site VSITE2FD (2 atoms with fixed distance) could previously not be handled by gmx dump.
Note that this had no effect on simulation.

Issue 4845

Fix DSSP tool

Fixed handling of Pi-helices in gmx dssp tool so now it produces output identical to original DSSP v4.1+.

Issue 4811

Fix editconf -d with -noc

Unit cell vectors are now correctly output when running gmx editconf -noc -d which sets the box size to
the largest dimensions of the system, but without centering.

Issue 4875

Fix calculation of rotational kinetic energy in gmx traj

Computing the rotational kinetic energy using gmx traj -ekr ekr.xvg now returns correct results.

Issue 4889

Fixes that affect portability

GROMACS can be compiled with Clang 16 with libc++ standard library

Unlike libstd++, libc++ follows C++ standards more strictly and therefore doesn’t provide removed standard
library classes. To enable compiling of GROMACS with Clang 16 and libc++, legacy symbols were replaced with
modern C++17 equivalents in the bundled clFFT sources. The issue only affected OpenCL builds of GROMACS.

11.5. GROMACS 2023 series 737

https://gitlab.com/gromacs/gromacs/-/issues/4873
https://gitlab.com/gromacs/gromacs/-/issues/4845
https://gitlab.com/gromacs/gromacs/-/issues/4811
https://gitlab.com/gromacs/gromacs/-/issues/4875
https://gitlab.com/gromacs/gromacs/-/issues/4889

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS automatically finds oneAPI libraries in new layout

MKL and SYCL-support libraries were reorganized in oneAPI 2023.2. Now GROMACS automatically finds the
libraries it needs in both new and old layouts.

Miscellaneous

Fix compilation for VMD plugin

This got broken with the changes for path handling.

Fixes Issue 4832

Unsupported anisotropic C-rescale rejected at preprocessing time

This pressure coupling setting previously resulted in an error at simulation runtime instead.

Fixes Issue 4847

CUDA Graph fixes related to neighbour search steps

When using the experimental CUDA Graphs feature, previously the code would crash for: runs where steps that
involve virial calculations do not coincide with neighbour search (NS) steps - this issue is fixed by ensuring that
CUDA Graphs are suitably updated on virial steps; runs where CUDA graphs are active on steps immediately
preceding NS steps - this issue is fixed by adding necessary synchronization at the start of NS steps; and runs with
an odd nstlist value - this is fixed by forcing graph reinstantiation rather than graph update in this case to correctly
capture the odd/even pruning pattern into the graph.

Fixes Issue 4813

Fix velocity vector copying in constr_vsiten

Fixed velocity vector copying in the function constr_vsiten because an energy minimization doesn’t need a
velocity vector. The fix avoids copying an empty vector and the corresponding SegFault.

Fixes Issue 4814

Work around the performance regression on AMD MI250X with ROCm 5.5 or newer

With ROCm 5.5 and 5.6, some NBNXM kernels experienced up to 23% performance regression on MI250X
compared to ROCm 5.3. We backported two patches from the 2024 branch that mostly mitigates this effect. There
can still be a slowdown around 2% with ROCm 5.5+.

Issue 4874

11.5. GROMACS 2023 series 738

https://gitlab.com/gromacs/gromacs/-/issues/4832
https://gitlab.com/gromacs/gromacs/-/issues/4847
https://gitlab.com/gromacs/gromacs/-/issues/4813
https://gitlab.com/gromacs/gromacs/-/issues/4814
https://gitlab.com/gromacs/gromacs/-/issues/4874

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2023.2 release notes

This version was released on July 12th, 2023. These release notes document the changes that have taken place in
GROMACS since the previous 2023.1 version, to fix known issues. It also incorporates all fixes made in version
2022.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix mdrun segfault when perturbing only LJ-14 parameters

Issue 4769

Fix numerical instability with free-energy and LJ-PME

When combining free-energy calculation with PME for Lennard-Jones interactions, large rounding error would
cause instabilities when two atoms were at short distance.

Issue 4780

Fix mdrun domain decomposition setup limit of 715827882 atoms

An overflow in the domain decomposition grid setup limited the maximum number of atoms that could be simu-
lated to max_int/3, unless the -dd option was specified.

Issue 4627

Allow bonded pair interactions to be missing

With -noddcheck, mdrun did not allow bonded pair interactions to be missing. This is now allowed again.

Issue 4787

Increase and check for atom count limits in output files

The maximum number of atoms in the checkpoint and trr files was 715 827 882 and has been increased to 1 431
655 765 atoms. Now mdrun exits with a clear error message when these limits are exceeded. For XTC files, the
limit is raised by a separate fix.

Issue 4627

Fix assertion failure with annealing and multiple T-coupling groups

Issue 4800

11.5. GROMACS 2023 series 739

https://gitlab.com/gromacs/gromacs/-/issues/4769
https://gitlab.com/gromacs/gromacs/-/issues/4780
https://gitlab.com/gromacs/gromacs/-/issues/4627
https://gitlab.com/gromacs/gromacs/-/issues/4787
https://gitlab.com/gromacs/gromacs/-/issues/4627
https://gitlab.com/gromacs/gromacs/-/issues/4800

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Properly update the backup checkpoint

In 2023 and 2023.1, the state_prev.cpt file was never overwritten, and thus always contained the very first
checkpoint for the run.

Issue 4810

Fix domain decomposition with bonded interactions with long distances

mdrun would exit with an error about missing bonded interactions when domain decomposition was used and
bonded interactions involved distances longer than the pairlist cutoff.

Issue 4818

Fixes for gmx tools

Avoid error in tools reading tpr files with energy minimization

Many tools would exit with an error “No v in input file” when reading a tpr file with integrator set to energy
minimization, NM or TPI.

Issue 4774

Tools now retain chain identifiers when reading PDB is used as input

Issue 4776

The gmx hbond tool could produce random ouput

Because memory was not initialized, the gmx hbond tool could produce random output. This would not go
unnoticed. This also fixes issues with the -ac and -life options.

Issue 4801

Fixes that affect portability

CMake config package

Depending on the build environment, GROMACS 2023 and 2023.1 could install a malformed
gromacs-config.cmake file in prefix/share/cmake/gromacs$SUFFIX/ that could cause failure
of the find_package(gromacs) CMake command.

• rocfft is no longer ever a public dependency.

• The config package file now fully express the dependency on hipSYCL (Open SYCL), when relevant.

Issue 4793, Issue 4797

11.5. GROMACS 2023 series 740

https://gitlab.com/gromacs/gromacs/-/issues/4810
https://gitlab.com/gromacs/gromacs/-/issues/4818
https://gitlab.com/gromacs/gromacs/-/issues/4774
https://gitlab.com/gromacs/gromacs/-/issues/4776
https://gitlab.com/gromacs/gromacs/-/issues/4801
https://gitlab.com/gromacs/gromacs/-/issues/4793
https://gitlab.com/gromacs/gromacs/-/issues/4797

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

gmxapi.commandline_operation environment variable filtering

A new utility (gmxapi.runtime.filtered_mpi_environ() (page 613)) is available to remove MPI-
related environment variables from os.environ, such as to prepare the subprocess environment of gmxapi.
commandline_operation (page 607).

This is a follow-up to Issue 4423, for which the original fix appeared to be insufficient.

Issue 4736

build-dependent checking for gmxapi runtime arguments

Depending on whether GROMACS was built with MPI support or thread-MPI support, some gmx mdrun
(page 215) options are not defined. Such errors may only appear in the MD log file, and can thus be hard to
identify in API use cases.

Additional checking has been added to gmxapi.simulation.workflow.from_tpr() to try to preempt
user errors, and additional usage notes have been added to gmxapi.mdrun (page 611).

Issue 4771

gmxapi.mdrun task uniqueness

Fix a bug in which all gmxapi.mdrun (page 611) simulation tasks had the same ID (and working directory).

Issue 4795

Fix for crash when CUDA Graphs are enabled on multi-GPU

A bug was introduced into version 2023.1 resulting in a crash when the non-default CUDA Graphs experimental
feature was enabled on multi-GPU, caused by the introduction of extra synchronization which is not required for
the CUDA graphs codepath. This version fixes the issue by avoiding this synchronization when graphs are in use.

Issue 4786

Enable XTC support for gigantic systems

The (old) XTC format uses an internal char buffer whose size in bytes was stored as an integer in the file, which
led to crashes when storing systems with more than roughly 300 million atoms. This version fixes the issue by
introducing a 64-bit size only for large systems, and using a different magic number (2023) in the XTC header.
This will only change the XTC format for large systems (which anyway would lead to crashes in the old version).
Short-term the large system XTC files might not be readable by external tools (you will get errors about incorrect
magic number), but we are working with external packages to update their implementations.

Issue 4628

11.5. GROMACS 2023 series 741

https://docs.python.org/3/library/os.html#os.environ
https://gitlab.com/gromacs/gromacs/-/issues/4423
https://gitlab.com/gromacs/gromacs/-/issues/4736
https://gitlab.com/gromacs/gromacs/-/issues/4771
https://gitlab.com/gromacs/gromacs/-/issues/4795
https://gitlab.com/gromacs/gromacs/-/issues/4786
https://gitlab.com/gromacs/gromacs/-/issues/4628

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix resource leak in OpenCL

gmx mdrun built with OpenCL was slowly leaking memory when running on GPUs. That’s fixed now.

Issue 4807

Allow convert-tpr to assign initial velocities

To help ensemble projects like free energy that sometimes rely on thousands of simulations for each system, we
now allow convert-tpr to assign a new set of random velocities rather than using grompp to regenerate the full tpr.
This also fixes a bug where using 0 for velocity seed in the mdp file would have the same effect as -1 and cause a
new seed to be generated from the OS.

Issue 4809

Correct formulas for Nosé-Hoover thermostat

Several formulas describing Nosé-Hoover temperature coupling contained inconsistencies. The reference manual
was updated to match the actual implementation.

Issue 4695

Fix commandline-test on broken gcc versions

gcc 9.3.1 would fail generating proper paths for comparison, resulting in test failures.

Issue 4785

Fix SIMD detection/recommendation on AMD Zen 4 / Genoa

Zen 4 provides a single AVX-512 unit, but in contrast to Intel chips it is still faster to use the single AVX-512 unit
than the double AVX2 units, likely due to higher clock and lower instruction pressure. This change will select
AVX-512 by default on Zen 4 (which can improve performance 5-10%), and it modifies the hardware detection
so we only try to count AVX units on Intel CPUs. It also clarifies detection messages to make it clear it’s based
on expected performance rather than hardware support for a particular instruction set, and makes sure the stdout
messages fit in a single line.

Issue 4715

GROMACS 2023.1 release notes

This version was released on April 21st, 2023. These release notes document the changes that have taken place
in GROMACS since the previous 2023 version, to fix known issues. It also incorporates all fixes made in version
2022.5 and earlier, which you can find described in the Release notes (page 709).

11.5. GROMACS 2023 series 742

https://gitlab.com/gromacs/gromacs/-/issues/4807
https://gitlab.com/gromacs/gromacs/-/issues/4809
https://gitlab.com/gromacs/gromacs/-/issues/4695
https://gitlab.com/gromacs/gromacs/-/issues/4785
https://gitlab.com/gromacs/gromacs/-/issues/4715

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Parallelization of TPI an normal modes working again

When running TPI or normal mode analysis with multiple MPI ranks mdrun would exit with an assertion failure.

Issue 4770

The AWH metric could be incorrect for free-energy lambda dimensions

When different lambda components had different values for the same lambda point index, the AWH metric used
dH/dlambda as input that used the derivative with respect to all lambda components. Note that this only affected
the metric, not the sampling nor the free energy values.

Issue 4730

Fix checkpointing of expanded ensemble simulations with domain decomposition

Expanded-ensemble simulations can now restart from a checkpoint when running multiple PP ranks.

Issue 4629

Fix PME pipelining support in SYCL

When PME pipelining was used, long-range PME electrostatics were producing incorrect results in SYCL.

Only runs with >=3 GPUs and with direct GPU communication enabled (GMX_ENABLE_DIRECT_GPU_COMM
env. var.) are affected.

Issue 4733

Fix checkpointing of AWH friction metric for dimensions > 1.

The friction metric checkpoint i/o was wrong for dimensions > 1. This did not affect the AWH PMF or sampling,
but would result in nonsense if the AWH friction tensors were used to calculate the diffusion in dimensions > 1.

Issue 4723

Fixes for gmx tools

Fix crash in gmx solvate when using solvent box in PDB format

Now a PDB file can be passed to the -cs option in gmx solvate. In previous releases (since at least 2016)
this lead to a segfault.

11.5. GROMACS 2023 series 743

https://gitlab.com/gromacs/gromacs/-/issues/4770
https://gitlab.com/gromacs/gromacs/-/issues/4730
https://gitlab.com/gromacs/gromacs/-/issues/4629
https://gitlab.com/gromacs/gromacs/-/issues/4733
https://gitlab.com/gromacs/gromacs/-/issues/4723

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix creating index file from another index file

gmx make_ndx can again accept an index file alone as input, without associated structure file.

Issue 4717

Allow selection of energy term by full name in gmx energy

It is now possible to select energy terms by full name. This is specifically helpful for terms starting with a number,
such as “1/Viscosity” or “2CosZ*Vel-X”, which could previously only be selected reliably by number.

Issue 4739

Fix early crash in gmx anaeig

An internal change in GROMACS 2023 caused improper handling of optional program arguments leading to a
crash in the program. This might have affected some other analysis tools.

Issue 4756

Fixes that affect portability

Fixed GMX_USE_TNG=off build

GROMACS can again be built without TNG support.

Fixed abnormal termination during gmx startup

GROMACS made a call to std::filesystem::equivalent in a less than perfectly robust manner. This
caused gmx to stop execution when linked against the (atypical) libc++ standard library when the build directory
no longer existed.

Issue 4724

Fixed CPU FFT with MKL 2023.0

Previously, GROMACS would fail during the initialization of CPU FFT when it was compiled with oneMKL
2023.0. This is fixed now.

Issue 4691

Miscellaneous

Workaround for strange compiler behavior to improve SYCL bonded kernel performance

For some SYCL targets (most notably, hipSYCL for AMD GPUs with ROCm 5.x), a very inefficient code was
generated for bonded kernels. Now, bonded force calculation on GPU is expected to be up to 3 times faster.

Issue 3928

11.5. GROMACS 2023 series 744

https://gitlab.com/gromacs/gromacs/-/issues/4717
https://gitlab.com/gromacs/gromacs/-/issues/4739
https://gitlab.com/gromacs/gromacs/-/issues/4756
https://gitlab.com/gromacs/gromacs/-/issues/4724
https://gitlab.com/gromacs/gromacs/-/issues/4691
https://gitlab.com/gromacs/gromacs/-/issues/3928

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Restored OpenMP acceleration of pulling routines

During internal code reorganization, OpenMP acceleration was accidentally disabled for pulling force calculation
in GROMACS 2023. This is now fixed.

Issue 4747

Added support for new cuFFTMp interface

The interface to the cuFFTMp library has changed with its latest release in the the NVIDIA HPC SDK version
23.3, which is required for NVIDIA Hopper GPU support. We have now added default support to the new inter-
face, while retaining support for the legacy interface.

Issue 4731

Document workaround when MPI detection fails

MPI is an optional dependency of gmxapi even when building GROMACS without support for an MPI library.
CMake’s mechanism to find MPI can choke on broken MPI installations in ways that could be confusing. Now a
work-around is documented for the convenience of a user who was not intending to use MPI.

Issue 4699

11.5.2 Major release

Highlights

GROMACS 2023 was released on February 6th, 2023. Patch releases may have been made since then, please use
the updated versions! Here are some highlights of what you can expect, along with more detail in the links below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

• The SYCL GPU implementation, which is the GPU portability layer that supports all major GPU plat-
forms, has received major extensions in support for both platforms and features. To ensure portability in
practice, the GROMACS GPU portability layer is actively developed with multiple SYCL implementations
(hipSYCL, oneAPI DPC++, IntelLLVM) and regularly tested on multiple GPU backends.

– SYCL supports more GPU offload features: bonded forces and direct GPU-GPU communication with
GPU-aware MPI.

– SYCL hardware support includes AMD (including RDNA support added here) and Intel for production
as well as NVIDIA GPUs (not for production).

– SYCL optimizations targeting important HPC platforms.

• PME decomposition has been optimized and extended to support offloading the entire PME calculation to
multiple GPUs, including the FFT computation; when combined with cuFFTmp or heFFTe this enables
much improved strong scaling (experimental feature).

• CUDA Graph support has been added to execute GPU-resident single-/multi-GPU simulations using thread-
MPI entirely on the GPU to improve performance (experimental feature).

• Apple M1/M2 GPUs are now supported via the OpenCL GPU backend.

• New ensemble temperature mdp options allow setting the temperature of the ensemble for simulations
without temperature coupling or with different reference temperatures.

• With gmx dssp (page 166), GROMACS now has a native implementation of the DSSP algorithm, which
replaces gmx do_dssp.

11.5. GROMACS 2023 series 745

https://gitlab.com/gromacs/gromacs/-/issues/4747
https://gitlab.com/gromacs/gromacs/-/issues/4731
https://gitlab.com/gromacs/gromacs/-/issues/4699

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

New and improved features

mdrun now also reports the conserved energy quantity with AWH bias sharing

Added option for setting the ensemble temperature

Several algorithms, such as pressure coupling and AWH, need the temperature of the system. When not all atoms
are coupled to the (same) temperature, it is now possible to tell mdrun what the ensemble temperature is using two
new mdp options.

Issue 3854

gmxapi.mdrun now publishes the simulation working directory path

gmxapi.mdrun().output.directory provides the (Future) path to the working directory/directories for
the simulation(s). This can be useful in conjunction with gmxapi.utility.join_path() (page 612) to
express data flow based on files known to the user to be produced by the simulation but not represented by other
existing attributes of the OutputDataProxy (page 611).

Issue 4548

gmxapi.mdrun now captures STDOUT and STDERR

The GROMACS library prints a lot of output directly to standard out and standard error. Previously, this meant
that simulator output that traditionally goes to the terminal would have to be caught from outside the Python
interpreter. In mpi4py based ensembles, it could be challenging to catch the output at all, without manipulating
the mpiexec command line.

gmxapi.mdrun (page 611) now redirects STDERR and STDOUT during simulation, and provides paths to the
resulting text files on new stdout and stderr outputs.

Reference Issue 4541

Performance improvements

Update will run on GPU by default

The mdrun -update auto will by default map to GPU if supported. This gives a significant performance
improvement with a single MPI rank.

Increased default T- and P-coupling intervals

The default maximum values temperature and pressure coupling intervals have been increased from 10 to 100
steps. These values are used when the default value of -1 is specified in the mdp file and a lower value is used
when required for accurate integration. The improves the performance of both GPU runs and parallel runs.

11.5. GROMACS 2023 series 746

https://gitlab.com/gromacs/gromacs/-/issues/3854
https://gitlab.com/gromacs/gromacs/-/issues/4548
https://gitlab.com/gromacs/gromacs/-/issues/4541

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The global communication frequency is independent of nstlist

The global communication frequency no longer depends on nstlist. This can improve performance in simulations
using GPUs in particular.

PME decomposition support with CUDA and SYCL backends

PME decomposition support has been added to CUDA and SYCL backends. With PME offloaded to the GPU, the
number of PME ranks can now be configured with -npme option (previously limited to 1). The implementation
requires building GROMACS with GPU-aware MPI and either with the cuFFTMp library (page 11) in a CUDA
build configuration, or with heFFTe (page 11) in either a CUDA or SYCL build configuration.

GPU-based PME decomposition support still lacks substantial testing, hence is included in the current release as an
experimental feature and should be used with caution (with results compared to those from equivalent runs using
a single PME GPU). This feature can be enabled using the GMX_GPU_PME_DECOMPOSITION environment
variable. The GROMACS development team welcomes any feedback to help mature this feature.

Issue 3884 Issue 4090

CUDA Graphs for GPU-resident Steps

New CUDA functionality has been introduced, allowing GPU activities to be launched as a single CUDA graph on
each step rather than multiple activities scheduled to multiple CUDA streams. It only works for those cases which
already support GPU-resident steps (where all force and update calculations are GPU-accelerated). This offers
performance advantages, especially for small cases, through reduction in both CPU and GPU side scheduling
overheads. The feature can optionally be activated via the GMX_CUDA_GRAPH environment variable.

Issue 4277

VkFFT support

For AMD GPUs, VkFFT has been integrated to provide performance improvements. Using this library is sup-
ported in all non-decomposed PME simulations (either single rank or single separate PME rank) and can be
enabled with -DGMX_GPU_FFT_LIBRARY=VKFFT when using hipSYCL.

Issue 4052

Changes to the API

Legacy aggregating headers have been removed.

Previously, some of the legacy API headers existed _only_ to aggregate #include lines for other installed
headers. No guidance was provided regarding which header to include for a given feature. These redundant
headers have been removed. Client software relying on #include "gromacs/module.h" will need to be
updated with more specific #include "gromacs/module/feature.h" directives.

Issue 4487

11.5. GROMACS 2023 series 747

https://gitlab.com/gromacs/gromacs/-/issues/3884
https://gitlab.com/gromacs/gromacs/-/issues/4090
https://gitlab.com/gromacs/gromacs/-/issues/4277
https://gitlab.com/gromacs/gromacs/-/issues/4052
https://gitlab.com/gromacs/gromacs/-/issues/4487

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improvements to GROMACS tools

gmx do_dssp replaced by native implementation of DSSP algorithm

gmx do_dssp replaced by native implementation of DSSP algorithm, version 4. Results for version 4 was
formerly available with gmx do_dssp -ver 4. The new tool is called gmx dssp.

Bugs fixed

Verlet buffer set correctly for inhomogeneous systems

The Verlet buffer estimation now uses an effective density for the system computing from the initial coordinates.
This avoids underestimation of the buffer for (very) inhomogeneous systems.

Issue 4509

Fix segmentation fault for large atom and thread count

When the number of atoms times the number of OpenMP threads was larger than 2147483647, negative atom
number could cause illegal memory access.

Issue 4628

Density-guided simulation normalization

With the .mdp option density-guided-simulation-normalize-densities = yes , the reference
density and the simulated density values were previously divided by the sum of their values.

This lead to surprising behavior for reference densities with lots of negative voxel values: the density started to
“repel” the protein structure instead of attracting it, if the total sum of voxel values was smaller than zero. The
negative normalization constant lead to a sign change in voxel values.

To avoid this behavior, the reference density is now normalized so that the sum of positive values is unity, ensuring
that the normalization constant is always positive.

Apart from avoiding the unexpected behavior, we expect that this also leads to smaller absolute differences be-
tween reference density and simulated density, with some small benefits for numerical stability.

This change affects all simulations where voxel values are negative (usually this excludes synthetic data) and that
are run with density-guided-simulation-normalize-densities = yes, but only has a larger
effect for: first, similarity measure inner-product as an effective force-constant scaling and, second, for all
similarity measures where the sum of all voxel values was negative.

gmxapi Python package avoids unnecessary MPI initialization

Delayed initialization of MPI (due to automatic behavior of mpi4py) avoids MPI initialization that previously
occurred just by importing gmxapi (page 607). The previous behavior has been seen to cause strange interactions
with resource management libraries like libfabric at unexpected times (such as during package installation)
with gmxapi (page 607) version 0.3.

Issue 4693

11.5. GROMACS 2023 series 748

https://gitlab.com/gromacs/gromacs/-/issues/4509
https://gitlab.com/gromacs/gromacs/-/issues/4628
https://mpi4py.readthedocs.io/en/stable/mpi4py.html#module-mpi4py
https://gitlab.com/gromacs/gromacs/-/issues/4693

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fail-safe check for perturbed exclusions beyond rlist

With free-energy calculations, excluded non-bonded interactions involving at least one perturbed atom should not
be beyond rlist when using PME. The check for this could have false negatives. Now the check is fail safe and
will always trigger a fatal error when perturbed excluded pairs are beyond rlist.

Issue 3403 Issue 4321 Issue 4461

Deprecated functionality

Changes anticipated to GROMACS 2023 functionality

Functionality deprecated in GROMACS 2023

Functionality deprecated in GROMACS 2022

GMX_OPENCL_NB_CLUSTER_SIZE CMake variable deprecated in favor of GMX_GPU_NB_-
CLUSTER_SIZE

Both OpenCL and SYCL support different cluster sizes, so GMX_GPU_NB_CLUSTER_SIZE should be used
going forward.

The analysis tool gmx chi will be removed

This tool has not been functional for a few years. Please comment at the linked issue if you have any interest in it.

Issue 4108

Guessing masses and atomic radii from atom names is deprecated

When atom masses or van-der-Waals radii are needed, we suggest building a proper GROMACS topology instead
of using PDB files directly, even if the tool supports it.

Issue 3368 Issue 4288

Functionality deprecated in GROMACS 2021

mdrun -deffnm to be removed

This functionality is convenient when running very simple simulations, because it permits grouping of a set of files
that then differ only their suffix. However, it does not work in the wider case of an mdrun module (or modules)
writing multiple .xvg output files. The resulting filenames collide. That, and its interaction with checkpointing
and appending, have led to quite a few bug reports.

Because users can use a folder to group files (a standard mechanism that they understand from experience outside
of GROMACS), we can build and test better software for them if we remove the erstwhile convenience of mdrun
-deffnm. Please update your workflows accordingly.

Issue 3818

11.5. GROMACS 2023 series 749

https://gitlab.com/gromacs/gromacs/-/issues/3403
https://gitlab.com/gromacs/gromacs/-/issues/4321
https://gitlab.com/gromacs/gromacs/-/issues/4461
https://gitlab.com/gromacs/gromacs/-/issues/4108
https://gitlab.com/gromacs/gromacs/-/issues/3368
https://gitlab.com/gromacs/gromacs/-/issues/4288
https://gitlab.com/gromacs/gromacs/-/issues/3818

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

OpenCL to be removed as a GPU framework

Issue 3818 Work is underway for ports to AMD and Intel GPUs, and it is likely that those ports will not be based on
the current GROMACS OpenCL port. Nvidia GPUs are targeted by the CUDA port, and no changes are expectd
there. The core team can’t maintain, test, and extend up to 4 ports with current resource levels. Since there are no
prospects of an emerging GPU vendor in HPC needing OpenCL support, we will remove the OpenCL port once
AMD and Intel support is established in other ways.

Support for version 1 of the hardware locality library hwloc

Issue 3818 Version 2 has been supported in GROMACS for several years. The capabilities of newer hardware and
hardware-support APIs are of most interest for GROMACS moving forward, so we should minimize our testing
work and encourage clusters to upgrade older hwloc installations.

Legacy API

Issue 3818 The legacy installed headers have been deprecated for a while, however we wish to state more broadly
that all headers found within the src directory tree of GROMACS are intended for internal consumption only,
and are thus subject to change without notice. Further, the form and contents of the libgromacs library and
related CMake targets may change as we move towards building APIs and supporting machinery that can be stable
and supported in the long term.

Functionality deprecated in GROMACS 2019

Generation of virtual sites to replace aromatic rings in standard residues

Issue 3254 These are thought to produce artefacts under some circumstances (unpublished results), were never
well tested, are not widely used, and we need to simplify pdb2gmx.

Benchmarking options only available with gmx benchmark

Issue 3255 Options such as -confout, -resethway, -resetstep are not intended for use by regular mdrun
users, so making them only available with a dedicated tool is more clear. Also, this permits us to customize defaults
for e.g. writing files at the end of a simulation part in ways that suit the respective mdrun and benchmark use cases,
so -confout will no longer be required.

gmx mdrun -nsteps

Issue 3256 The number of simulation steps described by the .tpr file can be changed with gmx convert-tpr,
or altered in .mdp file before the call to gmx grompp. The convenience of this mdrun option was outweighted
by the doubtful quality of its implementation, no clear record in the log file, and lack of maintenance.

11.5. GROMACS 2023 series 750

https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3254
https://gitlab.com/gromacs/gromacs/-/issues/3255
https://gitlab.com/gromacs/gromacs/-/issues/3256

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Removed functionality

The built-in viewer gmx view was removed

There is little use and no tests of this functionality, and it was deprecated in 2022.

Issue 4296

Some unmaintained utility scripts were removed

Several scripts in repository scripts/ directory were not installed with the package, have not been maintained,
and, as best we could tell, have not been used in a long time.

Issue 4639

Portability

Full support for RISC-V

We now provide full support for RISC-V, including hardware cycle counters for efficient load balancing.

Initial support for Apple silicon GPUs

We now recognize Apple-designed GPUs as a supported architecture in the OpenCL backend.

VkFFT support for improved portability and performance on GPUs with OpenCL and SYCL

Support for the VkFFT GPU FFT library was added with two goals: improved portability across GPU platforms
and better performance. VkFFT can be used with OpenCL and SYCL. For SYCL builds, VkFFT provides a
portable backend for AMD and NVIDIA GPUs, and it is a better-performing alternative recommended at least
on AMD with runs without PME decomposition (in non-HeFFTe builds). For OpenCL builds, VkFFT provides
an alternative to ClFFT with much better performance and broader compiler support. It is the default on macOS
and when building with Visual Studio. On other platforms, it can be enabled at build-time using -DGMX_GPU_-
FFT_LIBRARY=VKFFT.

Issue 4052

PME GPU offload on macOS

Until now, PME calculations could not be offloaded to the GPU on macOS. They required the clFFT library,
which silently crashed Apple’s OpenCL drivers at runtime. To overcome this incompatibility, we replaced the
clFFT backend with VkFFT on macOS.

Increase of required versions

• GCC required version is now 9.

• oneMKL required version is now 2021.3.

11.5. GROMACS 2023 series 751

https://gitlab.com/gromacs/gromacs/-/issues/4296
https://gitlab.com/gromacs/gromacs/-/issues/4639
https://gitlab.com/gromacs/gromacs/-/issues/4052

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

Fix documentation issues for restricted bending potential

The actual implementation in the code was correct, but the manual section for the restricted bending potential
had an extra factor 2 for the force inherited from the 2013 Bulacu JCTC paper, and the journals for two of the
references had been swapped. No changes to any simulation results.

Issue 4568

AWH friction metric is shared between AWH walkers

The friction metric now uses data from all walkers sharing the bias. In the AWH output only the shared friction
output is written.

Issue 3842

Required gmx grompp -maxwarn to take a positive integer

Previously -1 was accepted and suppressed all warnings. Now a positive integer must be chosen.

11.6 GROMACS 2022 series

11.6.1 Patch releases

GROMACS 2022.6 release notes

This version was released on July 11th, 2023. These release notes document the changes that have taken place in
GROMACS since the previous 2022.5 version, to fix known issues. It also incorporates all fixes made in version
2021.7 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix CUDA PME spread in multi-GPU runs (with >=3 GPUs)

Due to incorrect indexing of the second grid, spread could give incorrect with when separate PME ranks are used
and pipelining is enabled. Runs with >=3 GPUs with direct GPU communication enabled (GMX_ENABLE_-
DIRECT_GPU_COMM env. var.) are affected.

Issue 4732

Fix missing synchronization in GPU PME pipelining

A missing synchronization could have caused incorrect long-range PME electrostatics forces/energies to be pro-
duced when GPU PME pipelining was used.

Only runs with >=3 GPUs and with direct GPU communication enabled (GMX_ENABLE_DIRECT_GPU_COMM
env. var.) are affected.

Issue 4734

11.6. GROMACS 2022 series 752

https://gitlab.com/gromacs/gromacs/-/issues/4568
https://gitlab.com/gromacs/gromacs/-/issues/3842
https://gitlab.com/gromacs/gromacs/-/issues/4732
https://gitlab.com/gromacs/gromacs/-/issues/4734

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes for gmx tools

Fixes that affect portability

Miscellaneous

GROMACS 2022.5 release notes

This version was released on February 3rd, 2023. These release notes document the changes that have taken place
in GROMACS since the previous 2022.4 version, to fix known issues. It also incorporates all fixes made in version
2021.7 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix perturbed exclusion handling across PBC in small systems

Systems with up to a few hundred atoms where molecules with excluded perturbed atoms were split over periodic
boundary conditions could have double counted Coulomb and LJ-PME interactions over long distances. This led
to very large errors in the energy and forces with PME and reaction-field, which likely did not go unnoticed. With
a plain Coulomb cut-off the error is small and might not be noticed.

Issue 4665

Add missing net charge term when running PME on a GPU

When PME was running on a GPU, the term due to a net charge of the system was missing. In normal runs this
only changed the potential energy by a constant, which is usually not relevant. In free-energy calculations where
the net charge of the systen changes, the would lead to incorrect dV/dlambda and Delta lambda values (but one
should anyhow avoid changing the net charge of a system with free-energy calculations).

Issue 4668

Foreign energy differences with the Gapsys soft-core function were zero

This caused all BAR and AWH non-bonded free-energy output to be zero, so it is unlikely that incorrect results
would go unnoticed.

Issue 4705

Fix mdrun -rerun energy output with update groups

In the, unlikely, case of using mdrun -rerun with domain decomposition or GPU on a trajectory produced without
domain decompostion and GPU, the reported energies could be incorrect when update groups were used. Update
groups are typically used with biomolecular force fields with h-bonds constrained only and domain decomposition
on GPU.

Issue 5067

11.6. GROMACS 2022 series 753

https://gitlab.com/gromacs/gromacs/-/issues/4665
https://gitlab.com/gromacs/gromacs/-/issues/4668
https://gitlab.com/gromacs/gromacs/-/issues/4705
https://gitlab.com/gromacs/gromacs/-/issues/5067

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix checkpointing of expanded ensemble simulations with modular simulator

Expanded ensemble simulations would fail to write checkpoint files when the modular simulator was used (which
is the default setting for expanded ensemble in GROMACS 2022). The investigation lead to the discovery of
another bug, which was also fixed: When restarting from checkpoint, a successful MC step in lambda space that
had happened on the step on which the checkpoint was written would have been ignored. Since the checkpoint
failed to be written in the first place, this is unlikely to have lead to wrong results in GROMACS 2022.

The bug dropping successful MC steps on checkpoint steps upon simulation restarts is also present in the legacy
code path, which was the default in GROMACS 2021.7 and earlier. Simulations using the legacy code path no
longer write checkpoint files, and inform about this behavior in their log file.

Issue 4629

Fixes for gmx tools

Fixes that affect portability

Miscellaneous

Improve muParser detection and bumped internal version to v2.3.4

Update internal muParser version that include all changes made by us. Use muParser’s CMake config to detect
external muParser. Update required version for external muParser to match the internal version.

Issue 4614

GROMACS 2022.4 release notes

This version was released on November 16th, 2022. These release notes document the changes that have taken
place in GROMACS since the previous 2022.3 version, to fix known issues. It also incorporates all fixes made in
version 2021.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Incorrect foreign energy differences for 1-4 interactions on a GPU

When running free-energy calculations using a GPU without domain decomposition, the foreign energy differ-
ences for 1-4 interactions would be incorrect when the atoms involved had only charges perturbed and not the
atom types. This issue did not affect free-energy calculations using couple-moltype. This issue did not affect
dV/dlambda. If you have used BAR or AWH for free-energy calculations with atoms with charge manually per-
turbed in the topoogy and non-perturbed atom type, we suggest to rerun those with the corrected code to check if
your results were affected by this issue.

Issue 4616

11.6. GROMACS 2022 series 754

https://gitlab.com/gromacs/gromacs/-/issues/4629
https://gitlab.com/gromacs/gromacs/-/issues/4614
https://gitlab.com/gromacs/gromacs/-/issues/4616

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

The deform option caused parallel mdrun to exit

With the deform mdp option mdrun would exit with an MPI error when invoked with more than one MPI rank.

Issue 4604

Pulling with average force output made mdrun exit at checkpoint writing

When pull_fout_average was set to yes, gmx mdrun (page 215) would exit with an assertion failure when
trying to write a checkpoint file.

Issue 4636

AMD RDNA devices are now properly marked as “unsupported” with OpenCL

AMD RDNA GPUs (Radeon RX 5000, 6000, and 7000 series) never worked correctly with OpenCL, usually with
a simulation crashing quickly. We now properly mark those devices as incompatible.

AMD GCN (e.g., RX Vega 64) and CDNA/CDNA2 (e.g., Instinct MI100) devices are supported.

Issue 4521

Fixes for gmx tools

Programs reading a tpr file of a large system would exit with random errors

The tpr file writing and reading code contained a bug that caused reading of systems with more than 100 million
atoms to exit with random error messages.

Issue 4628

With flexible constraint grompp and mdrun exited with an assertion failure

Issue 4605

Corrected gmx awh friction metric legend

The output of friction metric with gmx awh (page 130) -more is the sqrt of the metric while sqrt was missing
from the legend. This has been added now. Note that the output of gmx awh (page 130) -fric, correctly, does not
involve sqrt.

Issue 4598

Fixes that affect portability

Miscellaneous

Fixed argument checking with nvcc

Incorrect configure-time checks of flags passed to nvcc resulted in several performance-related flags never being
used. Simulations using Nvidia GPUs were correct but may not have achieved best possible performance.

11.6. GROMACS 2022 series 755

https://gitlab.com/gromacs/gromacs/-/issues/4604
https://gitlab.com/gromacs/gromacs/-/issues/4636
https://gitlab.com/gromacs/gromacs/-/issues/4521
https://gitlab.com/gromacs/gromacs/-/issues/4628
https://gitlab.com/gromacs/gromacs/-/issues/4605
https://gitlab.com/gromacs/gromacs/-/issues/4598

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Added compilation support for new CUDA architectures

The list of NVIDIA CUDA architectures for which code is directly generated for, with a default cmake configu-
ration, and when support exists in the compiler in use, has been updated to include the latest Ada Lovelace and
Hopper architectures.

GROMACS 2022.3 release notes

This version was released on September 2nd, 2022. These release notes document the changes that have taken
place in GROMACS since the previous 2022.2 version, to fix known issues. It also incorporates all fixes made in
version 2021.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Energy minimization would not converge with GPU and without DD

The steepest descent and conjugate gradient minimizers would not converge when using a GPU for the nonbonded
interactions and not using domain decomposition.

Issue 4533

Settings of lambda-only replica exchange is mistakenly routed to temperature+lambda branch

When replica exchange of lambda-only mode is enabled, all reference temperatures ref-t are the same among
replicas. However, another branch temperature+lambda is used according to log messages.

Issue 4580

Fixes for gmx tools

Fix pdb2gmx vsite assignment for tetrahedral secondary amines

The pdb2gmx vsite assignment code would always select a planar vsite for structures like secondary amines based
solely on the number of atoms, without taking geometry into account. Changed to take geometry into account.

Issue 4573

Disallow C-rescale barostat without temperature coupling

The C-rescale barostat needs a reference temperature which is currently taken from the thermostat. A check
is added to grompp for temperature coupling or BD/SD being present. Also a warning is generated when the
reference temperature are not all equal.

Issue 4495

11.6. GROMACS 2022 series 756

https://gitlab.com/gromacs/gromacs/-/issues/4533
https://gitlab.com/gromacs/gromacs/-/issues/4580
https://gitlab.com/gromacs/gromacs/-/issues/4573
https://gitlab.com/gromacs/gromacs/-/issues/4495

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Prevent hbond merging in gmx hbond for non-compatible options

The option to merge multiple hbonds from one donor-acceptor pair does not work with other options that rely on
analysing all hydrogen bonds, or changing the search for donor-acceptor pairs. Due to this, the tool will stop if
known incompatible combinations are used.

When using -hbn to export the hydrogen bonding information with merging enabled, previously indices of arbi-
trary hydrogens were printed. Now, to avoid confusion, the index file contains -1 instead. Use -nomerge option
if full hydrogen bond information is needed.

Issue 3837

Fix generation of duplicate groups in index generation

Both gmx make_ndx (page 213) and gmx select (page 262) would duplicate index groups for molecules not defined
as Protein or Nucleotides due to a logic error in the code, where any extra group defined in the system would cause
the detection to be run again and generate the duplicate groups.

Issue 4524

Fixes that affect portability

Further fix to nvcc flag detection

Version 2022.1 fixed a nvcc flag detection issue for gcc version 11, but this fix resulted in issues for older gcc
versions. Version 2022.2 resolved this for gcc version 7, but issues remained for other gcc versions. This release
provides a fix that should prevent this issue for all gcc versions.

Issue 4539

Document incompatibility of gcc-11 and nvcc 11.6.1

A known incompatibility between the default gcc and nvcc compiler on Ubuntu 22.04 has been documented, with
a guide how to circumvent the issue.

Issue 4574

Miscellaneous

Improve mdrun log file energy output formatting

The mdrun log file now prints more energy-field names in abbreviated forms so as to avoid exceeding the maximum
column lengths available.

Improve warning message about AVX_128_FMA SIMD

This instruction set only works on early AMD CPUs that support their FMA4 extensions. Since Zen1, AMD has
instead moved to support FMA3 (similar to Intel hardware), which unfortunately means SIMD instruction sets are
NOT incremental. We now detect this for parallel runs and stick to vanilla 256-bit AVX, and properly detect when
the FMA4 instruction set is used on non-compatible hardware and warn why the run is likely to crash.

Issue 4526

11.6. GROMACS 2022 series 757

https://gitlab.com/gromacs/gromacs/-/issues/3837
https://gitlab.com/gromacs/gromacs/-/issues/4524
https://gitlab.com/gromacs/gromacs/-/issues/4539
https://gitlab.com/gromacs/gromacs/-/issues/4574
https://gitlab.com/gromacs/gromacs/-/issues/4526

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Remove unnecessary memory re-allocations for GPU update runs

An issue has been fixed where GPU memory allocations were repeatedly being performed unecessarily for runs
with GPU update enabled, significantly impacting performance in some cases. The memory allocations are now
only performed when necessary.

GROMACS 2022.2 release notes

This version was released on June 16th, 2022. These release notes document the changes that have taken place in
GROMACS since the previous 2022.1 version, to fix known issues. It also incorporates all fixes made in version
2021.5 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix incorrect constraining in highly parallel runs

With domain decomposition, OpenMP and connected constraints (so not only bonds with hydrogens constrained),
constraint correction could be applied when a domain would not have any constraints while it had constraints
before. This is unlikely to have gone unnoticed in longer runs, as the chance is high that atoms would clash and
the system would become unstable. But short runs might not crash and could therefore produce incorrect results.
The correctness can be judged from the drift in the conserved energy quantity, which is reported at the end of the
log file, and which will be one to two orders of magnitude larger than for a correct run.

Issue 4476

Fix missing CPU-GPU synchronization when doing free-energy calculations

When GPU halo exchange with direct communication is enabled, CPU based free-energy kernels were being run
without waiting on non-local co-ordinates to be available on host. This resulted in use of stale data on CPU
side. This issue can cause incorect output when GPU direct communication is enabled using GMX_ENABLE_-
DIRECT_GPU_COMM environment variable and simulation contains free-energy calculations.

Issue 4471

Fix missing PME mesh dV/dlambda with PME on GPU on a seperate PME rank

When doing free-energy calculations with PME running on GPU on a separate PME rank, the dV/dlambda con-
tribution for the PME mesh part was missing. The same contribution was missing from the foreign lambda energy
differences. Note that the energies and forces were correct.

Issue 4474

Removed the (incorrect) output file size note/warning with mdrun -rerun

Issue 4484

11.6. GROMACS 2022 series 758

https://gitlab.com/gromacs/gromacs/-/issues/4476
https://gitlab.com/gromacs/gromacs/-/issues/4471
https://gitlab.com/gromacs/gromacs/-/issues/4474
https://gitlab.com/gromacs/gromacs/-/issues/4484

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Wait for PME coordinate padding clearing to complete after reinitialization

As part of the irregular reinitialization of PME coordinate buffers, the padding area of the buffer on the GPU
must be set to zero. Previously, a dependency was missing such that, with GPU direct communications enabled
via the GMX_ENABLE_DIRECT_GPU_COMM, it was possible that the PME kernel could preceed before this
initialization had completed, and this has now been fixed. The incorrect ordering is only expected to have occured
in extreme benchmarking cases, causing an obvious crash.

Issue 4482

Note known issues with Verlet buffer estimation

There are known issues with the Verlet buffer estimate for imhonogeneous systems as well as for potentials with
only the repulsive part of the Lennard Jones potential. These issues and workarounds are listed in the known issues
(page 28) section.

Issue 4509

Fixes for gmx tools

Clarified pdb2gmx error message for undefined atom type in terminal database

Issue 4481

Lower severity of grompp exclusion distance issues with energy minimization

With energy minimization, the error/warning about pair distances beyond/close to the cut-off has been changed to
a warning/note, as energy minimization might fix such issues.

Issue 4480

Fixed missing cmap torsion correction for periodic pepdites

When using pdb2gmx with periodic peptides and the CHARMM27 force field, the CMAP correction across the
periodic boundary was missing (but not the torsion itself). Reprocess your PDB file with pdb2gmx from version
2022.2 or later to get a correct topology, or add it manually to the topology.

Avoid crash in gmx bar with invalid input

gmx bar could try to read an invalid input data file and would fail with a hard crash instead of a helpful error
message.

Fix printing of incorrect data from analysis tools

A change on how we handle selections caused the analysis tools in the trajectoryanalysis framework to print data
for wrong selections.

Issue 4508

11.6. GROMACS 2022 series 759

https://gitlab.com/gromacs/gromacs/-/issues/4482
https://gitlab.com/gromacs/gromacs/-/issues/4509
https://gitlab.com/gromacs/gromacs/-/issues/4481
https://gitlab.com/gromacs/gromacs/-/issues/4480
https://gitlab.com/gromacs/gromacs/-/issues/4508

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Remove broken charge zeroing function in convert-tpr

This had been broken for a long time and no discernable use.

Issue 4226

Fixes that affect portability

Warn when using gcc version 7 with CUDA builds

Different versions of gcc 7 behave differently in a way that makes it hard for GROMACS to check whether
CUDA’s nvcc compiler will accept compiler flags. GROMACS 2022 and 2022.1 sometimes would spuriously
detect flags as invalid, avoid using them, and so produce slow CUDA kernels. Now GROMACS assumes all nvcc
flags are valid in this case and the build system warns when this is occuring. If you then experience build failures,
please use a newer version of gcc.

Issue 4478

Fix external tinyXML version to below 7

Newer versions are not compatible with GROMACS.

Issue 4477

Fixed a possible software build error with OpenMP linking

In some situations, software builds could have errors linking omp symbols. A minor update to the CMake config-
uration helps the muparser component to find the same OpenMP dependency used by the rest of the library.

Issue 4499

Miscellaneous

Fixed detection of external TinyXML-2

Updated the code to properly detect the presence and the version of external TinyXML-2 (only relevant if
-DGMX_EXTERNAL_TINYXML2=ON is used).

Issue 4477

Fixed warnings when using module-specific OpenMP thread-count environment variables

One of the arrays used to construct message strings wasn’t updated properly, so sometimes an information message
was wrong or may have printed garbage.

11.6. GROMACS 2022 series 760

https://gitlab.com/gromacs/gromacs/-/issues/4226
https://gitlab.com/gromacs/gromacs/-/issues/4478
https://gitlab.com/gromacs/gromacs/-/issues/4477
https://gitlab.com/gromacs/gromacs/-/issues/4499
https://gitlab.com/gromacs/gromacs/-/issues/4477

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2022.1 release notes

This version was released on April 22th, 2022. These release notes document the changes that have taken place
in GROMACS since the previous 2022 version, to fix known issues. It also incorporates all fixes made in version
2021.5 and earlier, which you can find described in the Release notes (page 709).

Note to developers and package maintainers

Next release (GROMACS 2022.2) will rename master branch to main

At the date of the next release we will rename the master branch to main to moving away from master / slave
terminology.

After the GROMACS 2022.2 patch release, developers are advised to delete their local master branch and fetch
the remote main branch as in git branch -d master; git fetch; git checkout main

Fixes where mdrun could behave incorrectly

Fixed incorrect pairlist buffer with test particle insertion

With TPI the pairlist cut-off did not take into account rtpi and the radius of the molecule to insert.

Issue 4458

Remove false positives for missing exclusions in free energy kernels

Free energy calculations good stop with a fatal error stating that excluded atoms pairs were beyond the pairlist
cut-off while this actually was not the case.

Issue 4321

Fix crash when steering FEP with AWH without PME or with separate PME rank

There would be a segfault when deciding whether early PME results are needed.

Issue 4413

Fix bug with reporting energies for groups

When different molecules in a molecule block in the topology use different energy group assignments for atoms,
the energy group assignment of the first molecule would be repeated for all other molecules in the block. Note
that the reported energies for the whole system were correct.

Issue 4462

11.6. GROMACS 2022 series 761

https://gitlab.com/gromacs/gromacs/-/issues/4458
https://gitlab.com/gromacs/gromacs/-/issues/4321
https://gitlab.com/gromacs/gromacs/-/issues/4413
https://gitlab.com/gromacs/gromacs/-/issues/4462

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix missing B State pinning for PME GPU

The PME memory is now correctly pinned when using GPU PME.

Issue 4408

Only allow 1D PME GPU decomposition

Due to correctness issues in PME grid reduction with 1D decomposition, this feature could produce incorrect
results. This would however in most real-world cases be masked by an overly large halo size. 0D decomposition
cases are unaffected and only such setups will be allowed in the current release (0D PME decomposition can be
forced using the GMX_PMEONEDD env var).

Fixed exact continuation with the -reprod option

With the leap-frog integrator, kinetic energy terms were often not stored in the checkpoint file. This caused minor
difference in the computed kinetic energy (due to different operation order), which could cause a run continued
from checkpoint to diverge from a run without interuption, even when using the -reprod option.

Issue 4240

Fixes for gmx tools

Use correct scattering length for hydrogens in gmx sans

The floating-point comparison was always false, leading to all atoms with atomic number 1 having scattering
length of deuterium (6.6710 fm) instead of -3.7406 fm for plain hydrogens.

Fix C-terminal residue patch for charmm

One of the atom types names in the Charmm27 force field C-terminal COOH patch was incorrect, and would
have triggered a crash or error in pdb2gmx, which was identified when Fedora ran our unit tests with additional
checking flags.

Issue 4414

Add polyproline helix coloring to DSSP maps

DSSP-4.0 can detect polyproline type-2 helices, so we now also have a dark blue-green color entry for this in the
generated maps.

Issue 4410

Remove option -unsat from gmx order and document deficiencies

This hasn’t properly worked since it was added.

Issue 1166

11.6. GROMACS 2022 series 762

https://gitlab.com/gromacs/gromacs/-/issues/4408
https://gitlab.com/gromacs/gromacs/-/issues/4240
https://gitlab.com/gromacs/gromacs/-/issues/4414
https://gitlab.com/gromacs/gromacs/-/issues/4410
https://gitlab.com/gromacs/gromacs/-/issues/1166

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix g96 file writing

The g96 file writing could violate the file format when residue or atom names got longer than 5 characters.

Issue 4456

Rerun will no longer abort when encountering too high forces

Issue 4352

Allow incomplete index files for extract-cluster

Issue 4420

Fixes that affect portability

Fix nvcc flag detection

Issue 4415

Fix issue in GMXRC.bash

Issue 4450

Miscellaneous

Fixed regression test download URL for forks of GROMACS

Users of forks of GROMACS (eg PLUMED) can now also use the feature to download the regression tests auto-
matically.

Fix internal nblib test failure

The nblib internal tests used incorrect indices, which triggered a crash when Fedora ran our unit tests with addi-
tional checking flags. This will not have influenced any actual clients merely using nblib.

Issue 4414

Workaround for nested MPI-aware code

gmxapi (page 607) scripts containing gmxapi.commandline_operation (page 607) tasks could be unus-
able if a task executable automatically detects MPI resources and the script is invoked with an MPI launcher.

The workaround is to increase the isolation of the task environment from the parent process by explicitly setting
the task environment variables. This is now possible with a new env key word argument to commandline_-
operation() (page 607), which is simply passed along to subprocess.run.

Issue 4421

11.6. GROMACS 2022 series 763

https://gitlab.com/gromacs/gromacs/-/issues/4456
https://gitlab.com/gromacs/gromacs/-/issues/4352
https://gitlab.com/gromacs/gromacs/-/issues/4420
https://gitlab.com/gromacs/gromacs/-/issues/4415
https://gitlab.com/gromacs/gromacs/-/issues/4450
https://gitlab.com/gromacs/gromacs/-/issues/4414
https://docs.python.org/3/library/subprocess.html#subprocess.run
https://gitlab.com/gromacs/gromacs/-/issues/4421

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Accurately checks when FEP lambda might go over 1 or under 0

The checks that verify that the FEP lambda does not go out of range used to trigger incorrectly when the delta-
lambda and number of step was exactly right.

Issue 4442

Correct free-energy (de)coupling integrator check

With free-energy (de)coupling calculations, grompp would only warn with the md integrator that sd should be
used. Now this warning is extended to the md-vv integrators.

Density-guided simulation affine transformation force correction

Forces were not calculated correctly when using affine transformations with density-guided-simulation-
transformation-matrix, e.g., rotations and projections of structures, before calculating forces for density guided
simulations.

The reason for this error was the missing multiplication with the transpose of the affine transformation matrix.
This is needed to account for the coordinate transformation when calculating the force as the derivative of the
energy, according to the chain rule of calculus.

Affects simulations where density-guided-simulation-transformation-matrix is set and not trivial. If the matrices
were diagonal, forces were wrongly scaled. If a rotation matrix was set, the effect was a mis-rotation of forces,
leading to an overall undesired torque on the structure.

Issue 4455

Clarified Coulomb self terms in the reference manual

Issue 4451

Correct formula for SD integrator

The formula in the reference manual was different from the implementation, even though both have been mathe-
matically equivalent.

Adjust test tolerances for double precision testing

Some tests could fail on different hardware when using double precision builds due to too strict tolerances. This
mainly affected test simulations that could diverge due to the limited precision of some SIMD instructions (44 bits
when using invsqrt).

Issue 4414

11.6. GROMACS 2022 series 764

https://gitlab.com/gromacs/gromacs/-/issues/4442
https://gitlab.com/gromacs/gromacs/-/issues/4455
https://gitlab.com/gromacs/gromacs/-/issues/4451
https://gitlab.com/gromacs/gromacs/-/issues/4414

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

11.6.2 Major release

Highlights

GROMACS 2022 was released on February 22st, 2022. Patch releases may have been made since then, please use
the updated versions! Here are some highlights of what you can expect, along with more detail in the links below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

• Free-energy kernels are accelerated using SIMD, which make free-energy calculations up to three times as
fast when using GPUs

• A new formulation of the soft-cored non-bonded interactions for free-energy calculations allows for a finer
control of the alchemical transformation pathways

• New transformation pull coordinate allows arbitrary mathematical transformations of one of more other pull
coordinates

• New interface for multi-scale Quantum Mechanics / Molecular Mechanics (QM/MM) simulations with the
CP2K quantum chemistry package, supporting periodic boundary conditions.

• grompp performance improvements

• Cool quotes music playlist

• Additional features were ported to modular simulator

• Added AMD GPU support with SYCL via hipSYCL

• More GPU offload features supported with SYCL (PME, GPU update).

• Improved parallelization with GPU-accelerated runs using CUDA and extended GPU direct communication
to support multi-node simulation using CUDA-aware MPI.

New and improved features

Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface

Simulations of chemical reactions pathways can provide an atomistic insight into many biological and chemical
processes. To perform such kind of modelling in complex systems, that includes solvent and/or proteins Multi-
scale Quantum Mechanics / Molecular Mechanics (QM/MM) approaches are often used. Here we introduce
a whole new interface to perform QM/MM simulations in fully periodic systems using MDModule that couples
GROMACS with CP2K quantum chemistry package. This enables hybrid simulations of systems in systems where
chemical reactions occurs. The interface supports most of the simulations techniques available in GROMACS
including energy minimization, classical MD and enhanced sampling methods such as umbrella sampling and
accelerated weight histogram method.

Transformation pull coordinate for mathematical transformations of pull coordinates

A new pull coordinate type named transformation has been added. This enables mathematical transformation of
previously defined pull coordinates using a user supplied formula in a string. This allows for example non-linear
transformation of a distance, e.g. a contact coordinate or (non-)linear combinations of multiple pull coordinates.
This is a powerful tool for defining complex reaction coordinates and it can be combined with the Accelerated
Weight Histogram Method to enhance sampling.

11.6. GROMACS 2022 series 765

https://open.spotify.com/playlist/4oj41X9tgIAJuLgfWPq6ZX
https://github.com/AdaptiveCpp/AdaptiveCpp

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Replica-exchange molecular dynamics simulations with GPU update

Replica-exchange molecular dynamics now works with GPU update.

A new formulation of soft-core interactions for free energy calculations

With this addition GROMACS allows to choose from two schemes to soften non-bonded interactions during
alchemical perturbations: Beutler et al.100 (page 581) and Gapsys et al.183 (page 585) soft-core functions.

More flexible sharing of biases in AWH

With the accelerated weight histogram method, biases can now be shared between subsets of all simulations,
without restrictions. The allows for more flexible ensemble simulation setups, as well as simpler launches of sets
of simulations.

More features implemented in modular simulator

Several features were added to the modular simulator, including all temperature and pressure coupling algorithms
available in the legacy simulator, expanded ensemble and pull.

Free energy calculations now support all non-perturbed bonded interactions

Previously GROMACS did not permit any usage of a few more special bonded interactions (restricted an-
gles/dihedrals or combined bending-torsion potentials) in free energy calculations. These are now allowed, as
long as the interaction itself is not perturbed.

Issue 3691

Adapt number of threads to actually permitted hardware

Previously, GROMACS would attempt to start as many threads as there are processors in the system, and try to
pin threads on processing units. This would fail whenever we are not allowed to use all those processors, e.g.
when Slurm only provides part of a node to a job, or on A64fx where some processors are reserved for the system.
We would also start far too many threads in container environments. As part of improved hardware detection, we
now only detect processors on which we are allowed to run, and adapt the number of threads whenever there is a
cpu limit set, which will improve performance both for containers and make GROMACS do the right thing when
Slurm or other queue systems allocate part of a node.

Enable use of more OpenMP threads

The thread-force-reduction code in GROMACS will now allow up to 128 OpenMP threads by default, and we have
changed the internal logic so we just limit the number of threads rather than refuse to run. This only applies within
each rank; you can use an unlimited number of threads by combining OpenMP threading with multiple ranks. For
large machines with many cores this is usually faster since the domain decomposition used with multiple ranks is
better adapted to non-uniform memory access hardware.

Issue 4370

11.6. GROMACS 2022 series 766

https://gitlab.com/gromacs/gromacs/-/issues/3691
https://gitlab.com/gromacs/gromacs/-/issues/4370

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Centering and symmetrization supported in gmx potential

gmx potential now supports the same centering and symmetrization options as gmx density, which is particularly
useful for membranes.

Issue 3579

Performance improvements

GPU direct communication with CUDA-aware MPI

Direct GPU communication support has been extended to simulations that use a CUDA-aware library-MPI when
running on NVIDIA GPUs. Detection of CUDA-aware MPI is performed both at cmake-time and runtime. The
feature has been tested primarily with OpenMPI but any CUDA-aware MPI implementation should be suitable,
and it is also possible to use with the thread-MPI implementation in GROMACS. CUDA-aware MPI support still
lacks substantial testing, hence it is included in the current release as a development feature and should be used
with caution. Hence, even if a suitable MPI is detected, direct communication is not used by default, but it can be
enabled using the GMX_ENABLE_DIRECT_GPU_COMM environment variable.

Issue 3960 Issue 2915

Dynamic pairlist generation for energy minimization

With energy minimization, the pairlist, and domain decomposition when running in parallel, is now performed
when at least one atom has moved more than the half the pairlist buffer size. The pairlist used to be constructed
every step.

Nonbonded free-energy kernels use SIMD

Free energy calculation performance is improved by making the nonbonded free-energy kernels SIMD accelerated.
On AVX2-256 these kernels are 4 to 8 times as fast. This should give a noticeable speed-up for most systems,
especially if the perturbed interaction calculations were a bottleneck. This is particularly the case when using
GPUs, where the performance improvement of free-energy runs is up to a factor of 3.

Issue 2875 Issue 742

PME-PP GPU Direct Communication Pipelining

For multi-GPU runs with direct PME-PP GPU communication enabled, the PME rank can now pipeline the
coordinate transfers with computation in the PME Spread and Spline kernel (where the coordinates are consumed).
The data from each transfer is handled separately, allowing computation and communication to be overlapped.
This is expected to have most benefit on systems where hardware communication interfaces are shared between
multiple GPUs, e.g. PCIe within multi-GPU servers or Infiniband across multiple nodes.

Issue 3969

11.6. GROMACS 2022 series 767

https://gitlab.com/gromacs/gromacs/-/issues/3579
https://gitlab.com/gromacs/gromacs/-/issues/3960
https://gitlab.com/gromacs/gromacs/-/issues/2915
https://gitlab.com/gromacs/gromacs/-/issues/2875
https://gitlab.com/gromacs/gromacs/-/issues/742
https://gitlab.com/gromacs/gromacs/-/issues/3969

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Domain decomposition with single MPI rank

When running with a single MPI rank with PME and without GPU, mdrun will now use the domain decomposition
machinery to reorder particles. This can improve performance, especially for large systems. This behavior can be
controlled with the environment variable GMX_DD_SINGLE_RANK.

Restricted GPU support with multiple time stepping

GPUs can be used in combination with MTS, but for now this is limited to the setup where only the long-range
nonbonded force is applied in longer timesteps (and computed on the CPU), while all other components are are
calculated every step (which can be on the GPU).

gmx grompp now runs 20-50% faster

After a series of improvements, the loops in the parameter- and atom-lookup code in gmx grompp have been
transformed to run faster while using simpler, standard code idioms.

PME decomposition support in mixed mode with CUDA and process-MPI

PME decomposition is supported now in mixed mode with CUDA backend. This is supported only if GROMACS
is compiled with external process-MPI and underlying MPI implementation is CUDA-aware. This feature lacks
substantial testing and has been disabled by default but can be enabled by setting GMX_GPU_PME_DECOM-
POSITION=1 environment variable.

Performance improvements when running on Ampere-class Nvidia GPUs

Improved performance of the short-ranged non-bonded kernels by up to 12%.

Issue 3872

Changes to the API

Remove physical constant conversion functions

Legacy conversion functions for physical constants from and to the GROMACS representation have been removed
as they didn’t see any use in the library.

Improvements to GROMACS tools

gmx msd has been migrated to the trajectoryanalysis framework

The tool now uses the GROMACS selection syntax. Rather than piping selections via stdin, selections are now
made using the “-sel” option. There is a new option called -maxtau, which limits maximum time delta between
frames to compare for calculating MSDs. This will allow users who otherwise would run into out-of-memory
errors and slow execution with large systems to restrict sampling to useful tau values.

This migration comes with about a 20% speedup in execution time.

Some rarely used features have yet to be migrated, including:

• The -tensor option is not yet implemented.

• System COM removal with -rmcomm has not yet been implemented.

• B-factor writing using the -pdb option is not yet supported.

11.6. GROMACS 2022 series 768

https://gitlab.com/gromacs/gromacs/-/issues/3872

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

A slight behavior change is the removal of the -mw option. gmx msd with -mol will take the MSD of the center-
of-mass of of molecules, while no mass-weighting is done when -mol is not selected. In previous GROMACS
versions, -mw was on by default, and -nomw was silently ignored when -mol was chosen. This change will only
cause different results when performing MSD calculations on a non-homogenous group of particles without -mol
set.

Issue 2368

gmx lie now reads energy files from reruns

This tool formerly relied on the presence of a pressure field in the .edr file, and that field will be missing if the .edr
came from a rerun. However it was never necessary to rely on the presence of the pressure field, so now the tool
just works correctly.

Issue 4070

gmx chi no longer needs residuetypes.dat entries for custom residues

The need to add the names of custom residues to residuetypes.dat has been removed, because it served no
purpose. This makes gmx chi easier to use.

gmx wham has had minor improvements to its text output

Reporting about file handling and input-file column contents are easier to follow.

gmx do_dssp supports DSSP version 4

The newer DSSP version 4 program can be used by do_dssp by specifying option -ver 4 and setting the
DSSP environement variable to the mkdssp executable path (e.g. setenv DSSP /opt/dssp/mkdssp)

Issue 4129

gmx trjconv -dump now works reliably

The frame nearest the dump time is now always written, even if the time is before or after the range present in the
trajectory file. To get the last frame of a trajectory file whose frames are in temporal order, you can request the
dump of any time larger than the time of any frame in the trajectory, like gmx trjconv -dump 9999999.

Issue 2873

gmx trjconv handles selections in TNG files better

When writing TNG files the whole system was written even if the user requested only a selection of atoms. Now
only the selected atoms should be written. If the selection name matches a molecule type and the selected atoms
are all present in that molecule then the molecule will be written as expected with the correct molecule count etc.
If the selection only matches some atoms in a molecule or atoms from multiple molecules then the TNG file will
contain a single molecule instance containing all those atoms.

Issue 2785

11.6. GROMACS 2022 series 769

https://gitlab.com/gromacs/gromacs/-/issues/2368
https://gitlab.com/gromacs/gromacs/-/issues/4070
https://gitlab.com/gromacs/gromacs/-/issues/4129
https://gitlab.com/gromacs/gromacs/-/issues/2873
https://gitlab.com/gromacs/gromacs/-/issues/2785

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx pdb2gmx no longer accepts charged glutamine (QLN) with the OPLS-AA forcefield

A torsion angle definition was missing from the (non-standard) charged glutamine residue. Grompp would use
the default torsion angle instead. To avoid silent errors the charged glutamine residue was removed from the
OPLS-AA forcefield.

Issue 3054

gmxapi.commandline_operation isolates working directories.

Subprocesses launched for wrapped command line operations now run in unique subdirectories. Users who rely
on the output_files input and file output mapping should not be affected. Users who rely on assumptions about
where wrapped commands are executed will need to adjust their scripts.

The stderr, stdout, and file output members are still the primary supported means to access command output.
Additionally, a new directory output gives the filesystem path that was used for the subprocess. See gmxapi.
commandline_operation() (page 607) for details.

Issue 3130

Bugs fixed

Fixed slight inaccuracies when using virtual sites with pressure coupling

Virtual sites were reconstructed after the system was propagated, but before scaling due to pressure coupling. For
virtual site types which are not a linear combination of other atoms, this is not completely correct. Since the
scaling due to pressure coupling is very small in healthy simulations, the resulting inaccuracies are expected to
have been extremely minor, and in most cases undetectable.

Issue 3866

Correct dVremain/dl when nstdhdl > nstcalcenergy

When nstcalcenergy was not a multiple of nstdhdl, incorrect dVremain/dl terms were written in the energy file.
Note that all dH/dl output in both dhdl.xvg and the energy file, which is used by e.g. gmx bar, was correct.

Removed velocity output for acceleration groups

The reported velocity in the energy file for acceleration groups was always zero. Now their velocity is no longer
reported in the energy file.

Issue 1354

Use correct c0 parameter in Me2PO4 in OPLSAA

OPLSAA torsions must sum to 0, but the parameters for Me2PO4 did not do so. Changed the c0 parameter to the
correct value.

Issue 4075

11.6. GROMACS 2022 series 770

https://gitlab.com/gromacs/gromacs/-/issues/3054
https://gitlab.com/gromacs/gromacs/-/issues/3130
https://gitlab.com/gromacs/gromacs/-/issues/3866
https://gitlab.com/gromacs/gromacs/-/issues/1354
https://gitlab.com/gromacs/gromacs/-/issues/4075

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Allow function type Fourier Dihedral with free energy perturbations

The Fourier Dihedral (dihedral interaction type 3) could not be used in free energy perturbation simulations. Under
the hood the dihedral parameters were anyhow converted to Ryckaert-Bellemans parameters, so now the checks
for perturbations are the same for the two functions.

Issue 2606

Do not scale coordinates of frozen atoms during Parrinello-Rahman pressure coupling

When Parrinello-Rahman pressure coupling was used, the box scaling was applied to all the atoms, causing frozen
atoms to shift. The effect is more drastic towards the sides of the box and when the pressure is changed signif-
icantly during the simulations. Now, the frozen atoms will be ignored by the coupling and atoms with frozen
dimensions shall keep such values.

Issue 3075

Avoid non-uniform rotation with Test Particle Insertion in anisotropic systems

With anisotropic systems the random angles would not get a uniform distribution.

Issue 3558

Allow free energy calculations with a linear angle potential

Free energy calculations with a linear angle potential were not explicitly allowed by grompp.

Issue 3456

Fixed progress display in trjconv and trjcat

The progress information (frame number and time) shown during trajectory operations in trjconv and trjcat is now
correctly displayed.

Issue 4320

Fixed GROMOS dihedral generation for disulfide bridges

The pdb2gmx functionality now generates correct dihedrals for disulfide bridges with the GROMOS force field
series.

Issue 4188

Fixed energy term naming for periodic improper dihedrals

Those used the same name internally as the non-periodic version for printing to energy files and reading from
them. This could cause tools being confused when trying to compare terms from files where the terms where
written in a different order.

11.6. GROMACS 2022 series 771

https://gitlab.com/gromacs/gromacs/-/issues/2606
https://gitlab.com/gromacs/gromacs/-/issues/3075
https://gitlab.com/gromacs/gromacs/-/issues/3558
https://gitlab.com/gromacs/gromacs/-/issues/3456
https://gitlab.com/gromacs/gromacs/-/issues/4320
https://gitlab.com/gromacs/gromacs/-/issues/4188

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx density now always uses relative coordinates

There is no realistic use case for using absolute coordinates in binning when the box dimension is changing, so
gmx density now always uses relative coordinates internally. This also avoids issues with output scaling to the
last instead of average box size when users forget this option, ensures the output is always correct, and gets rid of
occassional segfaults.

Issue 3830

Deprecated functionality

Changes anticipated to GROMACS 2022 functionality

Functionality deprecated in GROMACS 2022

GMX_OPENCL_NB_CLUSTER_SIZE CMake variable deprecated in favor of GMX_GPU_NB_-
CLUSTER_SIZE

Both OpenCL and SYCL support different cluster sizes, so GMX_GPU_NB_CLUSTER_SIZE should be used
going forward.

The built-in viewer gmx view will be removed

There is little use and no tests of this functionality, so it is not worth attempting to maintain moving forward.

Issue 4296

The analysis tool gmx chi will be removed

This tool has not been functional for a few years. Please comment at the linked issue if you have any interest in it.

Issue 4108

Guessing masses and atomic radii from atom names is deprecated

When atom masses or van-der-Waals radii are needed, we suggest building a proper GROMACS topology instead
of using PDB files directly, even if the tool supports it.

Issue 3368 Issue 4288

Functionality deprecated in GROMACS 2021

mdrun -deffnm to be removed

This functionality is convenient when running very simple simulations, because it permits grouping of a set of files
that then differ only their suffix. However, it does not work in the wider case of an mdrun module (or modules)
writing multiple .xvg output files. The resulting filenames collide. That, and its interaction with checkpointing
and appending, have led to quite a few bug reports.

Because users can use a folder to group files (a standard mechanism that they understand from experience outside
of GROMACS), we can build and test better software for them if we remove the erstwhile convenience of mdrun
-deffnm. Please update your workflows accordingly.

Issue 3818

11.6. GROMACS 2022 series 772

https://gitlab.com/gromacs/gromacs/-/issues/3830
https://gitlab.com/gromacs/gromacs/-/issues/4296
https://gitlab.com/gromacs/gromacs/-/issues/4108
https://gitlab.com/gromacs/gromacs/-/issues/3368
https://gitlab.com/gromacs/gromacs/-/issues/4288
https://gitlab.com/gromacs/gromacs/-/issues/3818

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

OpenCL to be removed as a GPU framework

Issue 3818 Work is underway for ports to AMD and Intel GPUs, and it is likely that those ports will not be based on
the current GROMACS OpenCL port. Nvidia GPUs are targeted by the CUDA port, and no changes are expectd
there. The core team can’t maintain, test, and extend up to 4 ports with current resource levels. Since there are no
prospects of an emerging GPU vendor in HPC needing OpenCL support, we will remove the OpenCL port once
AMD and Intel support is established in other ways.

Support for version 1 of the hardware locality library hwloc

Issue 3818 Version 2 has been supported in GROMACS for several years. The capabilities of newer hardware and
hardware-support APIs are of most interest for GROMACS moving forward, so we should minimize our testing
work and encourage clusters to upgrade older hwloc installations.

Legacy API

Issue 3818 The legacy installed headers have been deprecated for a while, however we wish to state more broadly
that all headers found within the src directory tree of GROMACS are intended for internal consumption only,
and are thus subject to change without notice. Further, the form and contents of the libgromacs library and
related CMake targets may change as we move towards building APIs and supporting machinery that can be stable
and supported in the long term.

Functionality deprecated in GROMACS 2019

Generation of virtual sites to replace aromatic rings in standard residues

Issue 3254 These are thought to produce artefacts under some circumstances (unpublished results), were never
well tested, are not widely used, and we need to simplify pdb2gmx.

Benchmarking options only available with gmx benchmark

Issue 3255 Options such as -confout, -resethway, -resetstep are not intended for use by regular mdrun
users, so making them only available with a dedicated tool is more clear. Also, this permits us to customize defaults
for e.g. writing files at the end of a simulation part in ways that suit the respective mdrun and benchmark use cases,
so -confout will no longer be required.

gmx mdrun -nsteps

Issue 3256 The number of simulation steps described by the .tpr file can be changed with gmx convert-tpr,
or altered in .mdp file before the call to gmx grompp. The convenience of this mdrun option was outweighted
by the doubtful quality of its implementation, no clear record in the log file, and lack of maintenance.

11.6. GROMACS 2022 series 773

https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3254
https://gitlab.com/gromacs/gromacs/-/issues/3255
https://gitlab.com/gromacs/gromacs/-/issues/3256

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Removed functionality

Removed mdrun-only build configuration

The need for the mdrun-only build of GROMACS has expired, as it has the same set of dependencies as regular
GROMACS. It was deprecated in GROMACS 2021. Removing it will simplify maintenance, testing, documenta-
tion, installation, and teaching new users.

Issue 3808

Removed support for x86 MIC, ARMv7, Sparc64 HPC-ACE, and IBM VMX SIMD

These platforms are dead in HPC and so are no longer supported. The KNL platform is unaffected by this change.

Issue 3891

Removed deprecated environment variables

The following environment variables were removed after being deprecated in favor of better-named alternatives:

• GMX_CUDA_NB_ANA_EWALD and GMX_OCL_NB_ANA_EWALD (use GMX_GPU_NB_ANA_EWALD)

• GMX_CUDA_NB_TAB_EWALD and GMX_OCL_NB_TAB_EWALD (use GMX_GPU_NB_TAB_EWALD)

• GMX_CUDA_NB_EWALD_TWINCUT and GMX_OCL_NB_EWALD_TWINCUT (use GMX_GPU_NB_-
EWALD_TWINCUT)

Issue 3803

Removed the ability for gmx wham to read .pdo files

Files in .pdo format were written by GROMACS versions prior to 4.0. That is so long ago that being able to read
them is no longer relevant, so this capability was deprecated in version 2021. If you do need to read such files,
please use an older version of GROMACS.

Removed 32bit support

We deprecated 32bit support in 2020 and have had no way to test it ourselves for a while before that. Those
architectures are no longer relevant in HPC, so we officially no longer support building GROMACS on them.

Portability

Intel classic compiler (icc/icpc) no longer supported

We now support the Intel clang-based compiler from oneAPI (icx/icpx) instead. Please use it, or gcc.

Issue 3893

11.6. GROMACS 2022 series 774

https://gitlab.com/gromacs/gromacs/-/issues/3808
https://gitlab.com/gromacs/gromacs/-/issues/3891
https://gitlab.com/gromacs/gromacs/-/issues/3803
https://gitlab.com/gromacs/gromacs/-/issues/3893

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Provisional: Initialize GMX_INSTALL_NBLIB_API and GMXAPI build options from BUILD_-
SHARED_LIBS

CMake options GMXAPI and GMX_INSTALL_NBLIB_API produce shared object libraries, so their default val-
ues are now initialized from BUILD_SHARED_LIBS. Pending movement on Issue 3605 and related issues, the
coupling between these options is subject to change, but users generally should not need to manually set GMXAPI
and GMX_INSTALL_NBLIB_API.

Issue 4053

Updates to pybind11 dependency

pybind11 is no longer bundled with GROMACS.

The gmxapi 0.3 Python package build system relies on PEP 517/518 build requirements to get pybind11 header
dependencies through the Python packaging system. Package managers like pip will download dependencies
automatically. Package managers that do not automatically fulfill dependencies should still report the missing
dependency to the user.

The sample_restraint sample project (bundled in python_packaging/sample_restraint) still
has a primitive CMake-only build procedure. If you fork a project from this source, you may choose to modernize
the build system (similarly to that of gmxapi) or to bundle the pybind11 sources. Within the GROMACS reposi-
tory, the sample_restraint option default is now GMXAPI_EXTENSION_DOWNLOAD_PYBIND=ON.

Issue 4092

CMake toolchain file replaced with cache file

The gromacs-toolchain.cmake file (previously installed to $CMAKE_INSTALL_PREFIX/share/
cmake/gromacs/) is no longer provided. Instead a partial CMake cache file is installed to $CMAKE_-
INSTALL_PREFIX/share/cmake/gromacs${SUFFIX}/gromacs-hints.cmake.

Client software may get CMake hints by configuring with -C /path/to/gromacs-hints.cmake, instead
of forcing a cross-compiling CMake configuration with -DCMAKE_TOOLCHAIN_FILE or --toolchain.

Client software bundled with GROMACS (the gmxapi Python package) no longer requires the toolchain file. See
Full installation instructions (page 586) for details.

Issue 4208

Bundle muparser

GROMACS now bundles MuParser version 2.3. It is also possible to link to an external provided library.

Miscellaneous

grompp no longer modifies nstcomm

grompp will no longer set nstcomm, the interval for center of mass motion removal, equal to nstcalcenergy when
nstcomm < nstcalcenergy. A note is still printed in that case.

11.6. GROMACS 2022 series 775

https://gitlab.com/gromacs/gromacs/-/issues/3605
https://gitlab.com/gromacs/gromacs/-/issues/4053
https://gitlab.com/gromacs/gromacs/-/issues/4092
https://gitlab.com/gromacs/gromacs/-/issues/4208

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Bonded atom types names can now start with a digit

Bonded atom types names in topologies were not allowed to start with a number. Now all names are supported
that contain at least one non-digit character.

Issue 4120

grompp now warns when exclusion forces might be missing

When using PME, exclusions between non-perturbed,atom pairs should be within the cut-off distance, otherwise
mdrun might not compute grid correction forces and energies. grompp now computes these distance for the
starting structure and warns when they are beyond 90% of the cut-off distance and generates an error when they
are beyond the cut-off distance.

Issue 4051

The AWH cover diameter for angles now has units degrees

Using old tpr files that apply AWH to angles or dihedrals and have a non-zero cover diameter results in an error
with the suggestion to regenerate the tpr file.

Issue 4367

Core spin-up code is removed

Formerly, on non-x86 and non-PowerPC platforms, mdrun ran some multi-threaded code to try to wake up any
cores that the OS might have powered down. This caused problems on some Arm platforms, and does not seem
to suit a significant number of platforms for use of GROMACS. So now it is removed.

If required, please manually spin-up the cores with, e.g., stress --cpu $(nproc --all).

Issue 4074

Add documentation for linear angle potential

Added documentation and reference for the linear angle potential. Also added please_cite entry, but there is no
call to reference it yet.

Issue 4286

gmxapi.mdrun guarantees trajectory output

gmxapi simulations now always run with full-precision trajectory output (-o) in order to guarantee the availability
of a usable output trajectory through the mdrun.output.trajectory result.

Issue 4285

11.6. GROMACS 2022 series 776

https://gitlab.com/gromacs/gromacs/-/issues/4120
https://gitlab.com/gromacs/gromacs/-/issues/4051
https://gitlab.com/gromacs/gromacs/-/issues/4367
https://gitlab.com/gromacs/gromacs/-/issues/4074
https://gitlab.com/gromacs/gromacs/-/issues/4286
https://gitlab.com/gromacs/gromacs/-/issues/4285

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmxapi.mdrun accepts arbitrary runtime arguments

Arbitrary mdrun arguments can be passed through gmxapi with the new runtime_args key word argument, accept-
ing a dictionary of flags and values.

Issue 4284

Improved MPI awareness and task uniqueness for gmxapi Python runner

Previously, only the Python components in gmxapi.simulation (page 610) reacted to the presence of an MPI
context. This could result in duplicate work or even invalid file access.

gmxapi.commandline_operation() (page 607) now executes tasks in unique working directories.

For all gmxapi operations, tasks are only launched from one process (per ensemble member). If mpi4py is avail-
able, the MPI environment is inspected. If multiple ranks are discovered, the ResourceManager instances on
the various ranks coordinate to make sure that update is only called for each member of each task once. Results
are broadcast to all ranks from the ResourceManager where the work occurred.

These changes merely constitute a bug-fix. Additional development is needed for more optimal use of resources
and to reduce unnecessary data transfers.

Issue 3138

Further discouraged use of Berendsen coupling algorithms

Those algorithms have been proven to cause incorrect sampling of their respective distributions and are mainly
provided as a means to provide backwards compatibility for older simulations. This is why their use has been
further discouraged by changing the current notes about their use to actual warnings at grompp time.

11.7 GROMACS 2021 series

11.7.1 Patch releases

GROMACS 2021.7 release notes

This version was released on January 31st, 2023. These release notes document the changes that have taken place
in GROMACS since the previous 2021.6 version, to fix known issues. It also incorporates all fixes made in version
2020.7 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Add missing net charge term when running PME on a GPU

When PME was running on a GPU, the term due to a net charge of the system was missing. In normal runs this
only changed the potential energy by a constant, which is usually not relevant. In free-energy calculations where
the net charge of the systen changes, the would lead to incorrect dV/dlambda and Delta lambda values (but one
should anyhow avoid changing the net charge of a system with free-energy calculations).

Issue 4668

11.7. GROMACS 2021 series 777

https://gitlab.com/gromacs/gromacs/-/issues/4284
https://mpi4py.readthedocs.io/en/stable/
https://gitlab.com/gromacs/gromacs/-/issues/3138
https://gitlab.com/gromacs/gromacs/-/issues/4668

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes for gmx tools

Fixes that affect portability

Miscellaneous

GROMACS 2021.6 release notes

This version was released on July 8th, 2022. These release notes document the changes that have taken place in
GROMACS since the previous 2021.5 version, to fix known issues. It also incorporates all fixes made in version
2020.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Extend error message for free-energy exclusion beyond rlist

With free-energy decoupling simulations an error for exclusions beyond rlist can occur due to a too small box.
This cause is now added to the error message.

Issue 3403 Issue 3808

Fix running with LJ PME only

Simulations with only LJ PME but not electrostatic PME would fail to run due to an error in task assignment.

Issue 4362

Fix missing synchronization in CUDA update kernels

When using GPU update with SETTLE or LINCS constraints, virial calculations could have been incorrect on
Volta and newer NVIDIA GPUs, which in turn would lead to incorrect pressure. The GPU update is not enabled
by default, so the error can only appear in simulations where it was manually selected, and even in this case the
error might be rare since we have not observed it in practice in the testing we have performed.

To check whether your runs could have been affected, please examine your mdrun log file:

• Look for the line “GPU support: CUDA”;

• Look for the line “PP task will update and constrain coordinates on the GPU”;

• Check whether any GPU the value of “compute cap.” 7.0 or higher in the “GPU Info:” section.

If all three are present, than the bug could have perturbed the virial calculation and, in turn, led to incorrect pressure
coupling. All GROMACS version prior to 2021.6 and 2022.0 that allow offloading of the update and constraint
calculations to GPUs are affected.

Issue 4393

11.7. GROMACS 2021 series 778

https://gitlab.com/gromacs/gromacs/-/issues/3403
https://gitlab.com/gromacs/gromacs/-/issues/3808
https://gitlab.com/gromacs/gromacs/-/issues/4362
https://gitlab.com/gromacs/gromacs/-/issues/4393

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes for gmx tools

Do not try to guess atom names in gmx rms unless needed

Guessing atomic masses based on atom names may sometimes fail. When -nomw switch is used, atom masses
are not needed, but gmx rms was trying to guess them anyway, throwing a fatal error when an unknown element
was encountered. Now, the error is only raised when masses are actually needed.

Issue 4356

Fixes that affect portability

Miscellaneous

Corrects units for AWH interval in the user guide

When applying AWH to angles or dihedrals, the units of bonds of the sampling interval listed in the mdp section
of the user guide are now stated to be in degrees. The guide incorrectly stated that there were in radians, whereas
the code interprets the user input as degrees.

Issue 4367

Fix distance restraint force calculation in case of negative prefactor

When calculating distance restraint forces, the quadratic regime for weak restraint violation and the linear regime
for strong restraint violation were interchanged in case of a negative force constant.

Issue 4347

GROMACS 2021.5 release notes

This version was released on January 14th, 2022. These release notes document the changes that have taken place
in GROMACS since the previous 2021.4 version, to fix known issues. It also incorporates all fixes made in version
2020.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Do not scale coordinates of frozen atoms during Parrinello-Rahman pressure coupling

When Parrinello-Rahman pressure coupling was used, the box scaling was applied to all the atoms, causing frozen
atoms to shift. The effect is more drastic towards the sides of the box and when the pressure is changed signif-
icantly during the simulations. Now, the frozen atoms will be ignored by the coupling and atoms with frozen
dimensions shall keep such values.

Issue 3075

11.7. GROMACS 2021 series 779

https://gitlab.com/gromacs/gromacs/-/issues/4356
https://gitlab.com/gromacs/gromacs/-/issues/4367
https://gitlab.com/gromacs/gromacs/-/issues/4347
https://gitlab.com/gromacs/gromacs/-/issues/3075

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Properly account for DeltaH contribution from PME when running AWH with FEP

The linear dHdL contribution from PME, when PME was calculated on GPU or on a separate PME rank, was
calculated too late to be taken into account for FEP steered by AWH. Please verify your simulation results from
simulations running FEP steered by AWH with PME on GPU or using a separate PME rank.

Issue 4294

Fix reading of AWH user PMF reading with large PMF values

The reading of user supplied AWH input in mdrun with PMF values larger than 88 kT would cause mdrun to exit
with an assertion failure. Now values up to 700 kT are allowed and exceeding those causes an exit with a clear
error message.

Issue 4299

Fixes for gmx tools

gmx make_edi now closes its output file properly

Previously the file was not closed explicitly, leaving the result up to the runtime environment. Now it will work
with all environments.

Out-of-bounds, overflow and incorrect outputs fixes in gmx spatial

There were several issues with memory management in gmx spatial, which were addressed: 1. Out-of-bound
memory writes. 2. Confusing error message when the coordinate is exactly on the boundary (happens with .xtc
files). 3. Norm could become negative due to integer overflow. 4. Having negative -ign (default -1) led to
incorrect number of grid points 5. The coordinates of the grid points were incorrect especially when -ign is
non-zero. 6. Norm calculation was incorrect. 7. Default -nab value is increased from 4 to 16.

Issue 3214

Fixes that affect portability

Miscellaneous

Performance improvements when running on Ampere-class Nvidia GPUs

Improved performance of the short-ranged non-bonded kernels by up to 12%.

Issue 3873

GROMACS 2021.4 release notes

This version was released on November 5th, 2021. These release notes document the changes that have taken
place in GROMACS since the previous 2021.3 version, to fix known issues. It also incorporates all fixes made in
version 2020.6 and earlier, which you can find described in the Release notes (page 709).

11.7. GROMACS 2021 series 780

https://gitlab.com/gromacs/gromacs/-/issues/4294
https://gitlab.com/gromacs/gromacs/-/issues/4299
https://gitlab.com/gromacs/gromacs/-/issues/3214
https://gitlab.com/gromacs/gromacs/-/issues/3873

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Fixed crash for large system with virtual sites

When large system with virtual sites were ran with domain decomposition and OpenMP threading, mdrun would
crash when the number of atoms in a domain and its halo were more than 200000.

Issue 4167

Fixed bug with GPU LINCS occasionally shifting atoms in wrong direction

Due to missing blocking synchronizations in the CUDA version of LINCS, the shared memory was occasionally
overwritten with the new data. This may slightly affect the final coordinates of the shifted atoms.

Issue 4199

Disabled the use of PME Mixed mode for FEP simulations

The use of Mixed mode PME (-pme gpu -pmefft cpu) led to incorrect computation of 𝜕𝑉
𝜕𝜆 in FEP simula-

tions.

Mixed mode is only used when explicitly requested by the user.

Issue 4190

Fixed spurious nan in AWH free energy output when running FEP with other dimensions

When running AWH with alchemical free energy perturbations as one of multiple dimensions the free energy
output could contain nan entries due to failing log operations. This did not affect the AWH bias, which means that
the simulations were not affected as such, but the output was.

Issue 4180

Made mdrun work without MPI

When configured with neither of MPI or thread-MPI, mdrun would terminate with an assertion failure.

Issue 4264

Fixes for gmx tools

Fix gmx convert-tpr -s -o

Formerly, this combination could be used when supplying an index file. Now this combination can also be used
with default index groups when not supplying an index file.

11.7. GROMACS 2021 series 781

https://gitlab.com/gromacs/gromacs/-/issues/4167
https://gitlab.com/gromacs/gromacs/-/issues/4199
https://gitlab.com/gromacs/gromacs/-/issues/4190
https://gitlab.com/gromacs/gromacs/-/issues/4180
https://gitlab.com/gromacs/gromacs/-/issues/4264

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

grompp now prints a note again when combining center of mass motion removal and position
restraints

Issue 4128

Static selections of large index groups now work

Commands like gmx distance -f traj.xtc -n ndx.ndx -select "group \"Contacts\""
only worked if the size of Contacts was less than the number of atoms. This restriction was a bug, and has been
fixed so that Contacts make take any size.

Other similar uses of static selections derived from index groups will also now work.

Issue 4148

Static selections of index groups with repeated indices now work

Static groups from index files referenced in selections (e.g. gmx tool -select "group \"Contacts\
"") only worked correctly if they never had adjacent repeats of the same index within the group. Repeating the
same index can be meaningful e.g. in lists of inter-atomic distances to analyze with gmx distance to analyze
"1 2 2 3". Previously, the index group had to be written like "2 3 1 2" in order to work.

Issue 4149

Fixes that affect portability

Miscellaneous

Fix a bug affecting re-run gmxapi scripts

A typo may have prevented gmxapi simulations from continuing from checkpoints after being interrupted. Fixed
in version 0.2.3 of the gmxapi Python package.

Issue 4267

GROMACS 2021.3 release notes

This version was released on August 18th, 2021. These release notes document the changes that have taken place
in GROMACS since the previous 2021.2 version, to fix known issues. It also incorporates all fixes made in version
2020.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix mdrun -ddorder pp_pme

When rank ordering PP-PME, mdrun would deadlock during the initialization phase.

Issue 4114

11.7. GROMACS 2021 series 782

https://gitlab.com/gromacs/gromacs/-/issues/4128
https://gitlab.com/gromacs/gromacs/-/issues/4148
https://gitlab.com/gromacs/gromacs/-/issues/4149
https://gitlab.com/gromacs/gromacs/-/issues/4267
https://gitlab.com/gromacs/gromacs/-/issues/4114

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed gmxapi MD plugin binding

Molecular Dynamics extension code was not properly handled when added to a simulation through the gmxapi
Python interface. This meant that restraint potentials would silently fail to be applied with gmxapi versions >=
0.1. Updates have been applied internally to gmxapi.

The gmxapi 0.2.2 Python package supports the updated GROMACS API and will issue errors if a simulation
attempts to bind external plugin code with a compatible-but-broken API (GROMACS 2021 through 2021.2).

Third party code should not need to be updated, but developers will note an additional “null restraint” in
https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/sample_restraint (for illustration and testing
purposes).

Issue 4078 and Issue 4102

Fixed multi-rank restarts from checkpoints written by single-rank simulations

Currently a single-rank simulation never uses update groups, however a multi-rank run can do so. This fix ensures
that the atoms within update groups always start in the same periodic image, which was not guaranteed if the
checkpoint was written by a single-rank simulation.

Issue 4016

Fixes for gmx tools

Fix gmx nmr -viol option

The tool would previously fail with a cryptic error. Also enforces that this option is exclusive with other analysis
modes.

Issue 4060

Fixed gmx dipoles -quad option

The tool now reports correct values.

Issue 4080

Make sure gmx convert-tpr -until works

This got broken during reworking the internals of the tool and didn’t calculate the number of remaining steps
correctly.

Issue 4056

Fixed dihedral transition counting in gmx chi and gmx angle

When a trajectory of only 1 frame is passed, transition counting is avoided (formerly it was attempted and crashed).

When a trajectory of multiple frames is passed, transition counting is correct (formerly it did not take place).

11.7. GROMACS 2021 series 783

https://gitlab.com/gromacs/gromacs/-/tree/master/python_packaging/sample_restraint
https://gitlab.com/gromacs/gromacs/-/issues/4078
https://gitlab.com/gromacs/gromacs/-/issues/4102
https://gitlab.com/gromacs/gromacs/-/issues/4016
https://gitlab.com/gromacs/gromacs/-/issues/4060
https://gitlab.com/gromacs/gromacs/-/issues/4080
https://gitlab.com/gromacs/gromacs/-/issues/4056

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed possible crash in gmx chi histogramming

Formerly an invalid reference to a temporary string was used for a residue name, which might have caused a crash.

Fixed gmx chi -chi_prod

Formerly it could crash or produce garbage results when the number of relevant dihedrals differed from the number
of residues with dihedrals.

Fixes that affect portability

Check that necessary python modules are available

The source code validation could otherwise fail a build with cryptic errors.

Issue 3985

Ensure that NB-LIB and gmxapi can be build even without tests enabled

Could otherwise lead to cryptic build errors.

Miscellaneous

Removed performance loss in the mdrun domain decomposition

With 16 or more so-called PP MPI ranks, the domain decomposition repartitioning could incur large performance
overheads due to a sub-optimally sized hash table. This has now been fixed.

Issue 4054

GROMACS 2021.2 release notes

This version was released on May 5th, 2021. These release notes document the changes that have taken place in
GROMACS since the previous 2021.1 version, to fix known issues. It also incorporates all fixes made in version
2020.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Removed a potential race condition with GPU update

Fixed possible (but so far unobserved) race condition in coordinate copy when using GPU update with dipole
moment calculation.

Issue 4024

11.7. GROMACS 2021 series 784

https://gitlab.com/gromacs/gromacs/-/issues/3985
https://gitlab.com/gromacs/gromacs/-/issues/4054
https://gitlab.com/gromacs/gromacs/-/issues/4024

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoided issues with global reduction observed with md-vv

The new implementation for md-vv in the modular simulator could produce floating-point exceptions computing
values on non-master ranks that were never used. This is now fixed by avoiding that computation. The other
integrators were unaffected because they over-wrote the values computed.

Issue 4031

Prohibited SETTLE interactions for atoms with perturbed masses

Older implementations produced varying degrees of wrong results because this has never been implemented. Now
both mdrun and grompp refuse to handle such a system, suggesting using normal constraints.

Issue 3959

Rerun now writes pull output correctly

Refactoring omitted to preserve that pullf.xvg and pullx.xvg files should be written during a rerun. All 2019 and
2020 versions were affected, as well as 2021 and 2021.1. The pull output files are now written as they used to be
in 2018 and earlier.

Issue 4043

Fixes for gmx tools

Fix incorrect behaviour with single residue chains in pdb2gmx

The code for chcking for cyclic molecules could lead to single residue chains incorrectly to be assigned as circular
molecules.

Issue 4029

Fix grompp check for position restraints with absolute reference

Fixed that grompp with position restraints would always issue a warning about using an absolute reference, even
when an absolute reference was not used.

Issue 3996

Fix error when using VMD plugin

Tools would crash with a C++ library assertion because the plugin loading code incorrectly tried to construct a
string from nullptr.

Issue 3055

11.7. GROMACS 2021 series 785

https://gitlab.com/gromacs/gromacs/-/issues/4031
https://gitlab.com/gromacs/gromacs/-/issues/3959
https://gitlab.com/gromacs/gromacs/-/issues/4043
https://gitlab.com/gromacs/gromacs/-/issues/4029
https://gitlab.com/gromacs/gromacs/-/issues/3996
https://gitlab.com/gromacs/gromacs/-/issues/3055

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix file permissions with gmx solvate and gmx genion

These used to write temporary files with Unix permissions 0600. Now they respect the umask of the process
(typically 0644).

Issue 4040

Fixes that affect portability

Support for Intel oneAPI compiler 2021.2

Fixed compiler infinity math and MKL flags.

Fix Apple OpenCL build

Issue 4008

Fixed compilation issue with GCC 11

Issue 4039

Miscellaneous

Fix bond type in GROMOS force fields

The bond type for C and +N in [ACE] was incorrect.

Issue 3995

Allow PME on CPU in runs with domain decomposition and GPU update

Relaxed a limitation which prevented running parallel runs with domain decomposition and GPU update to use
the CPU for PME (as long as combined PP-PME ranks are used). This allows parallel runs to scale when the CPU
resources are sufficient for PME.

Issue 4035

GROMACS 2021.1 release notes

This version was released on March 8th, 2021. These release notes document the changes that have taken place
in GROMACS since the previous 2021 version, to fix known issues. It also incorporates all fixes made in version
2020.6 and earlier, which you can find described in the Release notes (page 709).

11.7. GROMACS 2021 series 786

https://gitlab.com/gromacs/gromacs/-/issues/4040
https://gitlab.com/gromacs/gromacs/-/issues/4008
https://gitlab.com/gromacs/gromacs/-/issues/4039
https://gitlab.com/gromacs/gromacs/-/issues/3995
https://gitlab.com/gromacs/gromacs/-/issues/4035

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Fix MiMiC with virtual sites

It is likely that MiMiC with virtual sites has not worked correctly because the call to construct the sites was placed
after the call that uses the sites. Now it should work, but we have not tested that it does.

Issue 3866

Fix mass perturbation to dH/dlambda

The contribution for perturbed mass was missing in dH/dlambda. Note that this contribution was not missing from
the foreign energy differences used for the Bennett acceptance ratio method.

Issue 3943

Running AWH with a convolved potential and an FEP dimension gives wrong results.

The output PMF is wrong when using awh-potential = convolved with a pull dimension combined with an FEP
dimension. The FEP dimension always uses an umbrella potential and the combination does not work properly.
This has been disabled in grompp.

Issue 3946

Remove velocity from partially frozen atoms in md-vv

md-vv would add some velocity to the frozen dimensions of partially frozen atoms during constraining. This did
not lead to wrong trajectories, as the frozen dimensions of the positions are kept fixed during propagation. The
non-zero velocities were, however, reported in trajectories and final configurations. They might also have lead to
slightly wrong kinetic energies, since the reported kinetic energy is calculated after the velocities are constrained.
All effects are expected to be relatively small, since they did not accumulate, as the velocities were regularly reset
to zero once per step.

Issue 3849

Fixes for gmx tools

Fix periodic boundary conditions in analysis framework tools

There was a bug in the trajectory analysis framework which caused molecules that were broken over PBC not to
be made whole. This would usually lead to obviously incorrect outliers in analysis output.

Issue 3900

Fix range checking bug in gmx covar

A check was inverted causing range checking to be applied wrong.

Issue 3902

11.7. GROMACS 2021 series 787

https://gitlab.com/gromacs/gromacs/-/issues/3866
https://gitlab.com/gromacs/gromacs/-/issues/3943
https://gitlab.com/gromacs/gromacs/-/issues/3946
https://gitlab.com/gromacs/gromacs/-/issues/3849
https://gitlab.com/gromacs/gromacs/-/issues/3900
https://gitlab.com/gromacs/gromacs/-/issues/3902

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix various bugs in gmx xpm2ps

Numerous minor issues were introduced in refactoring since GROMACS 5.1, now fixed.

Issue 3881

Fixes that affect portability

Fixed compilation on Cygwin

A GROMACS header file was not including the necessary standard header. A problem with the M_PI math
constant defined only by POSIX and not by C++ was also worked around.

Issue 3890

Improve grompp checks of AWH settings when sampling an FEP dimension

Ensure that the AWH sampling interval is compatible with nstcalcenergy when sampling an FEP dimension using
AWH. This avoids crashes in the first AWH sampling step (step > 0) if the settings were not correct.

Issue 3922

Miscellaneous

• Updated GROMACS logos

11.7.2 Major release

Highlights

GROMACS 2021 was released on January 28th, 2021. Patch releases may have been made since then, please use
the updated versions! Here are some highlights of what you can expect, along with more detail in the links below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

• Support for multiple time stepping, allowing for simple near doubling of simulation speed and is intended
to replace the virtual site treatment

• Ability to use stochastic cell rescaling barostat for equilibration and production simulations

• Preliminary support for using SYCL as accelerator framework

• Support for performing free energy perturbation with AWH

• Support PME offloading to GPU for free energy simulations

• Support for ARM SVE and Fujitsu A64FX (contribution by Research Organization for Information Science
and Technology (RIST))

• New nonbonded interaction API with NB-LIB (in collaboration with PRACE)

• New GROMACS logo!

11.7. GROMACS 2021 series 788

https://gitlab.com/gromacs/gromacs/-/issues/3881
https://gitlab.com/gromacs/gromacs/-/issues/3890
https://gitlab.com/gromacs/gromacs/-/issues/3922

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

New and improved features

Virtual site with single constructing atom

Added a virtual site that is constructed on top if its single constructing atom. This can be useful for free-energy
calculations.

Density-guided simulations can apply matrix multiplication and shift vector to structures

The new mdp option “density-guided-simulation-shift-vector” defines a shift vector that shifts the density-guided
simulation group before the density forces are evaluated. With a known shift vector that aligns structure and
input density, this feature enables structure refinement to non-aligned densities without the need to manipulate
the input density data or structure. The mdp option “density-guided-simulation-transformation-matrix” allows to
define a matrix with which to multiply the structure coordinates, before the shift vector is applied. This allows
arbitrary rotation, skewing and scaling of input structures with respect to the input densities. A typical use case
are membrane-embedded proteins which cannot easily be shifted and rotated within membranes.

Lower energy drift due to SETTLE

GROMACS already applied an improvement to the center of mass calculation in SETTLE to reduce energy drift in
single precision. Now the center of mass calculation is completely avoided, which significantly reduces the energy
drift when large coordinate values are present. This allows for accurate simulations of systems with SETTLE up
to 1000 nm in size (but note that constraining with LINCS and SHAKE still introduces significant drift, which
limits the system size to 100 to 200 nm).

mdrun now reports energy drift

With conservative integrators, mdrun now reports the drift of the conserved energy quantity in the log file.

FEP using AWH

It is now possible to control the lambda state of a free energy perturbation simulation using the Accelerated Weight
Histogram method. This can be used as one of multiple AWH dimensions, where the other(s) are coupled to pull
coordinates.

Support for cyclic molecules in pdb2gmx

It is now possible to process cyclic molecules in pdb2gmx and generate GROMACS topology files for them.

Stochastic cell rescaling barostat

Implementation of the stochastic cell rescaling barostat. This is a first-order, stochastic barostat, that can be used
both for equilibration and production.

11.7. GROMACS 2021 series 789

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Performance improvements

Added support for multiple time-stepping

A two-level multiple time-stepping scheme has been implemented. Any combination of five different force groups
can be selected to evaluate less frequently, thereby improving performance.

Extend supported use-cases for GPU version of update and constraints

GPU version of update and constraints can now be used for FEP, except mass and constraints free-energy pertur-
bation.

Reduce time spent in grompp with large numbers of distance restraints

The time gmx grompp (page 190) spent processing distance restraint has been changed from quadratic in the
number of restraints to linear.

Issue 3457

Support for offloading PME to GPU when doing Coulomb FEP

PME calculations can be offloaded to GPU when doing Coulomb free-energy perturbations.

CPU SIMD accelerated implementation of harmonic bonds

SIMD acceleration for bonds slightly improves performance for systems with H-bonds only constrained or no
constraints. This gives a significant improvement with multiple time stepping.

Allow offloading GPU update and constraints without direct GPU communication

Allow domain-decomposition and separate PME rank parallel runs to offload update and constraints to a GPU
with CUDA without requiring the (experimental) direct GPU communication features to be also enabled.

Tune CUDA short-range nonbonded kernel parameters on NVIDIA Volta and Ampere A100

Recent compilers allowed re-tuning the nonbonded kernel defaults on NVIDIA Volta and Ampere A100GPUs
which improves performance of the Ewald kernels, especially those that also compute energies.

Improvements to GROMACS tools

Bugs fixed

Fixed exported libgromacs CMake target

Update the exported libgromacs CMake target to not depend on non- existing include paths and add GMX_-
DOUBLE define to interface definitions. The target now gets exported into the GROMACS namespace.

Issue 3468

11.7. GROMACS 2021 series 790

https://gitlab.com/gromacs/gromacs/-/issues/3457
https://gitlab.com/gromacs/gromacs/-/issues/3468

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed unsolicited changing of atom names in pdb file

Remove functions to change atoms names when reading and writing pdb files. This affected naming of H atoms
in particular.

Issue 3469

pdb2gmx handles ASPH and GLUH inputs better

The default is to treat all such residues as the unprotonated form, and not to try to infer the protonation from the
residue name in the input. Protonated forms are only available via the interactive selection options. Now pdb2gmx
reports when it is converting such input residues automatically. It also ensures that the output configuration and
topology are naming such residues correctly in both the default and interactive-selection cases.

Issue 2480

Correct excluded perturbed interactions beyond the non-bonded cut-off distance

With free-energy calculations without coupling of intermolecular interactions, non-bonded pair interactions at
distance longer than the cut-off distance can be excluded. These interactions would still have PME long-range
contributions. The contributions are now removed. In addition, mdrun will stop with a fatal error when interactions
beyond the pair-list cut-off are present.

Issue 3403 Issue 3808

Corrected AWH initial histogram size

The initial histogram size for AWH biases depended (weakly) on the force constant. This dependence has been
removed, which increases the histogram size by a about a factor of 3. In practice this has only a minor effect
on the time to solution. For multiple dimensions, the histogram size was underestimated, in particular with a
combination of slower and faster dimensions. The, now simplified, formula for the initial histogram size is given
in the reference manual.

Issue 3751

Fixed default for tick-mark spacing in gmx xpm2ps

This was inadvertently changed many years ago, leading to the intended default of automatic tick-mark spacing
being replaced with an unsuitable fixed value.

Issue 3881

Fixed LJ Ewald exclusions when used with cut-off electrostatics

The exclusion forces in CUDA and OpenCL kernels were computed incorrectly if LJ Ewald was used together
with cut-off electrostatics.

Issue 3840

11.7. GROMACS 2021 series 791

https://gitlab.com/gromacs/gromacs/-/issues/3469
https://gitlab.com/gromacs/gromacs/-/issues/2480
https://gitlab.com/gromacs/gromacs/-/issues/3403
https://gitlab.com/gromacs/gromacs/-/issues/3808
https://gitlab.com/gromacs/gromacs/-/issues/3751
https://gitlab.com/gromacs/gromacs/-/issues/3881
https://gitlab.com/gromacs/gromacs/-/issues/3840

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Deprecated functionality

The core GROMACS team wants to let users and downstream developers know about impending changes so that
disruption is minimized. Do get in touch if you feel something inappropriate is planned!

Deprecated functionality often remains in GROMACS for a year or more, but this should not be relied upon.

Changes anticipated to GROMACS 2021 functionality

gmx mdrun -membed

The feature for embedding a protein in a membrane will be retained, but probably in a different form, such as gmx
membed.

gmx mdrun -rerun

The feature for computing potential energy quantities from a trajectory will be retained, but probably in a different
form, such as gmx rerun and gmx test-particle-insertion.

Integrator .mdp options will only contain dynamical integrators

Energy minimization will be accessed in a differt form, perhaps with gmx minimize and interpret an .mdp
field for which minimizer to use. Normal-mode analysis may be accessed with e.g. gmx normal-modes. The
command-line help for these tools will then be better able to document which functionality is supported when.

Much functionality in trjconv, editconf, eneconv and trjcat

The functionality in such tools is being separated to make it available in composable modules, that we plan to
make available as simpler tools, and eventually via the GROMACS API that is under development.

gmx do_dssp to be replaced

This tool is deprecated, because it is problematic for some users to obtain and install a separate DSSP binary, so
we plan to replace the implementation at some point with a native implementation, likely based upon xssp, and
make it available under a new gmx tool name.

Functionality deprecated in GROMACS 2021

mdrun -deffnm to be removed

This functionality is convenient when running very simple simulations, because it permits grouping of a set of files
that then differ only their suffix. However, it does not work in the wider case of an mdrun module (or modules)
writing multiple .xvg output files. The resulting filenames collide. That, and its interaction with checkpointing
and appending, have led to quite a few bug reports.

Because users can use a folder to group files (a standard mechanism that they understand from experience outside
of GROMACS), we can build and test better software for them if we remove the erstwhile convenience of mdrun
-deffnm. Please update your workflows accordingly.

Issue 3818

11.7. GROMACS 2021 series 792

https://gitlab.com/gromacs/gromacs/-/issues/3818

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

OpenCL to be removed as a GPU framework

Issue 3818 Work is underway for ports to AMD and Intel GPUs, and it is likely that those ports will not be based on
the current GROMACS OpenCL port. Nvidia GPUs are targeted by the CUDA port, and no changes are expectd
there. The core team can’t maintain, test, and extend up to 4 ports with current resource levels. Since there are no
prospects of an emerging GPU vendor in HPC needing OpenCL support, we will remove the OpenCL port once
AMD and Intel support is established in other ways.

Intel KNC (MIC) support

Issue 3818 This architecture is nearly extinct in HPC. Note that KNL support will continue and is not affected by
this deprecation.

Sparc64 HPC ACE

This architecture is nearly extinct in HPC.

Legacy SIMD architecture support

Issue 3818 We occasionally need to extend the GROMACS SIMD framework, and so should slowly remove older
architectures that are difficult or impossible to test. The following implementations are deprecated and will not
support new functionality in future.

• Power 7

• ARMv7 (this platform was deprecated in GROMACS 2020)

• x86 MIC (this platform was deprecated in GROMACS 2021)

• Sparc64 HPC ACE (this platform was deprecated in GROMACS 2021)

The mdrun-only build of GROMACS

Issue 3808 Before GROMACS had the gmx wrapper binary, the mdrun binary could be built independently of
the many other binary tools that were built by default. That was useful for installing on compute clusters because
dependencies for mdrun were minimized. However, we now manage such dependencies better with CMake, and
an mdrun-only build is no longer easier to build. The mdrun-only build is also harder to test, and introduces
complexity into documenting GROMACS and teaching users to use it. So it is time to remove that build.

Support for version 1 of the hardware locality library hwloc

Issue 3818 Version 2 has been supported in GROMACS for several years. The capabilities of newer hardware and
hardware-support APIs are of most interest for GROMACS moving forward, so we should minimize our testing
work and encourage clusters to upgrade older hwloc installations.

11.7. GROMACS 2021 series 793

https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/3808
https://gitlab.com/gromacs/gromacs/-/issues/3818

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Legacy API

Issue 3818 The legacy installed headers have been deprecated for a while, however we wish to state more broadly
that all headers found within the src directory tree of GROMACS are intended for internal consumption only,
and are thus subject to change without notice. Further, the form and contents of the libgromacs library and
related CMake targets may change as we move towards building APIs and supporting machinery that can be stable
and supported in the long term.

Constant-acceleration MD

Issue 1354 This has been broken for many years, and will be removed as nobody has been found with interest to
fix it.

Reading .pdo files in gmx wham

The pull code in GROMACS before version 4.0 wrote files in .pdo format. Analyses of such files are likely no
longer relevant, and if they are, using any older GROMACS version will work. gmx wham will be simpler to
maintain and extend if we no longer support reading .pdo files.

Functionality deprecated in GROMACS 2020

Support for 32bit architectures

Issue 3252 There are no current or planned large scale resources using 32bit architectures, and we have no ability
to properly test and evaluate them.

Free-energy soft-core power 48

Issue 3253 Free-energy soft-core power 48 is almost never used and is therefore deprecated.

Support for Armv7

Issue 2990 There are several issues with current code for the architecture, and we don’t have the resources for
support and fix issues related to it. As the architecture has no large HPC impact it is thus deprecated.

Functionality deprecated in GROMACS 2019

Generation of virtual sites to replace aromatic rings in standard residues

Issue 3254 These are thought to produce artefacts under some circumstances (unpublished results), were never
well tested, are not widely used, and we need to simplify pdb2gmx.

11.7. GROMACS 2021 series 794

https://gitlab.com/gromacs/gromacs/-/issues/3818
https://gitlab.com/gromacs/gromacs/-/issues/1354
https://gitlab.com/gromacs/gromacs/-/issues/3252
https://gitlab.com/gromacs/gromacs/-/issues/3253
https://gitlab.com/gromacs/gromacs/-/issues/2990
https://gitlab.com/gromacs/gromacs/-/issues/3254

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Benchmarking options only available with gmx benchmark

Issue 3255 Options such as -confout, -resethway, -resetstep are not intended for use by regular mdrun
users, so making them only available with a dedicated tool is more clear. Also, this permits us to customize defaults
for e.g. writing files at the end of a simulation part in ways that suit the respective mdrun and benchmark use cases,
so -confout will no longer be required.

gmx mdrun -nsteps

Issue 3256 The number of simulation steps described by the .tpr file can be changed with gmx convert-tpr,
or altered in .mdp file before the call to gmx grompp. The convenience of this mdrun option was outweighted
by the doubtful quality of its implementation, no clear record in the log file, and lack of maintenance.

Removed functionality

Removed GMX_SCSIGMA_MIN environment variable

This was used to reproduce free-energy soft-core behavior of GROMACS versions before 4.5.

Portability

Python environment

Where Python is required, CPython versions 3.6 to 3.8 are supported.

CMake now detects Python using FindPython3. If you previously used PYTHON_EXECUTABLE to hint the
location of the Python interpreter, you should instead specify the Python “root” or “prefix” path (the directory
containing ./bin/python3) with CMake variable Python3_ROOT_DIR or CMAKE_PREFIX_PATH. As
other infrastructure evolves, PYTHON_EXECUTABLE may cease to have the desired effect without warning.

CMake

Updated required CMake version to 3.13.

C++ standard

GROMACS has updated the required C++ standards compliance from C++14 to C++17, and requires 2017 stan-
dard library features. See the install guide for details.

Cygwin

GROMACS now builds on Cygwin with both gcc and clang compilers.

11.7. GROMACS 2021 series 795

https://gitlab.com/gromacs/gromacs/-/issues/3255
https://gitlab.com/gromacs/gromacs/-/issues/3256
https://www.python.org
https://cmake.org/cmake/help/v3.13/module/FindPython3.html

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Windows

GROMACS now builds correctly on Windows with MSVC even when the path to the source or build directory
has a space in it.

Builds with MSVC 2019 correctly detect the proper static linking setup during CMake configuration.

RDTSCP usage and reporting

GROMACS now defaults always on x86 to use the RDTSCP machine instruction for lower latency timing. Very
old machines might need to configure with GMX_USE_RDTSCP=off. Non-x86 platforms are unaffected, except
that they will no longer report that RDTSCP is disabled (because that is self-evident).

armv8+sve support (ARM_SVE)

Support for ARM Scalable Vector Extensions (SVE) has been added. GROMACS supports SVE vector length
fixed at CMake configure time (typically via the -msve-vector-bits=<len> compiler option), which is at the time
of the release supported in GNU GCC 10 and later, and will supported soon by LLVM 12 and compilers based on
this. The default is to detect the default vector length at CMake configure time, and that can be changed with the
GMX_SIMD_ARM_SVE_LENGTH=<bits> option. Supported values are 128, 256, 512 and 1024. Note that the
nonbonded kernels have not been optimized for ARM_SVE as of yet. ARM_SVE support is contributed by the
Research Organization for Science Information and Technology (RIST)

Miscellaneous

Default values for temperature and pressure coupling intervals are now 10

With the default mdp input value of -1 for nsttcouple and nstpcouple, grompp would set these values to nstlist.
Now these are set to 10 and thus independent of nstlist (note that grompp may choose smaller values when needed
for accurate integration).

Uniform and manual CMake GPU-support configuration

The GPU accelerations setup has been changed to be uniform for CUDA and OpenCL. Either option is now
enabled by setting GMX_GPU to CUDA or OpenCL in the CMake configuration. To simplify the CMake code,
we have also moved away from automated option selection based on the build host. In particular, this means that
CUDA will not be enabled unless the GMX_GPU option is explicitly enabled, and CMake will no longer perform
the extra steps of trying to detect hardware and propose to install CUDA if hardware is available. Apart from the
simplification, this should also make it easier to handle multiple different accelerator APIs targeting e.g. NVIDIA
hardware.

Configuration-time trivalue options changed from autodetection to boolean on/off

To simplify the CMake configuration and avoid having multiple settings that change outside of the users direct con-
trol we have removed the support for automatically setting booleans. GMX_BUILD_HELP and GMX_HWLOC
are now disabled by default, while GMX_LOAD_PLUGINS is enabled by default.

11.7. GROMACS 2021 series 796

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmxapi C++ interface

gmxapi::Context is now created with gmxapi::createContext(), which allows the client to provide
an MPI communicator for the library to use instead of its default (e.g MPI_COMM_WORLD). MPI-enabled
clients may use the gmxapi/mpi/gmxapi_mpi.h template header and the assignResource() helper to
generate the argument to createContext.

Unification of several CUDA and OpenCL environment variables

The environment variables that had exactly the same meaning in OpenCL and CUDA were unified:

• GMX_CUDA_NB_ANA_EWALD and GMX_OCL_NB_ANA_EWALD into GMX_GPU_NB_ANA_-
EWALD

• GMX_CUDA_NB_TAB_EWALD and GMX_OCL_NB_TAB_EWALD into GMX_GPU_NB_TAB_-
EWALD

• GMX_CUDA_NB_EWALD_TWINCUT and GMX_OCL_NB_EWALD_TWINCUT into GMX_GPU_-
NB_EWALD_TWINCUT

Dysfunctional parts of the QMMM interface has been removed

Currently, GROMACS supports QM/MM officially only via MiMiC; a new CP2K QM/MM interface is being
developed within BioExcel. All other QM/MM support has been untested and likely dysfunctional for years and
has now been removed from .mdp input and output, resulting in smaller .mdp output files from grompp.

11.8 GROMACS 2020 series

11.8.1 Patch releases

GROMACS 2020.7 release notes

This version was released on February 3rd, 2022. These release notes document the changes that have taken place
in GROMACS since the previous 2020.6 version, to fix known issues.

Fixes where mdrun could behave incorrectly

Fixed bug with GPU LINCS occasionally shifting atoms in wrong direction

Due to missing blocking synchronizations in the CUDA version of LINCS, the shared memory was occasionally
overwritten with the new data. This may slightly affect the final coordinates of the shifted atoms.

Issue 4199

11.8. GROMACS 2020 series 797

https://gitlab.com/gromacs/gromacs/-/issues/4199

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix calculation of restraint potential for large restraint deviations

The calculation in the code did not follow the description of the potential in the manual but the potential continued
to grow quadratically instead of linearly as it should.

Issue 4346

Fixes for gmx tools

Fixes that affect portability

Miscellaneous

GROMACS 2020.6 release notes

This version was released on March 4th, 2021. These release notes document the changes that have taken place in
GROMACS since the previous 2020.5 version, to fix known issues.

Fixes where mdrun could behave incorrectly

Cosine acceleration failed to abort if it could not be run

Cosine acceleration is only compatible with the leap-frog integrator (integrator = md). GROMACS did,
however, accept input files requesting cosine acceleration for other integration algorithms, and did report viscosity-
related quantities from these simulations. Since the cosine acceleration was never applied in these cases, any re-
sults obtained from simulations with enabled cosine acceleration and integrators other than md should be regarded
as invalid.

Issue 3903

Fixes for gmx tools

Fix range checking bug in gmx covar

A check was inverted causing range checking to be applied wrong.

Issue 3902

Fixes that affect portability

Miscellaneous

GROMACS 2020.5 release notes

This version was released on January 6th, 2021. These release notes document the changes that have taken place
in GROMACS since the previous 2020.4 version, to fix known issues. It also incorporates all fixes made in version
2019.6 and earlier, which you can find described in the Release notes (page 709).

11.8. GROMACS 2020 series 798

https://gitlab.com/gromacs/gromacs/-/issues/4346
https://gitlab.com/gromacs/gromacs/-/issues/3903
https://gitlab.com/gromacs/gromacs/-/issues/3902

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Fix mdrun writing zero dH/dlambda and foreign lambda energies before checkpointing

With free-energy runs with separate-dhdl-file=no and nstdhdl not a multiple of nstenergy, mdrun would write zeros
for dH/dlambda and foreign energies to the energy file for steps between the last energy frame and the checkpoint.
This would lead to errors in free-energy estimates which could go unnoticed as values only deviate for a few steps.

Issue 3763

Fixed bugs with COM pulling and domain decompostion with weight or >32 ranks

When using COM pulling and domain decomposition, the results would be incorrect when using relative weights
per atom or when using more than 32 DD MPI ranks. This would usually lead to crashes or obviously wrong
results.

Issue 3750

Fix incorrect AWH free-energies when multiple walkers share a bias

The AWH free-energy output was incorrect when multiple walkers shared an AWH bias. The error went up
quadratically with the free-energy update interval, as well as with the number of walkers. The error decreases
as update size decreases with time. This meant that with default AWH settings the error was negligible. With a
free-energy update interval of 2 ps, we observed an error about equal to the statistical error with 32 walkers for a
rather fast reaction coordinate. For slower coordinates the error will be smaller than the statistical error.

Issue 3828

Fixed conserved energy for MTTK

When using pcoupl=MTTK (page 55) and tcoupl=nose-hoover (page 54), the calculated conserved energy
was incorrect due to two errors dating back to GROMACS 4.6 and 2018, respectively. As a result, all reported
conserved energies using this combination of temperature and pressure coupling algorithms in any GROMACS
version since GROMACS 4.6 are likely to be wrong. Note that these errors did not impact the dynamics, as the
conserved energy is only reported, but never used in calculations. Also note that this bug only affects this exact
combination of temperature / pressure coupling algorithms.

Issue 3796

Fixed conserved energy for Nose-Hoover

When using tcoupl=nose-hoover (page 54) and one or more temperature groups with non-integer number
of degrees of freedom, the calculated conserved energy was incorrect due to an error dating back to GROMACS
2018. Reported conserved energies using Nose-Hoover temperature coupling and non-integer number of degrees
of freedom since GROMACS 2018 are likely to be slightly off. Note that this error does not impact the dynamics,
as the conserved energy is only reported, but never used in calculations. Also note that this will only be noticeable
when using small temperature groups or small systems.

Issue 3831

11.8. GROMACS 2020 series 799

https://gitlab.com/gromacs/gromacs/-/issues/3763
https://gitlab.com/gromacs/gromacs/-/issues/3750
https://gitlab.com/gromacs/gromacs/-/issues/3828
https://gitlab.com/gromacs/gromacs/-/issues/3796
https://gitlab.com/gromacs/gromacs/-/issues/3831

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed kinetic energy and temperature reporting for MTTK

When using pcoupl=MTTK (page 55) and tcoupl=nose-hoover (page 54), the reported kinetic energy and
temperature were very slightly off. The integration of the temperature coupling trailed the reporting by half a
time step. Note that these errors did not impact the dynamics, as the quantities were correctly integrated and only
wrongly reported. Also note that the difference is so small that it is unlikely to have been significant for any
application except for rigorous algorithm validation. Finally, note that this bug only affects this exact combination
of temperature / pressure coupling algorithms.

Issue 3832

Fix pull error message with angles and dihedrals

The COM pull code could print incorrect pull group indices when mdrun exited with an error about a too long pull
distance in angle and dihedral geometries.

Issue 3613

Fix numerical issues in expanded ensemble

When performing simulated tempering or expanded ensemble simulations with changes in the Hamiltonian that
were too large, then Monte Carlo proposals to states that were sufficiently unlikely would underflow, causing
division by zero errors. This was fixed by numerically hardening the logical flow so that such proposals would be
rejected instead.

Issue 3304

Fix incorrect electric field strength with applied electric field

The electric field generated by the electric field module would be incorrect when used together with domain
decomposition due to an error with indexing the field to all atoms instead of just those on the current domain.

In overlap regions between domains, which have the thickness of the pairlist cut-off distance, the electric field
would be doubled (or more with 2D or 3D domain decomposition).

To validate if a simulation has been affected by the issue, users should calculate the actual potential across the
simulation box using the Poisson equation. If this potential agrees with the one provided as the input, a simulation
was not affected.

Issue 3800

Fixes for gmx tools

Improve CHARMM support in gmx do_dssp

Issue 3568

11.8. GROMACS 2020 series 800

https://gitlab.com/gromacs/gromacs/-/issues/3832
https://gitlab.com/gromacs/gromacs/-/issues/3613
https://gitlab.com/gromacs/gromacs/-/issues/3304
https://gitlab.com/gromacs/gromacs/-/issues/3800
https://gitlab.com/gromacs/gromacs/-/issues/3568

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix non-funtioning gmx h2order -d option

The gmx h2order tool would always take the normal along the z-axis.

Issue 3820

Fix pull group index handling

The pull code would not validate its index groups correctly, leading to infinite loops or assertions being triggered
at grompp time.

Issue 3810

Fixes that affect portability

Fix building on OSX

The code wouldn’t compile due to a missing include.

Issue 3730

Miscellaneous

GROMACS 2020.4 release notes

This version was released on October 6th, 2020. These release notes document the changes that have taken place
in GROMACS since the previous 2020.3 version, to fix known issues. It also incorporates all fixes made in version
2019.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Bug fix for the GPU version of LINCS in multiple domain case

Increase in the maximum number of coupled constraints in the domain did not trigger memory re-allocation,
which is now fixed. This can happen, e.g. when big molecule enters the domain, previously occupied by smaller
molecules. The bug does not affect the single domain case.

Fix index handling of N-body virtual sites with domain decomposition

Incorrect indexing would be used to handle N-body virtual sites in the domain decomposition code. This would
usually lead to crashes due to illegal or incorrect memory usage.

Issue 3635

11.8. GROMACS 2020 series 801

https://gitlab.com/gromacs/gromacs/-/issues/3820
https://gitlab.com/gromacs/gromacs/-/issues/3810
https://gitlab.com/gromacs/gromacs/-/issues/3730
https://gitlab.com/gromacs/gromacs/-/issues/3635

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix assertion failure with LJ-PME and dispersion correction

With vdw-type=PME and dispersion correction, mdrun would exit with an assertion failure during PME tuning.

Issue 3677

Bug fix for FEP calculations with modular simulator and domain decomposition

When using the modular simulator, domain decomposition and free energy calculations with perturbed masses,
the simulation would always be performed using the masses at lambda=0 instead of the actual lambda value.

Added workaround for RDRAND not always returning random numbers on Ryzen

On AMD Ryzen 3000 series CPUs, the hardware random number generator (RDRAND) can behave incorrectly,
always returning -1 (0xFFFFFFFF). When this hardware bug is detected at runtime, GROMACS will switch to its
software-based pseudo-random number generator instead.

While many motherboard vendors have been distributing firmware updates that contain microcode fixes and most
motherboards are sold with these factory-installed, there can still be some systems affected that didn’t receive the
updates.

In case you ran simulations on one of these systems, in theory all random number seeding could be affected
(see below for algorithms), since it would mean the same seed is used. Even this should be fine for virtually all
individual simulations since the generated numbers are still random. The most likely case that would be seriously
affected is if you use identical starting conformations and start many simulations with different random seeds
generated automatically (instead of manually selecting your seeds) - then the Ryzen hardware bug could mean all
your simulations actually get the same generated initial velocities, or the same stochastic changes, etc. depending
which algorithms you are using.

A list of affected algorithms can be found below:

1. Seeding in gmx grompp (page 190) is affected if no user supplied seed is used (e.g. if -1 is used to
ask GROMACS to generate a seed). This can affect Langevin/Stochastic dynamics, v-rescale thermostat,
anything Monte-Carlo related and the generation of random velocities.

2. Decision when to exchange replicas during replica exchange simulations.

3. Simulations using the random components from AWH.

4. Some analysis and preparation tools might be affected, e.g. free volume calculation, ion placement, WHAM,
normal mode analysis and PME error estimates.

Diagnosing: to aid detecting the error, run gmx mdrun -debug 1with GROMACS 2020.4 or later, which will
produce a debug log, typically called gmx.debug. This file will contain the following message if the processor
the program ran on is affected:

• Hardware random number generator (RDRAND) returned -1 (0xFFFFFFFF) twice in a row. This may be
due to a known bug in AMD Ryzen microcode. Will use pseudo-random number generator (PRNG) rather
than hardware device.

Earlier releases will fail SeedTest.makeRandomSeed test from unit tests suite on the affected systems. To check,
run make check in your build folder. You can also find a sample testing code at the link below.

For more information on the issue, please check this website.

11.8. GROMACS 2020 series 802

https://gitlab.com/gromacs/gromacs/-/issues/3677
https://arstechnica.com/gadgets/2019/10/how-a-months-old-amd-microcode-bug-destroyed-my-weekend/

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes for gmx tools

Fix default output with gmx trjcat -demux

Files would not be written when using default file name output.

Issue 3653

Fixes that affect portability

CUDA 11.0 supported

A build with CUDA 11.0 now configures and passes tests. Building with CUDA 11.0 means that hardware with
CC 3.0 is no longer supported, while CC 8.0 can now be used.

Issue 3632

Fix building with MSVC

The build would fail due to a missing header.

Issue 3669

Only check for RDTSCP on x86 platforms

Miscellaneous

Fix crash of grompp when the whole system is frozen

When the whole system would be frozen, grompp would crash with a segmentation fault.

Issue 3683

Fixes the unexpected change in molecule indexing in output after simulation

Molecule indices of repeat molecules are now again numbered consecutively as expected (instead of all 1).

Issue 3575

Fix INTERFACE_INCLUDE_DIRECTORIES for libgromacs CMake target

libgromacs.cmake was malformed, referencing non-existent directories.

Issue 3592

11.8. GROMACS 2020 series 803

https://gitlab.com/gromacs/gromacs/-/issues/3653
https://gitlab.com/gromacs/gromacs/-/issues/3632
https://gitlab.com/gromacs/gromacs/-/issues/3669
https://gitlab.com/gromacs/gromacs/-/issues/3683
https://gitlab.com/gromacs/gromacs/-/issues/3575
https://gitlab.com/gromacs/gromacs/-/issues/3592

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2020.3 release notes

This version was released on July 9th, 2020. These release notes document the changes that have taken place in
GROMACS since the previous 2020.2 version, to fix known issues. It also incorporates all fixes made in version
2019.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fixes for gmx tools

Fix incorrect reading of certain older tpr files

Certain older tpr files could be read incorrectly, usually leading to an exit with a memory allocation error.

Fix segmentation fault with gmx lie

The tool would crash due to mismatching sizes of energy terms in the file and F_NRE.

Issue 3547

Fix matrix reading in gmx xpm2ps

The tool would fail to read a matrix if no second matrix was provided.

Issue 3551

Fix uninitialized variable warnings in gmx hbond

Tool would produce garbage due to using uninitialized memory.

Issue 3550

Actually fix gmx do_dssp

The tool was still broken and gave incorrect results after the previous fix.

Issue 3444

Allow configuration of dssp default path

Users can configure the default path for dssp using GMX_DSSP_PROGRAM_PATH.

Issue 3520

11.8. GROMACS 2020 series 804

https://gitlab.com/gromacs/gromacs/-/issues/3547
https://gitlab.com/gromacs/gromacs/-/issues/3551
https://gitlab.com/gromacs/gromacs/-/issues/3550
https://gitlab.com/gromacs/gromacs/-/issues/3444
https://gitlab.com/gromacs/gromacs/-/issues/3520

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid segmentation fault in gmx genrestr

The tool could fail when running simple inputs due to memory access errors caused by accessing free’d memory.

Issue 3582

Fixes that affect portability

Update MSVC SIMD flags

Newly supported SIMD flags may improve performance on recent x86 running Windows.

Fix error with tinyxml2 linking

The signature for linking the external library was wrong.

Miscellaneous

Updated message on using GPU with non-dynamical integrator

The GPU implementation of PME and bonded forces requires dynamical integrator. The message that informs
user why using GPU for PME or bonded forces is not supported with non-dynamical integrator was made more
clear.

GROMACS 2020.2 release notes

This version was released on April 30th, 2020. These release notes document the changes that have taken place in
GROMACS since the previous 2020.1 version, to fix known issues. It also incorporates all fixes made in version
2019.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Ewald dipole correction incorrect without domain decomposition

Ewald dipole correction (epsilon-surface != 0) is now disabled when not using domain decomposition. With
domain decomposition, it only works when each molecule consists of a single update group (e.g. water). This will
be fixed in release-2021.

Issue 3441

Expanded ensemble simulations restarted from checkpoints

When restarting expanded ensemble simulations from checkpoints, expanded ensemble would silently refuse to
run, and simulations would remain in their original lambda state.

Issue 3465

11.8. GROMACS 2020 series 805

https://gitlab.com/gromacs/gromacs/-/issues/3582
https://gitlab.com/gromacs/gromacs/-/issues/3441
https://gitlab.com/gromacs/gromacs/-/issues/3465

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed free energy calculations with LJ PME

Fixed an issue that calculated wrong long-range corrections when using free energy perturbation with vdwtype
= pme. This affected forces, energies, lambda derivatives and foreign lambdas.

Issue 3470

The velocities of the center of mass are now removed correctly in case of -update gpu

When the center of mass motion is removed, the velocities are updated in the CPU memory. In case of GPU
update, they should be copied back to the GPU memory after they were updated on the CPU. This affected most
runs where the velocity of the center of mass has to be removed, in particular these where this velocity is large in
the beginning of the run.

Issue 3508

Fix checkpoint restart with non-zero initial step

When restarting from the checkpoint, the init-step mdp parameter was ignored while checking if the simulation is
already finished. As a result, this check only worked properly when init-step was 0 or was not specified.

Issue 3489

Fixes for gmx tools

Time output unit fixes

When selecting a time unit of microseconds or larger, gmx tool -tu now produces the correct string in .xvg
and particularly .xvgr plots

Fix do_dssp

The tool would fail with a segmentation fault.

Issue 3444

Fixes that affect portability

Give clearer message about not detecting IBM_VSX support in gcc > 9

CMake would fail with a confusing error message.

Issue 3380

11.8. GROMACS 2020 series 806

https://gitlab.com/gromacs/gromacs/-/issues/3470
https://gitlab.com/gromacs/gromacs/-/issues/3508
https://gitlab.com/gromacs/gromacs/-/issues/3489
https://gitlab.com/gromacs/gromacs/-/issues/3444
https://gitlab.com/gromacs/gromacs/-/issues/3380

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

Fixed initial DLB state reporting

The initial DLB state was reported incorrectly in the log file when the either “on” or “auto” value was the chosen
at mdrun startup.

GROMACS 2020.1 release notes

This version was released on March 3rd, 2020. These release notes document the changes that have taken place
in GROMACS since the previous 2020 version, to fix known issues. It also incorporates all fixes made in version
2019.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix fatal error with mdrun -multidir with more than 1 rank per simulation

Issue 3296

Fix deadlock in mdrun runs with multiple ranks and separate PME ranks

When multiple PP ranks as well as separate PME ranks are used, mdrun could deadlock before starting the PP-
PME balancing.

Issue 3335

Avoid mdrun assertion failure when running with shells and update on a GPU

A check for shells has been added in the mdrun task assignment code, so that mdrun falls back to CPU or produces
a clear error message when attempting to run with shells and update on a GPU.

Issue 3303

Allow large prime factors in the mdrun MPI rank count

The domain decomposition would refuse to run with large prime factors in the MPI rank count even when the grid
was specified by the user.

Issue 3336

Actually fix PME forces with FE without perturbed q/LJ

PME would incorrectly ignore the mesh forces on perturbed atoms when no charges or LJ atom types were actually
perturbed. Note that this is a rather uncommon scenario.

Issue 2640 Issue 3359

11.8. GROMACS 2020 series 807

https://gitlab.com/gromacs/gromacs/-/issues/3296
https://gitlab.com/gromacs/gromacs/-/issues/3335
https://gitlab.com/gromacs/gromacs/-/issues/3303
https://gitlab.com/gromacs/gromacs/-/issues/3336
https://gitlab.com/gromacs/gromacs/-/issues/2640
https://gitlab.com/gromacs/gromacs/-/issues/3359

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid deadlock when checking for missing DD interactions

When missing bonded interactions after domain decomposition were detected, mdrun was deadlocking instead of
exiting with a failure.

Issue 3373

Fix checkpoint restarts using Parrinello-Rahman and md-vv

Checkpoints using Parrinello-Rahman and md-vv (only implemented in the new modular simulator approach)
could not be read.

Issue 3377

Avoid overzealous program abort with orientation restraints

It could happen that mdrun would abort on checking orientation restraints in multiple molecules even though no
restraints where applied to them.

Issue 3375

Add fatal error for mdrun -multidir when simulations sharing state start at different step

When (re)starting mdrun -multidir for simulations sharing state data (e.g., replica exchange, AWH with bias
sharing or NMR ensemble averaging) having a different initial step only caused a note to be printed, which could
lead to simulations getting out of sync. Now a fatal error is issued in this situation.

Issue 2440 Issue 3990

Correct skewed box using modular simulator without DD

Using modular simulator without DD, it was not checked whether the box was getting overly skewed when using
pressure control.

Issue 3383

Fix NMR restraints using modular simulator

Using NMR restraints (distance or orientation restraints) under modular simulator did not work as expected. All
orientation restraint simulations would fail with a segmentation fault, as would distance restraint simulations using
time averaging. All other distance restraint simulations would run correctly, but output to the energy trajectory
would only occur if it coincided with general energy writing steps.

Issue 3388

11.8. GROMACS 2020 series 808

https://gitlab.com/gromacs/gromacs/-/issues/3373
https://gitlab.com/gromacs/gromacs/-/issues/3377
https://gitlab.com/gromacs/gromacs/-/issues/3375
https://gitlab.com/gromacs/gromacs/-/issues/2440
https://gitlab.com/gromacs/gromacs/-/issues/3990
https://gitlab.com/gromacs/gromacs/-/issues/3383
https://gitlab.com/gromacs/gromacs/-/issues/3388

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid integer overflow when using dispersion correction

A change in the integer type storing the index meant that the value could overflow and turn negative, leading to
wrong lookup and unphysical values.

Issue 3391

Fix too small pairlist buffer on Intel GPUs

The pairlist buffer generated for Intel GPUs was slightly too small, because it assumed a 4x4 atom-cluster pair
kernel instead of 4x2.

Issue 3407

Fix checkpoint files getting out of sync with simulations sharing data

When simulations share data, e.g., replica exchange, AWH with bias sharing or NMR ensemble averaging, MPI
barrier have now been added before renaming the checkpointing files to avoid that checkpoints files from the
simulations can get out of sync. Now in very unlikely cases some checkpoint files might have temporary names,
but all content will be in sync.

Issue 2440

Fix simulations using graph and modular simulations

Simulations using modular simulator and a graph object would fail with a segmentation fault.

Issue 3389

Fix center of mass motion removal with frozen atoms

When frozen atoms were part of center of mass motion removal groups, they would still contribute to the mass of
those groups. This meant that the COM velocity correction was (slightly) too small. Now completely frozen atoms
are removed from COM removal groups by grompp. When atoms are only frozen along one or two dimensions
and part of a COM removal group, grompp now issues a warning.

Issue 2553

Fix temperature calculation when center of mass motion is removed for part of the system

In the uncommon case where the center of mass motion is removed for part of the system but not the whole system,
the number of degrees of freedom for the part without COMM removal would be incorrectly lowered by 3.

Issue 3406

11.8. GROMACS 2020 series 809

https://gitlab.com/gromacs/gromacs/-/issues/3391
https://gitlab.com/gromacs/gromacs/-/issues/3407
https://gitlab.com/gromacs/gromacs/-/issues/2440
https://gitlab.com/gromacs/gromacs/-/issues/3389
https://gitlab.com/gromacs/gromacs/-/issues/2553
https://gitlab.com/gromacs/gromacs/-/issues/3406

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix possible issue with picking undefined NB kernel types

The CPU reference implementations for the NB kernels were missing some definitions for specific kernel types.
This only affected installations that have SIMD explicitly turned off, something that is unlikely to happen in
production environments.

Issue 2728

Fixes for gmx tools

Fixes that affect portability

Add support for ICC NextGen

Add support for Intel Compiler based on LLVM technology. To compile GROMACS with this compiler use
CXX=icpc CXXFLAGS=-qnextgen cmake.

Document known issues with OpenCL on Volta and Turing

Issue 3125

Miscellaneous

Fix check for modified source files in release tarballs

It could happen that modifications to the source tree were not picked up if they happened after the build directory
had been generated.

Issue 3302

11.8.2 Major release

Highlights

GROMACS 2020 was released on January 1, 2020. Patch releases may have been made since then, please use the
updated versions! Here are some highlights of what you can expect, along with more detail in the links below!

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. In addition, several new features are available for running simulations. We are extremely interested in
your feedback on how well the new release works on your simulations and hardware. The new features are:

• Density-guided simulations allow “fitting” atoms into three-dimensional density maps.

• Inclusion of gmxapi 0.1, an API and user interface for managing complex simulations, data flow, and plug-
gable molecular dynamics extension code.

• New modular simulator that can be built from individual objects describing different calculations happening
at each simulation step.

• Parrinello-Rahman pressure coupling is now also available for the md-vv integrator.

• Running almost the entire simulation step on a single CUDA compatible GPU for supported types of simu-
lations, including coordinate update and constraint calculation.

11.8. GROMACS 2020 series 810

https://gitlab.com/gromacs/gromacs/-/issues/2728
https://gitlab.com/gromacs/gromacs/-/issues/3125
https://gitlab.com/gromacs/gromacs/-/issues/3302

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

New and improved features

Density-guided simulations

Users can now apply additional forces from three dimensional reference densities. These forces can be used to
“fit” atoms into the densities by increasing the similarity of a simulated density to the reference density.

Multiple protocols are available for how to calculate simulated densities as well as how the similarity between a
reference and a simulated density is evaluated.

Virtual site on the line through two atoms at fixed distance

This is use useful for e.g. halogens in the CHARMM force field.

Issue 2451

gmxapi Python support

Data flow driven simulation and analysis from Python is now available in a default GROMACS installation when
users install the gmxapi Python package. See gmxapi Python package (page 586).

New modular simulator

A new approach for how to combine individual calculation steps during a single simulation step is introduced, with
focus on extensibility and modularization. This simulator is the default now for simulations using velocity-verlet
in NVE, NVT (v-rescale thermostat only), NPT (v-rescale thermostat and Parrinello-Rahman barostat only), or
NPH (Parrinello-Rahman barostat only), with or without free energy perturbation.

Performance improvements

Up to a factor 2.5 speed-up of the non-bonded free-energy kernel

The non-bonded free-energy kernel is a factor 2.5 faster with non-zero A and B states and a factor 1.5 with one
zero state. This especially improves the run performance when non-perturbed non-bondeds are offloaded to a
GPU. In that case the PME-mesh calculation now always takes the most CPU time.

Proper dihedrals of Fourier type and improper dihedrals of periodic type are SIMD accelerated

Avoid configuring the own-FFTW with AVX512 enabled when GROMACS does not use AVX512

Previously if GROMACS was configured to use any AVX flavor, the internally built FFTW would be configured
to also contain AVX512 kernels. This could cause performance loss if the (often noisy) FFTW auto-tuner picks
an AVX512 kernel in a run that otherwise only uses AVX/AVX2 which could run at higher CPU clocks with-
out AVX512 clock speed limitation. Now AVX512 is only used for the internal FFTW if GROMACS is also
configured with the same SIMD flavor.

11.8. GROMACS 2020 series 811

https://gitlab.com/gromacs/gromacs/-/issues/2451

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Update and constraints can run on a GPU

For standard simulations (see the user guide for more details), update and constraints can be offloaded to a GPU
with CUDA. Thus all compute intensive parts of a simulation can be offloaded, which provides better performance
when using a fast GPU combined with a slow CPU. By default, update will run on the CPU, to use GPU in single
rank simulations, one can use new ‘-update gpu’ command line option. For use with domain decomposition,
please see below.

GPU Direct Communications

When running on multiple GPUs with CUDA, communication operations can now be performed directly between
GPU memory spaces (automatically routed, including via NVLink where available). This behaviour is not yet
enabled by default: the new codepaths have been verified by the standard GROMACS regression tests, but (at the
time of release) still lack substantial “real-world” testing. They can be enabled by setting the following environ-
ment variables to any non-NULL value in your shell: GMX_GPU_DD_COMMS (for halo exchange communi-
cations between PP tasks); GMX_GPU_PME_PP_COMMS (for communications between PME and PP tasks);
GMX_FORCE_UPDATE_DEFAULT_GPU can also be set in order to combine with the new GPU update feature
(above). The combination of these will (for many common simulations) keep data resident on the GPU across
most timesteps, avoiding expensive data transfers. Note that these currently require GROMACS to be built with
its internal thread-MPI library rather than any external MPI library, and are limited to a single compute node. We
stress that users should carefully verify results against the default path, and any reported issues will be gratefully
received to help us mature the software.

Bonded kernels on GPU have been fused

Instead of launching one GPU kernel for each listed interaction type there is now one GPU kernel that handles all
listed interactions. This improves the performance when running bonded calculations on a GPU.

Delay for ramp-up added to PP-PME tuning

Modern CPUs and GPUs can take a few seconds to ramp up their clock speeds. Therefore the PP-PME load
balancing now starts after 5 seconds instead of after a few MD steps. This avoids sub-optimal performance
settings.

Improvements to GROMACS tools

Fixed bug in gmx order -calcdist

The reference position for the distance calculation was calculated wrongly.

Improved grompp usability by rejecting more invalid .mdp lines

Lines like

ref-t 298 = 0.1 =

are now all rejected with a descriptive message, which will help prevent some kinds of errors in constructing .mdp
inputs. Note that an .mdp parameter name with a missing value is still accepted, and leads to the default behavior
for that parameter.

11.8. GROMACS 2020 series 812

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Added convert-trj

A new tool convert-trj (page 147) has been added to allow users to interchange trajectory formats without having to
use legacy gmx trjconv (page 281). Supported actions include the generation of slimmed down output trajectories,
as well as the replacement of particle information in individual frames with data from a structure file. The new
tool allows the usage of command line selections, meaning it is no longer necessary to write index (page 489) files
to select certain atoms. It is part of the drive to split up the trjconv (page 281) tool into smaller parts.

Added extract-cluster

Added a dedicated tool to extract trajectory frames corresponding to different clusters obtained from gmx cluster
(page 139). The new extract-cluster (page 181) tool generates new trajectories that contain only those frames that
correspond to the correct cluster. The corresponding option -sub in gmx trjconv (page 281) has been removed.

Changed behaviour of genion

Functionality of genion was altered to prevent swapping ions for solvent closer than -rmin from any other non-
solvent atom. This improvement prevents situations where an ion could be placed at the core of a protein, which
would potentially render the folded protein less stable or may require long equilibration times.

Bugs fixed

gmx mdrun -append now requires that a checkpoint is found

Previously gmx mdrun -appendwould start from the .tpr configuration (and thus not append) when the check-
point file was missing.

The Verlet buffer now correctly handles perturbed constraints

With free-energy calculations with perturbed constraints, the Verlet buffer could be underestimated when con-
straint lengths were perturbed. As usually only very few constraints are perturbed, the effect is very small and
much smaller than the overestimate of the buffer due to approximations, so the results of most runs with perturbed
constraints will not have been affected.

Issue 4395

Deprecated functionality

The core GROMACS team wants to let users and downstream developers know about impending changes so that
disruption is minimized. Do get in touch if you feel something inappropriate is planned!

Deprecated functionality often remains in GROMACS for a year or more, but this should not be relied upon.

11.8. GROMACS 2020 series 813

https://gitlab.com/gromacs/gromacs/-/issues/4395

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Changes anticipated to GROMACS 2020 functionality

gmx mdrun -membed

The feature for embedding a protein in a membrane will be retained, but probably in a different form, such as gmx
membed.

gmx mdrun -rerun

The feature for computing potential energy quantities from a trajectory will be retained, but probably in a different
form, such as gmx rerun and gmx test-particle-insertion.

Integrator .mdp options will only contain dynamical integrators

Energy minimization will be accessed in a differt form, perhaps with gmx minimize and interpret an .mdp
field for which minimizer to use. Normal-mode analysis may be accessed with e.g. gmx normal-modes. The
command-line help for these tools will then be better able to document which functionality is supported when.

Much functionality in trjconv, editconf, eneconv and trjcat

The functionality in such tools is being separated to make it available in composable modules, that we plan to
make available as simpler tools, and eventually via the GROMACS API that is under development.

gmx do_dssp to be replaced

This tool is deprecated, because it is problematic for some users to obtain and install a separate DSSP binary, so
we plan to replace the implementation at some point with a native implementation, likely based upon xssp, and
make it available under a new gmx tool name.

Functionality deprecated in GROMACS 2020

Support for 32bit architectures

Issue 3252 There are no current or planned large scale resources using 32bit architectures, and we have no ability
to properly test and evaluate them.

Free-energy soft-core power 48

Issue 3253 Free-energy soft-core power 48 is almost never used and is therefore deprecated.

Support for Armv7

Issue 2990 There are several issues with current code for the architecture, and we don’t have the resources for
support and fix issues related to it. As the architecture has no large HPC impact it is thus deprecated.

11.8. GROMACS 2020 series 814

https://gitlab.com/gromacs/gromacs/-/issues/3252
https://gitlab.com/gromacs/gromacs/-/issues/3253
https://gitlab.com/gromacs/gromacs/-/issues/2990

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Functionality deprecated in GROMACS 2019

Generation of virtual sites to replace aromatic rings in standard residues

Issue 3254 These are thought to produce artefacts under some circumstances (unpublished results), were never
well tested, are not widely used, and we need to simplify pdb2gmx.

Benchmarking options only available with gmx benchmark

Issue 3255 Options such as -confout, -resethway, -resetstep are not intended for use by regular mdrun
users, so making them only available with a dedicated tool is more clear. Also, this permits us to customize defaults
for e.g. writing files at the end of a simulation part in ways that suit the respective mdrun and benchmark use cases,
so -confout will no longer be required.

gmx mdrun -nsteps

Issue 3256 The number of simulation steps described by the .tpr file can be changed with gmx convert-tpr,
or altered in .mdp file before the call to gmx grompp. The convenience of this mdrun option was outweighted
by the doubtful quality of its implementation, no clear record in the log file, and lack of maintenance.

Removed functionality

Group cut-off scheme

The group cut-off scheme has been removed. Several kinds of simulation that depend on it no longer work.

• Simulations under vacuum conditions are not supported.

• User supplied tables for short-range nonbonded interactions are not supported.

• Switched short-range nonbonded interactions with PME are not supported.

• Membrane embedding is deactivated.

• QMMM is not supported.

Issue 1852

Generalized reaction-field

This only worked correctly with the group scheme. Note that generalized reaction-field simulations can still be
performed using standard reaction field and computing the dielectric constant manually.

gmx anadock

The gmx anadock tool was removed since it does not belong in GROMACS (it analyzes AutoDock outputs).

11.8. GROMACS 2020 series 815

https://gitlab.com/gromacs/gromacs/-/issues/3254
https://gitlab.com/gromacs/gromacs/-/issues/3255
https://gitlab.com/gromacs/gromacs/-/issues/3256
https://gitlab.com/gromacs/gromacs/-/issues/1852

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx dyndom

The gmx dyndom tool was removed since it does not belong in GROMACS (it analyzes DynDom outputs).

gmx morph

The gmx morph tool was removed since it yields non-physical structures that can easily be done by a script.

gmx mdrun -gcom

This feature sometimes overrode the effects of various .mdp settings in a way that was difficult to understand
and report. A user who wants to do communication between PP ranks less often should choose their nst* mdp
options accordingly.

Portability

Added support for Hygon Dhyana CPU architecture

Support for hardware detection and related heuristics has been implemented for the Hygon Dhyana derived from
the first-gen AMD Zen which it shares most of its architectural details with.

Enabled PME offload support with OpenCL on NVIDIA and Intel GPUs

Thanks to portability improvements, the previously disabled PME OpenCL offload is now enabled also on
NVIDIA and Intel GPUs.

Fixed building on Solaris with GCC

GROMACS now builds on Solaris with GCC (tested on illumos distribution openindiana, “Hipster” rolling release,
using GCC 5, 6, 7, and 8).

Miscellaneous

grompp now warns if macros in mdp “define” field are unused in topology

Macros defined in the mdp (with e.g. -DPOSRES) now cause a warning in grompp if they are not encountered
while parsing the topology file

Issue 1975

Introduced CMake variable GMX_VERSION_STRING_OF_FORK

To help users and developers understand which version of GROMACS is being used, anybody providing a forked
version of GROMACS shall set GMX_VERSION_STRING_OF_FORK in the source code (or if necessary when
running CMake). It will then appear in the log file and users will know which version and fork of the code
produced the result.

11.8. GROMACS 2020 series 816

https://gitlab.com/gromacs/gromacs/-/issues/1975

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Provide checksum to validate release tarballs

Released versions of GROMACS will now provide a checksum calculated from the files participating in building
the binaries. When building GROMACS from the tarball, the files will be checksummed again and compared
against the checksum generated during the release build. If the checksums don’t match, the version string is
modified to indicate that the source tree has been modified, and the information is printed in the log files for the
users. If checksumming has not been possible (either due to missing Python during installation, or because the
original checksum file is missing), this is indicated through a different version string.

Issue 2128

Updated physical constants to CODATA 2018

Reproducibility of computed quantities is easiest to achieve if software stays up to date with the standards. The
values for standard units have thus been updated to conform with the data available here.

Change grompp warning about decoupling without SD to a note

The warning that grompp issues when decoupling a molecule without the use of the SD integrator has been
changed to a note, since there are valid use cases for using normal MD when not running in the completely
decoupled state.

Issue 2767

11.9 GROMACS 2019 series

11.9.1 Patch releases

GROMACS 2019.6 release notes

This version was released on February 28th, 2020. These release notes document the changes that have taken
place in GROMACS since the previous 2019.5 version, to fix known issues. It also incorporates all fixes made in
version 2018.8 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Actually fix PME forces with FE without perturbed q/LJ

PME would incorrectly ignore the mesh forces on perturbed atoms when no charges or LJ atom types were actually
perturbed. Note that this is a rather uncommon scenario.

Issue 2640 Issue 3359

11.9. GROMACS 2019 series 817

https://gitlab.com/gromacs/gromacs/-/issues/2128
http://www.codata.org/committees-and-groups/fundamental-physical-constants
https://gitlab.com/gromacs/gromacs/-/issues/2767
https://gitlab.com/gromacs/gromacs/-/issues/2640
https://gitlab.com/gromacs/gromacs/-/issues/3359

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid overzealous program abort with orientation restraints

It could happen that mdrun would abort on checking orientation restraints in multiple molecules even though no
restraints where applied to them.

Issue 3375

Calculate Coulomb and LJ reciprocal terms in rerun

Reruns would not calculate Coulomb and LJ reciprocal terms, leading to wrong potential energies. This bug only
showed up if GROMACS was compiled without GPU support.

Issue 3400

Fixes for gmx tools

Added check for inconsistent input of distance restraint labels in gmx disre.

Fixes that affect portability

Fix compiler errors with Intel compiler

Fix compiler error with Intel compiler 2019 update 5 and 2020 initial release. Compilation was failing with
mcpcom: core dumped for the file pullutil.cpp.

Miscellaneous

Avoid cryptic GPU detection errors when devices are unavailable or out of memory

Issue 3178 Issue 3399

GROMACS 2019.5 release notes

This version was released on December 23rd, 2019. These release notes document the changes that have taken
place in GROMACS since the previous 2019.4 version, to fix known issues. It also incorporates all fixes made in
version 2018.8 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix use of uninitialized data on PME only ranks

When building GPU enabled versions of GROMACS with clang as either host only or host and device side com-
piler, PME datastructures could be left uninitialized, leading to the use of random values for LJ PME energies,
virial and pressure.

The effect of this bug was that the potential and total energy could be wrong, but not the Coulomb mesh energy.
This didn’t affect sampling. The pressure could also be wrong, which would affect sampling when pressure
coupling is used, but likely the simulation would explode after a few steps.

This doesn’t seem to have affected versions of GROMACS built with gcc as the host side compiler.

Issue 3120

11.9. GROMACS 2019 series 818

https://gitlab.com/gromacs/gromacs/-/issues/3375
https://gitlab.com/gromacs/gromacs/-/issues/3400
https://gitlab.com/gromacs/gromacs/-/issues/3178
https://gitlab.com/gromacs/gromacs/-/issues/3399
https://gitlab.com/gromacs/gromacs/-/issues/3120

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix out of range memory access with free-energy calculations

With free-energy calculations not using lambda states, an output buffer would be accessed one element beyond
it’s allocated size. We don’t expect this to have caused incorrect results, but a memory checker would complain.

Issue 3173

Work around broken Apple Clang compiler in Mac OS Catalina

In Mac OS Catalina, the default XCode compilers checks and enforces stack alignment. This would have been
a good idea if Apple itself did not ship a C library that violates the stack alignment with AVX instructions are
enabled.

Issue 3199

Fix error with intermolecular interactions and domain decomposition

With intermolecular interactions at distances longer than the cutoff and domain decomposition, mdrun could exit
with an error message about missing interactions.

Issue 3204

Fix issues with AWH with pull-geometry ‘direction’ to be periodic

Removed fatal error with AWH with periodic pull-geometry ‘direction’ when the distance was within 2% of half
the box size. Changed an assertion failure when the AWH interval was larger than the box size to a fatal error.
Clarified the documentation for pull geometry ‘direction-periodic’.

Issue 2946

Remove assertion failure with AWH when not using the initial stage

Issue 3217

Fixes for gmx tools

Make histogram output clearer

Output gave number of events included in histogram bar as a.u., which was not clear for users.

Fix dihedral angle calculation near 180 degree boundary

The analysis tools could incorrectly calculate properties of torsion angles and their averages when close to the
-180 or 180 degree boundary.

Issue 3225

11.9. GROMACS 2019 series 819

https://gitlab.com/gromacs/gromacs/-/issues/3173
https://gitlab.com/gromacs/gromacs/-/issues/3199
https://gitlab.com/gromacs/gromacs/-/issues/3204
https://gitlab.com/gromacs/gromacs/-/issues/2946
https://gitlab.com/gromacs/gromacs/-/issues/3217
https://gitlab.com/gromacs/gromacs/-/issues/3225

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Remove problematic output of gmx angle tool

It could happen that the calculation of the standard deviation for angles caused a divide by zero error for empty
populations. Because this standard deviation was meaningless, it has been removed.

Issue 3206

Fixes that affect portability

Check that libhwloc headers and runtime match

It could happen that the libhwloc headers and library detection would lead to a mismatch at compile or runtime
that could cause cryptic crashes while using mdrun.

Issue 3200

Miscellaneous

Fix .gro file formatting with large boxes

The GROMACS manual says the box components in the .gro file format are separated by spaces. But no space
was printed when a box component, except for the first, was 1000 nm or larger or an off-diagonal component was
-100 nm or smaller. Now at least one space is always printed. Content that was written in a way that already had
at least one space between components is unchanged. Existing parsers that conform to the documentation and
expect whitespace separation will continue to work in all cases.

Issue 3176

Fix duplicate PDB CONECT record output

PDB “CONECT” record output was duplicated in some instances. Since GROMACS does not use these anywhere,
analysis was not affected. The behavior is now fixed.

Issue 3206

Fix performance issue with bonded interactions in wrong GPU stream

This could lead to a significant loss in performance.

Issue 3241

GROMACS 2019.4 release notes

This version was released on October 2nd, 2019. These release notes document the changes that have taken place
in GROMACS since the previous 2019.3 version, to fix known issues. It also incorporates all fixes made in version
2018.7 and earlier, which you can find described in the Release notes (page 709).

11.9. GROMACS 2019 series 820

https://gitlab.com/gromacs/gromacs/-/issues/3206
https://gitlab.com/gromacs/gromacs/-/issues/3200
https://gitlab.com/gromacs/gromacs/-/issues/3176
https://gitlab.com/gromacs/gromacs/-/issues/3206
https://gitlab.com/gromacs/gromacs/-/issues/3241

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Fix incorrect pressure when atoms in CMAP cross a box boundary

The virial calculation and thus the pressure would be incorrect when the second and third atom involved in a
CHARMM CMAP correction term would reside in different periodic images. This can happen when a protein is
positioned over a box boundary. Note that the energy and forces were correct, but sampling was affected when
pressure coupling was applied when a protein crossed a box boundary.

Issue 2845 Issue 2867

Fix incorrect LJ cut-off on GPU when rvdw < rcoulomb

When rvdw was chosen by the user to be smaller than rcoulomb in the mdp file, the LJ cut-off would initially
be set to the Coulomb cut-off for computing non-bonded interactions on the GPU. This only affected energy
minimization, mdrun -rerun and the first 2*nstlist steps of a normal MD run, since the correct LJ cut-off is set
when PME tuning (on by default) starts after 2*nstlist steps (unless PME tuning was disabled with -notunepme).

Issue 3056

Fix (unlikely) missing bonded forces with CUDA GPUs and domain decomposition

Forces could be missing for bonded interactions computed on CUDA GPUs with domain decomposition when
there are non-local bonded interactions, but no non-local non-bonded interactions between two domains. Note
that this is extremely unlikely to happen, since the distance between the bonded atoms needs to be larger than the
pair-list cut-off distance and there should be no other non-local atoms within the pair-list cut-off distance.

Issue 3063

Fix incorrect reporting of final kinetic energy and temperature

With the leap-frog integrator, the kinetic energy and temperature reported for the last step were incorrect when the
last step was not divisible by nstcalcenergy, nsttcouple or nstpcouple.

Issue 2950

Fix segmentation fault in grompp and mdrun with cosine COM pulling

Issue 3023

Fixes for gmx tools

Fix grompp not adding angle constraints between constraints

When using the mdp option constraints=all-angles, angles involving bonds supplied as constraints in the topology
would be removed, but not replaced by angle constraints.

Issue 3067

11.9. GROMACS 2019 series 821

https://gitlab.com/gromacs/gromacs/-/issues/2845
https://gitlab.com/gromacs/gromacs/-/issues/2867
https://gitlab.com/gromacs/gromacs/-/issues/3056
https://gitlab.com/gromacs/gromacs/-/issues/3063
https://gitlab.com/gromacs/gromacs/-/issues/2950
https://gitlab.com/gromacs/gromacs/-/issues/3023
https://gitlab.com/gromacs/gromacs/-/issues/3067

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix gmx wham with angle and dihedral geometries

gmx wham would apply an incorrect radian to degree unit conversion, leading to no overlap or not-a-number
output.

Issue 2609 Issue 3094

Fix bug in gmx xpm2ps

The tool would fail when not being provided with a library file to read in.

Issue 3012

Fix bug in gmx anaeig

An issue was noted when reading a second set set of eigenvectors that could lead to problems when the number of
eigenvectors was less than the three times the number of atoms.

Issue 2972

Fix issue with demux.pl script

The trajectories could become discontinuous with simulations longer than 100ns and exchange strides that are
not a multiple of 1 ps. This only affected the post-processing of trajectories generated from replica exchange
simulations.

Made gmx disre work with non-consecutively labeled restraints

Issue 2953

Fixed writing of gro files with index groups

An output .gro file from from e.g. gmx editconf -f -n would take the atom names for the output file in
order from the atoms in the input file, rather than in order from the atoms indicated by the indices in the index file.

Issue 3107

Made gmx make_ndx keep chain IDs

Old style structure file reading caused the chain IDs to be overwritten with default values.

Issue 3070

Fixes that affect portability

Disable PME OpenCL on Apple

The Apple OpenCL compilers fail to produce a functional clFFT build. The OpenCL PME support is therefore
disabled on Apple platforms.

Issue 2941

11.9. GROMACS 2019 series 822

https://gitlab.com/gromacs/gromacs/-/issues/2609
https://gitlab.com/gromacs/gromacs/-/issues/3094
https://gitlab.com/gromacs/gromacs/-/issues/3012
https://gitlab.com/gromacs/gromacs/-/issues/2972
https://gitlab.com/gromacs/gromacs/-/issues/2953
https://gitlab.com/gromacs/gromacs/-/issues/3107
https://gitlab.com/gromacs/gromacs/-/issues/3070
https://gitlab.com/gromacs/gromacs/-/issues/2941

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

Added AMD Zen 2 detection

The AMD Zen 2 architecture is now detected as different from Zen 1 and uses 256-bit wide AVX2 SIMD instruc-
tions (GMX_SIMD=AVX2_256) by default. Also the non-bonded kernel parameters have been tuned for Zen 2.
This has a significant impact on performance.

GROMACS 2019.3 release notes

This version was released on June 14, 2019. These release notes document the changes that have taken place in
GROMACS since the previous 2019.2 version, to fix known issues. It also incorporates all fixes made in version
2018.7 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix missing interactions with domain decomposition

When running with domain decomposition, any interactions described by the rarely-used topology file section
[intermolecular_interactions] were ignored. This did not affect normal non-bonded or intra-
molecular interactions.

Issue 2953

Fix possible floating point exception during minimization.

It was possible that very small forces during minimization could lead to a crash due to a divide by zero error.
Fixed by introducing a check.

Issue 2917

Fix segmentation fault when using membrane embedding

Issue 2947

Allow AWH with pull-geometry ‘direction’ to be periodic

When applying AWH to a pull coordinate with geometry ‘direction’ with a AWH interval length of more than
95% of the box size, the dimension is now made periodic.

Issue 2946

Fixes for gmx tools

Fixed residue and molecule indexing in selections

Issue 2951

11.9. GROMACS 2019 series 823

https://gitlab.com/gromacs/gromacs/-/issues/2953
https://gitlab.com/gromacs/gromacs/-/issues/2917
https://gitlab.com/gromacs/gromacs/-/issues/2947
https://gitlab.com/gromacs/gromacs/-/issues/2946
https://gitlab.com/gromacs/gromacs/-/issues/2951

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix PQR formatting

The formatting was incorrect for some tools that use PQR files.

Issue 2955

Fix gmx wham with angle geometries

gmx wham would mix up degree and radian units leading to no overlap or not-a-number output. Note: this fix is
not correct, a correct fix is applied in the next patch release.

Issue 2609 Issue 3094

Add some information for grompp error with wrong line endings

Give meaningful error with too large grid in hbond

When using a grid that is too large hbond (page 197) could try to allocate enough memory to cause a crash.

Issue 2962

Add some information for syntax errors with include delimiters in grompp

Issue 2911

Fixes that affect portability

Fixed wider reference SIMD setups

The reference SIMD builds could use a too small memory alignment, leading to mdrun exiting with an alignment
error

Issue 2952

Fixed build failure with Apple Clang

Builds would fail because of qsort being undefined.

Miscellaneous

Removed non-existent mdp option awh1-dim1-period from user guide

Issue 2940

11.9. GROMACS 2019 series 824

https://gitlab.com/gromacs/gromacs/-/issues/2955
https://gitlab.com/gromacs/gromacs/-/issues/2609
https://gitlab.com/gromacs/gromacs/-/issues/3094
https://gitlab.com/gromacs/gromacs/-/issues/2962
https://gitlab.com/gromacs/gromacs/-/issues/2911
https://gitlab.com/gromacs/gromacs/-/issues/2952
https://gitlab.com/gromacs/gromacs/-/issues/2940

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Add checks for too many interactions during memory allocation

Issue 2932

GROMACS 2019.2 release notes

This version was released on April 16th, 2019. These release notes document the changes that have taken place in
GROMACS since the previous 2019.1 version, to fix known issues. It also incorporates all fixes made in version
2018.6 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix L-BGFS minimizer

The minimizer could fail on a number of systems.

Issue 2641

Disallow pull geometry direction-periodic with AWH

This could lead to incorrect behavior or a cryptic error message.

Issue 2923

Fixed mdrun -nsteps option

Fixed that the, deprecated, mdrun option -nsteps only allowed extension of the simulation under certain conditions.

Issue 2881

Fixes for gmx tools

gmx cluster -clndx indices now correct

The reported indices of trajectory frames in clusters were too small by one.

Issue 2926

gmx editconf -f in.pdb -o out.pdb again preserves chain IDs

This had been inadvertently broken and is now fixed.

Issue 2900

11.9. GROMACS 2019 series 825

https://gitlab.com/gromacs/gromacs/-/issues/2932
https://gitlab.com/gromacs/gromacs/-/issues/2641
https://gitlab.com/gromacs/gromacs/-/issues/2923
https://gitlab.com/gromacs/gromacs/-/issues/2881
https://gitlab.com/gromacs/gromacs/-/issues/2926
https://gitlab.com/gromacs/gromacs/-/issues/2900

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Tools again accept .tpr files as input

The pdb2gmx, solvate, and insert-molecules tools could no longer accept input configurations contained in .tpr
format files. This is now fixed.

Issue 2900

Fix segmentation fault when preparing simulated annealing inputs

grompp was unable to prepare tpr files for inputs containing simulated annealing procedures. The code has been
fixed to allow the generation of those files again.

Issue 2871

Fixes that affect portability

Fix error in AVX 512 detection code

The CMake detection code had a typo that could lead to wrong detection results.

Miscellaneous

Added warning with the use of GROMOS force fields

grompp now warns when a GROMOS force field is used. The GROMOS force fields have been parametrized with
a physically incorrect multiple-time-stepping scheme for a twin-range cut-off. When used with a single-range
cut-off, physical properties, such as the density, might be off from the intended values.

Issue 2884

Prevented internal build of FFTW with clang and AVX-512 SIMD

Prevented the internal build of FFTW with clang from attempting to configure FFTW to compile with AVX-512
support. That SIMD level is not supported by FFTW with the clang compiler, and compilation fails.

Issue 2892

Updated performance guide for recent Intel processors with AVX512 instruction support

Noted the tradeoffs between CPU frequency and SIMD throughput and advising users to prefer AVX2 over
AVX512 in GPU-offload or highly parallel MPI cases.

Updated release notes for 2019.1

A fix (page 827) made to GPU kernels in 2019.1 was thought to resolve Issue 2845 but further investigation
suggests that the real cause is not yet known.

11.9. GROMACS 2019 series 826

https://gitlab.com/gromacs/gromacs/-/issues/2900
https://gitlab.com/gromacs/gromacs/-/issues/2871
https://gitlab.com/gromacs/gromacs/-/issues/2884
https://gitlab.com/gromacs/gromacs/-/issues/2892
https://gitlab.com/gromacs/gromacs/-/issues/2845

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2019.1 release notes

This version was released on February 15, 2019. These release notes document the changes that have taken place
in GROMACS since the initial version 2019, to fix known issues. It also incorporates all fixes made in version
2018.5 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fix error with 2D/3D dynamic load balancing

With 2D or 3D domain decomposition with dynamic load balancing, mdrun would exit with the error “The domain
decomposition grid has shifted too much ..” when a cell size was limited.

Issue 2830

Fix incorrect LJ repulsion force switching on GPUs

When using a CUDA or OpenCL GPU, the coefficient for the second order term for the LJ repulsion in the force
switching function, called ‘A’ in the manual, had the wrong sign. This lead to very small errors in the forces and
the pressure. Note that the dispersion force switching was correct. The effects of this bug on any physical results
seems to be negligible. Note that force switching is usually only used in combination with the CHARMM force
field.

Issue 2845

Fix segmentation fault in mdrun with domain decomposition

Issue 2813

Fix segmentation fault with energy minimization with the group scheme

Using energy minimization in combination with the group cutoff scheme and domain decomposition could lead
to a segmentation fault.

Issue 2813

Correct free-energy Delta H output with mass lambda’s

When separate lambda parameters were used for perturbed mass free-energy contributions, these contributions
were double counted in the Delta H output used for BAR calculations. Note that dH/dlambda was always correct

Issue 2703 Issue 2849

Prevent mdrun -rerun from writing incorrect free-energy output

Now mdrun -rerun exits with a fatal error when masses or constraints are perturbed. Their contributions to Hamil-
tonian differences and derivatives were incorrectly set to zero in version 2019.

Issue 2849

11.9. GROMACS 2019 series 827

https://gitlab.com/gromacs/gromacs/-/issues/2830
https://gitlab.com/gromacs/gromacs/-/issues/2845
https://gitlab.com/gromacs/gromacs/-/issues/2813
https://gitlab.com/gromacs/gromacs/-/issues/2813
https://gitlab.com/gromacs/gromacs/-/issues/2703
https://gitlab.com/gromacs/gromacs/-/issues/2849
https://gitlab.com/gromacs/gromacs/-/issues/2849

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix possible division by zero in enforced-rotation code

Issue 1431

Fixes for gmx tools

Fix trjconv -ndec

This only works for writing .xtc files. The code and documentation now works correctly with .gro files, which
was changed in 2016 release series so that it would only write fixed-width columns.

Issue 2824 Issue 2037

Fix using index file groups when .tpr file not supplied

Selections that use groups from a supplied index file can again be used even when a .tpr file is not supplied.

Issue 2847

Fix tune_pme

The tool did not work due to a file reading error that is fixed now.

Issue 2827

Fixes that affect portability

With MSVC, disabled internal clFFT fallback used for OpenCL support

GROMACS requires MSVC 2017, and the GROMACS OpenCL build requires clFFT. If clFFT is found on the
user’s system, then all may be well, but the version of clFFT bundled within GROMACS cannot be built because
only MSVC 2010 is supported by clFFT at this time. A configure-time fatal error is now issued in this case.

Issue 2500

Explicitly require 64-bit platforms for OpenCL

A 64-bit OpenCL runtime is required by GROMACS. All known OpenCL implementations on 64-bit platforms
are 64-bit (and there are no known 32-bit platforms with 64-bit OpenCL), hence we require a 64-bit platform at
configure-time in OpenCL builds. A known unsupported 32-bit platform is ARMv7.

Miscellaneous

Improved docs for applying electric fields

11.9.2 Major release

Highlights

GROMACS 2019 was released on December 31st, 2018. Patch releases may have been made since then, please
use the updated versions! Here are some highlights of what you can expect, along with more detail in the links
below!

11.9. GROMACS 2019 series 828

https://gitlab.com/gromacs/gromacs/-/issues/1431
https://gitlab.com/gromacs/gromacs/-/issues/2824
https://gitlab.com/gromacs/gromacs/-/issues/2037
https://gitlab.com/gromacs/gromacs/-/issues/2847
https://gitlab.com/gromacs/gromacs/-/issues/2827
https://gitlab.com/gromacs/gromacs/-/issues/2500

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

As always, we’ve got several useful performance improvements, with or without GPUs, all enabled and automated
by default. We are extremely interested in your feedback on how well this worked on your simulations and
hardware. They are:

• Simulations now automatically run using update groups of atoms whose coordinate updates have only intra-
group dependencies. These can include both constraints and virtual sites. This improves performance by
eliminating overheads during the update, at no cost.

• Intel integrated GPUs are now supported with OpenCL for offloading non-bonded interactions.

• PME long-ranged interactions can now also run on a single AMD GPU using OpenCL, which means many
fewer CPU cores are needed for good performance with such hardware.

New and improved features

GROMACS build is now more reproducible

The build system no longer embeds information about who built the binary and where. We used to include this
information to help troubleshoot problems and ensure checkpoint continuations are exact where possible, but this
does not seem necessary. This makes the build closer to reproducible by default which is useful for
projects that offer distributions of reproducible software, including GROMACS.

Update gmx cluster to write correct PDB files and index files with cluster frames

PDB (page 490) files from gmx cluster were missing the CRYST header for box information, making it more
difficult than needed to use them with our GROMACS tools. Also, the index (page 489) files needed for gmx
trjconv (page 281) to split up trajectories into frames corresponding to the clusters were not written. This adds
support for writing this index (page 489) file as well as proper PDB (page 490) files.

Allow using COM of previous step as PBC reference

Added an option (pull-pbc-ref-from-prev-step-com), when pulling, to use the COM of the group of
the previous step, to calculate PBC jumps instead of a reference atom, which can sometimes move a lot during the
simulation. With this option the PBC reference atom is only used at initialization. This can be of use when using
large pull groups or groups with potentially large relative movement of atoms.

Transitional external API headers and library

Library access to GROMACS is transitioning to new infrastructure. gmxapi 0.0.7 provides abstractions for exe-
cution environment and simulation work, as well as development tools for extending MD simulation code without
patching the GROMACS source. Client code may be built against a GROMACS installation. MD plugin code may
apply externally calculated forces (see restraint module) or issue simulation stop signals through session resources
available at run time to registered plugins. For more project information and use cases, refer to the tracked Issue
2585 and to DOI 10.1093/bioinformatics/bty484. For a few examples of building on and extending GROMACS,
refer to the Python package and sample restraint plugin repository.

11.9. GROMACS 2019 series 829

https://gitlab.com/gromacs/gromacs/-/issues/2585
https://gitlab.com/gromacs/gromacs/-/issues/2585
https://doi.org/10.1093/bioinformatics/bty484
https://github.com/kassonlab/gmxapi
https://github.com/kassonlab/sample_restraint

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Restraint module for gmxapi MD extension code

Provides functionality that was previously accessed by modifying the “pull” code in the GROMACS source. Client
software may be built against an unmodified GROMACS installation. Separately compiled MD extensions can be
registered with the new Restraint functionality at run time using simulation client code built with the new gmxapi
tools. (See above.)

Enable output of average pull forces and positions

Normally the pull module writes instantaneous output of positions and forces, however now it can write the average
of these values over the period since the last output. This works correctly even if a checkpoint restart intervened.
This is enabled using the new options pull-fout-average and pull-xout-average.

Performance improvements

Implemented update groups

Domain decomposition can now be based on so-called update groups. These are groups of atoms with depen-
dencies during the update, which can be constraints and virtual sites. Update groups can typically be used when
only bonds involving hydrogens are constrained and are enabled automatically when possible. This improves
performance by eliminating MPI and OpenMP communication for constraints and virtual sites.

PME on GPU when running free energy perturbations not involving charges

PME can now be run on a GPU when doing free energy perturbations that do not involve perturbing charges.

PME long-ranged interaction GPU offload now available with OpenCL

On supported devices from all supported vendors (AMD, Intel, NVIDIA), it is now possible to offload PME tasks
to the GPU using OpenCL. This works in the same way as the former CUDA offload. A single GPU can now
be used to accelerate the computation of the long-ranged PME interactions. This feature means that only 2-4
CPU cores per GPU will be about as fast as the 2018 version that needed many more CPU cores to balance the
GPU. Performance on hardware that had good balance of GPU and CPU also shows minor improvements, and the
capacity for hardware with strong GPUs to run effective simulations is now greatly improved.

Intel integrated GPUs are now supported for GPU offload with OpenCL

On Intel CPUs with integrated GPUs, it is now possible to offload nonbonded tasks to the GPU the same way as
offload is done to other GPU architectures. This can have performance benefits, in particular on modern desktop
and mobile Intel CPUs this offload can give up to 20% higher simulation performance.

Bonded interactions are now supported for CUDA GPU offload

Common types of bonded and LJ-14 interactions found can now run on NVIDIA GPUs with CUDA, with and
without domain decomposition. Interactions with perturbed parameters are not supported.

11.9. GROMACS 2019 series 830

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Added code generation support for NVIDIA Turing GPUs

With CUDA 10.0 NVIDIA Turing GPUs can be directly targeted by the nvcc compiler. We now generate the
appropriate set of flags for the Turing architecture by default when using CUDA 10 (or later).

Improvements to GROMACS tools

pdb2gmx writes total charge differently

pdb2gmx notes the total charge for each residue in the [atoms] field of the topology file it produces. The fact
that this should generally be an integer can be used for troubleshooting issues in system or force field preparation.
This printing is now done only once per residue, rather than for every atom.

nmeig does thermochemistry

The nmeig tool that analyzes the Hessian matrix from a normal mode analysis now generates thermochemical
properties like standard entropy, heat capacity at constant volume, internal thermal energy and zero-point energy.
The analysis is based on the harmonic approximation that is the same as what is used in quantum chemistry.

Implement writing of LaTeX methods in report-methods

Added a new tool report-methods to write a summary of methods used to set up a simulation to an output file or
to standard output.

Bugs fixed

Fix type bug in trilinic DD code

Fix bug with unusual off-diagonal elements communicating too few atoms.

Ensure domains are large enough for atom motion

Domain decomposition now makes sure that domains will always be large enough so that atoms will not move
across additional domains.

Issue 2614

Velocity Verlet integrators output energy averages from correct steps

Velocity Verlet integrators would accumulate energies for writing averages to the energy file when step-1 was
a multiple of nstcalcenergy. This has now been corrected to step being a multiple of nstcalcenergy. Note that
although this (slightly) changes the reported averages, the averages were not incorrect.

Issue 2718

11.9. GROMACS 2019 series 831

https://gitlab.com/gromacs/gromacs/-/issues/2614
https://gitlab.com/gromacs/gromacs/-/issues/2718

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix chainsep behaviour of pdb2gmx

Issue 2577

grompp correctly checks nstexpanded against nstcalcenergy

With expanded ensemble, but without free-energy perturbation, grompp would not check if nstexpanded was a
multiple of nstcalcenergy. If the latter was not the case, results might have been incorrect.

Issue 2714

Issue with do_dssp and unknown residues

The do_dssp tool would fail with unknown residues, as well as have issues on Windows.

Issue 2599

Deprecated functionality

Changes anticipated to GROMACS 2019 functionality

gmx mdrun -membed

The feature for embedding a protein in a membrane will be retained, but probably in a different form, such as gmx
membed.

gmx mdrun -rerun

The feature for computing potential energy quantities from a trajectory will be retained, but probably in a different
form, such as gmx rerun and gmx test-particle-insertion.

Integrator .mdp options will only contain dynamical integrators

Energy minimization will be accessed in a differt form, perhaps with gmx minimize and interpret an .mdp
field for which minimizer to use. Normal-mode analysis may be accessed with e.g. gmx normal-modes. The
command-line help for these tools will thenx be better able to document which functionality is supported when.

Much functionality in trjconv, editconf, eneconv and trjcat

The functionality in such tools is being separated to make it available in composable modules, that we plan to
make available as simpler tools, and eventually via the GROMACS API that is under development.

11.9. GROMACS 2019 series 832

https://gitlab.com/gromacs/gromacs/-/issues/2577
https://gitlab.com/gromacs/gromacs/-/issues/2714
https://gitlab.com/gromacs/gromacs/-/issues/2599

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

gmx do_dssp to be replaced

This tool is deprecated, because it is problematic for some users to obtain and install a separate DSSP binary, so
we plan to replace the implementation at some point with a native implementation, likely based upon xssp, and
make it available under a new gmx tool name.

Functionality deprecated in GROMACS 2019

Generation of virtual sites to replace aromatic rings in standard residues

Issue 3254 These are thought to produce artefacts under some circumstances (unpublished results), were never
well tested, are not widely used, and we need to simplify pdb2gmx.

gmx mdrun -gcom

This feature sometimes overrides the effects of various .mdp settings in a way that is difficult to understand and
report. A user who wants to do communication between PP ranks less often should choose their nst* mdp
options accordingly.

Benchmarking options only available with gmx benchmark

Issue 3255 Options such as -confout, -resethway, -resetstep are not intended for use by regular mdrun
users, so making them only available with a dedicated tool is more clear. Also, this permits us to customize defaults
for e.g. writing files at the end of a simulation part in ways that suit the respective mdrun and benchmark use cases,
so -confout will no longer be required.

gmx mdrun -nsteps

Issue 3256 The number of simulation steps described by the .tpr file can be changed with gmx convert-tpr,
or altered in .mdp file before the call to gmx grompp. The convenience of this mdrun option was outweighted
by the doubtful quality of its implementation, no clear record in the log file, and lack of maintenance.

Functionality deprecated before GROMACS 2019

This functionality has been declared as deprecated in previous versions of GROMACS, but has not yet been
removed.

The group cutoff scheme

All remaining aspects of the group cutoff scheme will be removed, once a few remaining features (e.g. tabulated
interactions, energy-group exclusions, and vacuum simulations) are available with the Verlet scheme. Deprecated
in GROMACS 5.1

11.9. GROMACS 2019 series 833

https://gitlab.com/gromacs/gromacs/-/issues/3254
https://gitlab.com/gromacs/gromacs/-/issues/3255
https://gitlab.com/gromacs/gromacs/-/issues/3256

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

QM/MM support for ORCA, GAMESS and MOPAC

These interfaces are untested, and no maintainer has been found for them. Deprecated in GROMACS 2018.

Removed functionality

NVML support removed on NVIDIA GPUs

NVML support (for reporting GPU application clocks or changing these for higher throughput) is no longer
available. It was only ever supported on high-end hardware and changing clocks is on recent generations of
hardware only useful when root permissions were available to the user. It may become less useful as GROMACS
evolves, complicated the GROMACS code, and wasn’t regularly tested or maintained. It might return if some of
these conditions change.

Support for CUDA compute capability 2.x removed

The Fermi-era GPUs (cira 2010) are no longer in widespread use, are not tested in Jenkins, complicated the code,
and are no longer supported.

Contrib directory removed

This code had not been maintained in years, so likely didn’t work, and has been removed. The git history retains
its memory if anybody needs it.

BlueGene support removed

As most of these machines are now retired, and the ports have not been actively maintained since GROMACS 5.1,
the support for BlueGene and QPX SIMD has been removed.

Implicit solvent support removed

Since GROMACS-4.6, the SIMD and multi-threading support has been mostly broken. Since nobody wants to fix
it, the feature has been removed. Old force field files with parameters for such simulations can still be read, but
the values are ignored.

Removed gmx mdrun -multi

The implementation of gmx mdrun -multidir is more reliable and works with more features. Nobody was
willing to maintain the duplicate functionality.

Portability

Increased the minimum CUDA version required

We now require CUDA 7.0, whose features help keep the code more maintainable.

11.9. GROMACS 2019 series 834

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Increased the minimum MSVC version required

We now require MSVC 2017, so we can rely on full C++11 support and the highest quality implementations. On
this platform, we now also require CUDA 9.0.

Updated the OpenCL requirement to version 1.2

We now require at least OpenCL version 1.2 both for API and kernels. All currently targeted vendors’ libraries do
support it, so this is not a restriction in any way.

Preliminary support for ARM Performance Libraries

The ARM Performance Libraries can now be used for FFT transforms through the FFTW compatiblity layer. This
can provide performance benefits over using a vanilla FFTW3 on recent ARMv8 architectures.

Miscellaneous

grompp discourages use of constraints=all-bonds

Common force fields, including AMBER, CHARMM and OPLS/aa, are parametrized with bonds involving hy-
drogen constrained. Constraining all bonds should be avoided, for correctness. grompp now issues a note when
constraints=all-bonds is used with these force fields when time steps are smaller than 2.6 fs and hydrogens are not
replaced by virtual sites. Using constraints=h-bonds will also improve performance.

Documentation changed to reStructuredText

The complete documentation has been moved to the reStructuredText markup format to allow building it together
for display as html or as pdf.

11.10 GROMACS 2018 series

11.10.1 Patch releases

GROMACS 2018.7 release notes

This version was released on May 29, 2019. These release notes document the changes that have taken place in
GROMACS since version 2018.6, to fix known issues. It also incorporates all fixes made in previous versions,
which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Reverted broken change made in 2018.1

Reverted a change made in 2018.1 that broke simulations that used the SHAKE constraint algorithm.

Issue 2879

11.10. GROMACS 2018 series 835

https://gitlab.com/gromacs/gromacs/-/issues/2879

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Work around gcc 7 AVX512 compiler bug

With gcc version 7 a compiler bug caused a large part of non-bonded interactions to be ignored when compiled
with AVX512 and running on more than 16 OpenMP threads.

Issue 2762

Fixes for gmx tools

Fixes to improve portability

Miscellaneous

Updated release notes for 2018.6

A fix (page 836) made to GPU kernels in 2018.6 was thought to resolve Issue 2845 but further investigation
suggests that the real cause is not yet known.

GROMACS 2018.6 release notes

This version was released on February 22, 2019. These release notes document the changes that have taken place
in GROMACS since version 2018.5, to fix known issues. It also incorporates all fixes made in previous versions,
which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Correct free-energy Delta H output with mass lambda’s

When separate lambda parameters were used for perturbed mass free-energy contributions, these contributions
were double counted in the Delta H output used for BAR calculations. Note that dH/dlambda was always correct

Issue 2703 Issue 2849

Fix incorrect LJ repulsion force switching on GPUs

When using a CUDA or OpenCL GPU, the coefficient for the second order term for the LJ repulsion in the force
switching function, called ‘A’ in the manual, had the wrong sign. This lead to very small errors in the forces and
the pressure. Note that the dispersion force switching was correct. The effects of this bug on any physical results
seems to be negligible. Note that force switching is usually only used in combination with the CHARMM force
field.

Issue 2845

Fixes for gmx tools

Fixes to improve portability

Fix compiler flags for Power8

A compiler flag for Power8 processors lead to errors in the code and was removed.

Issue 2747 Issue 2746 Issue 2734

11.10. GROMACS 2018 series 836

https://gitlab.com/gromacs/gromacs/-/issues/2762
https://gitlab.com/gromacs/gromacs/-/issues/2845
https://gitlab.com/gromacs/gromacs/-/issues/2703
https://gitlab.com/gromacs/gromacs/-/issues/2849
https://gitlab.com/gromacs/gromacs/-/issues/2845
https://gitlab.com/gromacs/gromacs/-/issues/2747
https://gitlab.com/gromacs/gromacs/-/issues/2746
https://gitlab.com/gromacs/gromacs/-/issues/2734

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Miscellaneous

GROMACS 2018.5 release notes

This version was released on January 22, 2019. These release notes document the changes that have taken place
in GROMACS since version 2018.4, to fix known issues. A complete list of fixes and their descriptions can be
found in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fixed numerical derivative for normal-mode analysis with shell code

Due to higher precision needs when using polarizable shell particles the normal mode code did not work repro-
ducibly with shells. In order to fix this the step-size used for numerically computing the Hessian was reduced to
near machine precision. The change does not affect the results for non-polarizable systems, such as proteins or
small molecules.

Make large PME grids work on GPU

PME grids with size along Z larger than 511 would make mdrun exit with a cryptic CUDA error.

Issue 2779

Fix LINCS accuracy with OpenMP when constraint triangles are present

Constraint triangles, which usually only occur when replacing hydrogens by virtual interaction sites in CH3 and
NH3 groups, need double the number of iterations as normal constraints. With OpenMP this would only hap-
pen when the last OpenMP thread has at least one such triangle. This would cause a slight loss of accuracy in
inhomogeneous systems.

Issue 2808

Fix acceleration with cos-acceleration

A factor of 2 was missing from the acceleration value, leading to incorrect results when e.g. calculating viscosities.

Issue 2572

Fix checkpoint restart of tpr with infinite step count

An issue was introduced that caused mdrun (page 215) to refuse to start when using infinite step counts. Now
mdrun (page 215) properly accepts those files again.

Issue 2757

11.10. GROMACS 2018 series 837

https://gitlab.com/gromacs/gromacs/-/issues/2779
https://gitlab.com/gromacs/gromacs/-/issues/2808
https://gitlab.com/gromacs/gromacs/-/issues/2572
https://gitlab.com/gromacs/gromacs/-/issues/2757

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix energy history file reading

A check was missing when reading energy files from a simulation that was stopped before the first value had been
written to the file.

Issue 2781

Fixes for gmx tools

Fix trjconv -ndec

This only works for writing .xtc files. The code and documentation now works correctly with .gro files, which
was changed in 2016 release series so that it would only write fixed-width columns.

Issue 2813 Issue 2037

Fixes to improve portability

Miscellaneous

Warn for problematic coupling times with Nose-Hoover and Parrinello-Rahman

When combining the Nose-Hoover and Parrinello-Rahman coupling algorithms, resonances in the kinetic energy
and pressure/volume can appear when the two coupling times involved are similar. Now grompp warns when
tau-p is less than two times tau-t.

Issue 2749

Fixed efficiency issue with shell code minimization

Code cleanup touching unnecessarily complex code created an efficiency issue. Both the issue and some of the
complexity are now fixed.

Issue 2705

Added code generation support for NVIDIA Turing GPUs

With CUDA 10.0 NVIDIA Turing GPUs can be directly targeted by the nvcc compiler. We now generate the
appropriate set of flags for the Turing architecture by default when using CUDA 10 (or later).

GROMACS 2018.4 release notes

This version was released on November 12, 2018. These release notes document the changes that have taken place
in GROMACS since version 2018.3, to fix known issues. It also incorporates all fixes made in version 2016.5 and
earlier, which you can find described in the Release notes (page 709).

11.10. GROMACS 2018 series 838

https://gitlab.com/gromacs/gromacs/-/issues/2781
https://gitlab.com/gromacs/gromacs/-/issues/2813
https://gitlab.com/gromacs/gromacs/-/issues/2037
https://gitlab.com/gromacs/gromacs/-/issues/2749
https://gitlab.com/gromacs/gromacs/-/issues/2705

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes where mdrun could behave incorrectly

Correct PME forces with free energy without perturbed charges/LJ

With free-energies calculations with lambda not set to zero and no actual perturbed charges or atom types for
Lennard-Jones, the Coulomb or LJ PME mesh forces would be scaled with lambda. Note that this bug did not
affect the, usual, setup where charges or atom types are actually perturbed.

Issue 2640

Add constraint contribution to foreign Hamiltonian differences

The contribution of perturbed constraints was missing from the foreign Hamiltonian values. This is important for
free energy calculations, such as BAR.

Issue 2703

Add mass contribution to foreign Hamiltonian differences

For free energy calculations with perturbed masses, the kinetic energy contribution was missing from the foreign
Hamiltonian values.

Issue 2703

Work around bugs with expanded ensemble runs

With expanded ensemble runs, the energies would be outdated or zero with the velocity Verlet integrator with
nstcalcenergy>1 or with other integrators when nstexpanded was not a multiple of nstcalcenergy. In these cases
mdrun now sets nstcalcenergy to 1.

Issue 2714 Issue 2718

Checkpoint continuations require suitable .tpr files

The step of a checkpoint file used for an mdrun restart must now be less than the number of steps in the .tpr.
Formerly, the step in the checkpoint could be any number, and mdrun -nsteps could be used to get a particular
result, but the use of that option is already deprecated. Use gmx grompp or gmx convert-tpr to make a .tpr file that
expresses the intent.

Issue 2717

Fixes for gmx tools

Fix mindist output file checks

mindist would not check if the output file needed to print residue names and residue contacts over time was actually
defined, leading to errors with empty file name strings.

Issue 2653

11.10. GROMACS 2018 series 839

https://gitlab.com/gromacs/gromacs/-/issues/2640
https://gitlab.com/gromacs/gromacs/-/issues/2703
https://gitlab.com/gromacs/gromacs/-/issues/2703
https://gitlab.com/gromacs/gromacs/-/issues/2714
https://gitlab.com/gromacs/gromacs/-/issues/2718
https://gitlab.com/gromacs/gromacs/-/issues/2717
https://gitlab.com/gromacs/gromacs/-/issues/2653

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fix gmx helix segmentation faults

The .tpr file is now read correctly, and the helix analysis correctly handles selections that include proline residues.

Issue 2701

Fix bug in entropy calculation in gmx anaeig

When gmx anaeig received an inconsistent number of atoms and eigenvectors (fewer eigenvectors than three times
the number of atoms) the entropy calculations would use uninitialized values.

Issue 2668

Fixes to improve portability

Miscellaneous

Fixed an issue where the log file could sometimes report an incorrect initial dynamic load balancing state

Issue 2631

Fix Bromine parameters in amber forcefield files

The forcefield entries for Bromine and Iron were missing the actual values to define sigma and epsilon. The proper
values have been included from parm99.dat for Bromine. As Iron has no corresponding parameters, the entry has
been removed.

Issue 2711

Made normal-mode analysis work for more than one molecule

Fixed an issue where normal mode analysis would only consider the first copy of each molecule in a system. Also
fixed issues with vsites or shells in normal modes.

Issue 2720

Disallow rerun using same filename as output file

When using identical filenames for -rerun a cryptic error was thrown because the same file would be used for
reading and writing. Now mdrun (page 215) will give a helpful error message to get around this.

Issue 2634

Fix issue when building GROMACS without TNG

Some compiler errors have been resolved that could show when building GROMACS without TNG support en-
abled.

11.10. GROMACS 2018 series 840

https://gitlab.com/gromacs/gromacs/-/issues/2701
https://gitlab.com/gromacs/gromacs/-/issues/2668
https://gitlab.com/gromacs/gromacs/-/issues/2631
https://gitlab.com/gromacs/gromacs/-/issues/2711
https://gitlab.com/gromacs/gromacs/-/issues/2720
https://gitlab.com/gromacs/gromacs/-/issues/2634

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2018.3 release notes

This version was released on August 23, 2018. These release notes document the changes that have taken place
in GROMACS since version 2018.2, to fix known issues. It also incorporates all fixes made in version 2016.5 and
earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Multi-domain GPU runs can no longer miss pair interactions

With systems with empty space in the unit cell, GPU runs with domain decomposition would not compute LJ and
Coulomb interactions between domains when there we no interactions between domains on a rank at some point
in time.

• This bug only affects simulations running on GPUs with domain decomposition and containing empty
regions of space that can lead to domains being empty.

• Possible observations of this bug may have been seemingly random failures of calculations that where not
reproducible when restarting a simulation from a checkpoint file, as the domain would then again be filled
properly if interactions are present at the beginning.

• It is unlikely that this bug will have unnoticed effects on all but very short simulations, as the missing
interactions will inevitable lead to simulation instability and crashes.

• If a simulation that crashed due to this bug is restarted it can contain a small region around the crash that
will be unphysical due to some interactions not being calculated just before the crash itself.

This is a critical fix and users of 2018.x series that run on GPUs should update to this point release

Issue 2502

Fix Conjugate Gradient assertion failure at end of minimization

When the final step coincided with a coordinate output step, conjugate gradient minimization would exit with an
assertion failure instead of writing confout.gro.

Issue 2554

Multi-domain Conjugate Gradient minimimization no longer segfaults.

Issue 2554

Fix pairlist buffer with Brownian Dynamics

With Brownian Dynamics and bd-fric > 0, the Verlet pairlist buffer would be determined with incorrect masses
for constrained atoms and virtual sites. This would lead to a too small buffer for typical atomistic systems with
constraints.

Issue 2613

11.10. GROMACS 2018 series 841

https://gitlab.com/gromacs/gromacs/-/issues/2502
https://gitlab.com/gromacs/gromacs/-/issues/2554
https://gitlab.com/gromacs/gromacs/-/issues/2554
https://gitlab.com/gromacs/gromacs/-/issues/2613

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoid “atom moved to far” errors

The introduction of the dual pair list has led to larger nstlist values, which leads to larger atom displacements
between domain decomposition steps. This has made it more likely that the errors “An atom moved too far
between two domain decomposition steps” and “N particles communicated to PME rank M are more than 2/3
times the cut-off out of the domain decomposition cell . . . ” appear for stable systems. Now atom displacements
are correctly taken into account when determining the minimum cell size, so these errors should only appear for
unstable systems.

Issue 2614

grompp now checks that pull groups are not close to half the box size

Pull groups that use a reference atom for periodic boundary treatment should have all their atoms well within half
the box size of this reference. When this is not the case, grompp will issue a warning.

Issue 2397

Fixed segmentation fault in mdrun with QM/MM ONIOM scheme

Issue 2617

Correctly specified that PME on GPUs is only supported for dynamical integrators

Previously PME on GPU support could run (but fail) for energy minimization and normal-mode analysis runs.

Issue 2578

Fixes for gmx tools

Fixed syntax error in make_gromos_rtp.py

Issue 2557

Fix gmx solvate topology updating

Removed hard coded solvent names to allow updates to topology based on solvent molecule information. Also
allows updating with multiple solvent types.

Issue 1929

Fix bfactor output error caused by fix for Issue 2511

The fix for the PQR file output broke the output of bfactors from other tools.

Issue 2575

11.10. GROMACS 2018 series 842

https://gitlab.com/gromacs/gromacs/-/issues/2614
https://gitlab.com/gromacs/gromacs/-/issues/2397
https://gitlab.com/gromacs/gromacs/-/issues/2617
https://gitlab.com/gromacs/gromacs/-/issues/2578
https://gitlab.com/gromacs/gromacs/-/issues/2557
https://gitlab.com/gromacs/gromacs/-/issues/1929
https://gitlab.com/gromacs/gromacs/-/issues/2575

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Made sure that gmx rms can skip values

When requested to skip values, gmx rms would still output all values despite the option. Now it only outputs
values that are requested to be processed.

Issue 2565

Fix trjconv when not providing structure file

trjconv would fail with a segmentation violation when running without any structure file due to incomplete initial-
ization of the topology data structure. This fix adds the missing checks that prevents the failure.

Issue 2619

Fix enforced rotation energy output

Fixes to improve portability

Fix nvcc host compiler check triggering

Issue 2583

Report up to date hwloc version information

Issue 2591

Disable single compilation unit with CUDA 9.0

Issue 2561

Miscellaneous

Avoid aborting mdrun when GPU sanity check detects errors

Issue 2415

Improve OpenCL kernel performance on AMD Vega GPUs

The OpenCL kernel optimization flags did not explicitly turn off denorm handling which could lead to performance
loss. The optimization is now explicitly turned on both for consistency with CUDA and performance reasons. On
AMD Vega GPUs (with ROCm) kernel performance improves by up to 30%.

11.10. GROMACS 2018 series 843

https://gitlab.com/gromacs/gromacs/-/issues/2565
https://gitlab.com/gromacs/gromacs/-/issues/2619
https://gitlab.com/gromacs/gromacs/-/issues/2583
https://gitlab.com/gromacs/gromacs/-/issues/2591
https://gitlab.com/gromacs/gromacs/-/issues/2561
https://gitlab.com/gromacs/gromacs/-/issues/2415

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2018.2 release notes

This version was released on June 14, 2018. These release notes document the changes that have taken place in
GROMACS since version 2018.1, to fix known issues. It also incorporates all fixes made in version 2016.5 and
earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Prevented OpenCL timing memory leak

When using OpenCL builds and timing, a memory leak would lead to all system memory being used up.

Issue 2470

Fixed MPI error after constraint failure during energy minimization

Issue 2540

Fixed moving frozen atoms with constraints

Frozen atoms which also had bond constraints could move.

Issue 2542

Fixed COM removal moving frozen atoms

When frozen atoms were part of center of mass motion removal groups, they could accumulate momentum and
move.

Issue 2551

Fixed AWH too infrequent checks for covering

For multidimensional AWH grids with many points relative to the number of samples required for covering the
grid, the detection of covering could be delayed because of too infrequent checks.

Issue 2487

Fixed AWH continuation consistency checks

Some kinds of changes upon restarts are now disallowed, as intended.

Fixed AWH awh-nsamples-update value checking

Zero is now forbidden, as intended.

Issue 2489

11.10. GROMACS 2018 series 844

https://gitlab.com/gromacs/gromacs/-/issues/2470
https://gitlab.com/gromacs/gromacs/-/issues/2540
https://gitlab.com/gromacs/gromacs/-/issues/2542
https://gitlab.com/gromacs/gromacs/-/issues/2551
https://gitlab.com/gromacs/gromacs/-/issues/2487
https://gitlab.com/gromacs/gromacs/-/issues/2489

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixes for gmx tools

Fixed buffer overflow in grompp warnings

When grompp issued a warning or error with a filename/path of more than 255 characters, a buffer overflow would
occur. This could also happens during make check/test.

Issue 2465

Fixed infinite loop in gmx solvate

When provided with a PDB file that had no box information for the solvent, gmx solvate could be stuck in an
infinite loop. Fixed by disallowing empty boxes for solvent PDB files.

Issue 2523

Fixed enemat when the .edr file had no matching energy groups

Issue 2508

Fixed PQR file output

PQR files from gmx editconf violated the standard for the format because they were always written in fixed format.
This commit fixes the issue by introducing a different output method for PQR files that follows the standard.

Issue 2511

Fixed crash in gmx solvate

gmx solvate would crash due to memory corruption when using multiple solvent molecule types.

Added check for unallowed periodic setups

Long distances between atoms in bonded interactions could lead to incorrect periodicity removal. In such cases
an inconsistent shift message was printed, but the run or analysis was not terminated and other, confusing, errors
could be issued. Now an informative fatal error is issued.

Issue 2549

Fixes to improve portability

Fixed CUDA compilation on Windows.

Issue 2509

11.10. GROMACS 2018 series 845

https://gitlab.com/gromacs/gromacs/-/issues/2465
https://gitlab.com/gromacs/gromacs/-/issues/2523
https://gitlab.com/gromacs/gromacs/-/issues/2508
https://gitlab.com/gromacs/gromacs/-/issues/2511
https://gitlab.com/gromacs/gromacs/-/issues/2549
https://gitlab.com/gromacs/gromacs/-/issues/2509

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed SIMD support for POWER systems in double precision with gcc 8

Issue 2421

Fixed possible illegal instruction on KNL with Intel compiler

Issue 2504

Miscellaneous

Information message about OMP_NUM_THREADS now sent to log file

Made it easier to track this information by writing it to the log file in a clear way, rather than to stderr.

Issue 2472

Fixed inadvertent disabling of SIMD version of the integrator

Fixed a bug so the SIMD version of the leap-frog integrator is chosen, when possible. This may improve perfor-
mance.

Issue 2497

Fixed own FFTW builds on certain AVX2/AVX512 hardware

Version 3.3.8 of FFTW fixes some known gcc-8 errors for AVX2 by removing the fast-math flag, and it also
appears to fix an issue with failed unit tests on AVX512-capable hardware, so we have bumped the version we
download to 3.3.8.

Issue 2541

Switched to using more standard CMake variables for installing on GNU systems

GnuInstallDirs.cmake is a better approach.

Several documentation and output improvements

• Updated top-level README file for latest GROMACS core publication.

• Reporting about GPU detection has improved.

• gmx mindist -pi docs improved.

• Docs for mdp options relating to bonds improved.

• Fixed various typos.

• Removed a leftover mention of the twin-range scheme.

• gmx trjconv -ndec docs improved.

11.10. GROMACS 2018 series 846

https://gitlab.com/gromacs/gromacs/-/issues/2421
https://gitlab.com/gromacs/gromacs/-/issues/2504
https://gitlab.com/gromacs/gromacs/-/issues/2472
https://gitlab.com/gromacs/gromacs/-/issues/2497
https://gitlab.com/gromacs/gromacs/-/issues/2541

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 2018.1 release notes

This version was released on March 21, 2018. These release notes document the changes that have taken place
in GROMACS since the initial version 2018, to fix known issues. It also incorporates all fixes made in version
2016.5 and earlier, which you can find described in the Release notes (page 709).

Fixes where mdrun could behave incorrectly

Fixed leap-frog integrator with Nose-Hoover T coupling and Parrinello-Rahman P coupling

With Parrinello-Rahman P coupling active, when applying Nose-Hoover T coupling at an MD step where no
P coupling occured, the update phase could use outdated or garbage coupling data. Such simulations with
nsttcouple (page 54) equal to nstpcouple (page 56) are unaffected by this issue, so few users will be
impacted by this. Simulations using other coupling algorithms are unaffected.

Issue 2418

Used SIMD bondeds without perturbed interactions

In free-energy calculations that lacked bonded interactions between perturbed atom types, the SIMD-accelerated
bonded functions were inadvertently disabled. This has been enabled, which will improve the performance of
some kinds of free-energy calculations.

Fixed bonds whose displacement was zero

We should allow overlapping atoms in harmonic bonds. But the former code would cause a floating point exception
and incorrect free-energy derivatives.

Fixed centre-of-mass motion removal on part of the system

COMM removal requested for part of the system acted on the whole system.

Issue 2381

Fixed multi-simulations with multiple ranks per simulation

These used to crash or hang mysteriously before the simulation would start.

Issue 2403

Improved inter-simulation signalling implementation

Reduced communication overhead with either many simulations or many ranks per simulation.

11.10. GROMACS 2018 series 847

https://gitlab.com/gromacs/gromacs/-/issues/2418
https://gitlab.com/gromacs/gromacs/-/issues/2381
https://gitlab.com/gromacs/gromacs/-/issues/2403

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed FEP calculations with SHAKE

All SHAKE + FEP calculations accumulated wrong values to dH/dl output, but in some cases the result will look
the same.

Issue 2434

Fixed handling of mdp define statement assigning preprocessor values

Now .mdp files can configure the topology with values, as originally intended, e.g. "define = -DBOOL
-DVAR=VALUE".

Issue 2392

Prevented log file energy average printing dividing by zero

If very few simulation frames have computed energies, then there may be insufficient data for averages. If so, skip
the average printing entirely.

Issue 2394

Correctly set cutoff modifiers in forcerec

The cutoff modifiers were not copied from interaction_const_t to forcerec_t which meant only the generic kernels
were used with the group scheme. This fix will restore the performance of the group scheme.

Issue 2399

Fixed box scaling in PME mixed mode using both GPU and CPU

Issue 2385

Re-enabled GPU support with walls and 1 energy group

With a single non-bonded energy group and walls, we can now use a GPU for non-bonded calculations.

Removed tumbling ice-cube warning with SD integrator

With SD, there is friction, so ice cubes will not tumble.

Fixed assertion failure in test-particle insertion

Erroneous logic in the TPI meant that it always failed without producing any result.

Issue 2398

11.10. GROMACS 2018 series 848

https://gitlab.com/gromacs/gromacs/-/issues/2434
https://gitlab.com/gromacs/gromacs/-/issues/2392
https://gitlab.com/gromacs/gromacs/-/issues/2394
https://gitlab.com/gromacs/gromacs/-/issues/2399
https://gitlab.com/gromacs/gromacs/-/issues/2385
https://gitlab.com/gromacs/gromacs/-/issues/2398

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoided mdrun echoing “No option -multi”

mdrun would print as many messages “No option -multi” as there are MPI ranks to stderr. Also updated -multi to
-multidir in an error message.

Issue 2377

Improved mdrun handling when GPUs are present but unavailable

Issue 2415

Fixed crash with AWH and awh1-equilibrate-histogram=yes

When running AWH with awh1-equilibrate-histogram=yes and multiple MPI ranks, the simulation would seg-
mentation fault.

Issue 2436

Fixed issues with AWH and bias sharing

When sharing AWH biases between multiple simulations, there were four issues. An MPI error would occur
when an individual simulation would use more than one rank. The deconvoluted PMF would be garbage (but the
sampling was correct). with more than 32 MPI ranks for an individual simulation, an error about a coordinate
being 0 could occur. And continuation from checkpoints could be refused.

Issue 2433 Issue 2439 Issue 2441 Issue 2444

Fixed virial with AWH and domain decomposiion

When running AWH with domain decomposition, the AWH/pull virial contribution would be multiplied with the
number of MPI ranks.

Fixed restart bug with pull geometry direction-periodic

With COM pulling with geometry direction-periodic, (only) at the step of continuing from checkpoint the closest
PBC image would be used instead of the of the one closest to the reference value. This could lead to a sharp spike
in the pull force at the continuation step.

Issue 2446

Fixes for gmx tools

Added check in grompp to avoid assertion failure

With an mdp file with a parameter present with both the current name and the old name which automatically gets
replaced, an assertion would fail. Now a fatal error is issued.

Issue 2386

11.10. GROMACS 2018 series 849

https://gitlab.com/gromacs/gromacs/-/issues/2377
https://gitlab.com/gromacs/gromacs/-/issues/2415
https://gitlab.com/gromacs/gromacs/-/issues/2436
https://gitlab.com/gromacs/gromacs/-/issues/2433
https://gitlab.com/gromacs/gromacs/-/issues/2439
https://gitlab.com/gromacs/gromacs/-/issues/2441
https://gitlab.com/gromacs/gromacs/-/issues/2444
https://gitlab.com/gromacs/gromacs/-/issues/2446
https://gitlab.com/gromacs/gromacs/-/issues/2386

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed grompp net charge check

Use of multiple non-consecutive blocks of a moleculetype now works correctly.

Issue 2407

Fixed issue with adding selection groups for TNG output

When there were more molecule blocks than molecule types in the topology, the output was wrong.

Fixed help text and functionality of pdb2gmx -missing

This now permits dangling bonds at termini, which is occasionally useful.

Fixes to improve portability

PME on Fermi-era GPUs on large systems now works

On older GPUs, it was possible to run into a hardware size limitation that has now been fixed.

Issue 2409

GoogleTest death tests are now used in a more portable way

Tests for GPU utility functionality are now more robust

Non-GPU builds, and GPU builds that find incompatible or otherwise unavailable devices will pass the tests in the
manner intended.

Issue 2405

Used more portable python shebangs

Per https://www.python.org/dev/peps/pep-0394/#recommendation, we should use env, and point it at python2.
When we either make them 2/3 or just-3 compatible, this should change.

Some distros (notably Arch Linux) already point python at python3 so we should choose to be explicit, and thus
somewhat portable.

Issue 2401

Added work-around for GCC 5.3 targetting AVX512 hardware

GCC 5.3 has bug in overload resolution causing the AVX512 and scalar function to become ambiguous.

11.10. GROMACS 2018 series 850

https://gitlab.com/gromacs/gromacs/-/issues/2407
https://gitlab.com/gromacs/gromacs/-/issues/2409
https://gitlab.com/gromacs/gromacs/-/issues/2405
https://www.python.org/dev/peps/pep-0394/#recommendation
https://gitlab.com/gromacs/gromacs/-/issues/2401

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Used isfinite unambiguously

Patch provdied by Veselin Kolev to quiet some compiler warnings.

Issue 2400

Worked around gcc-6 bug in tabulated group non-bonded kernels

With the gcc-6 compiler, AVX and -O3, which is the default, the tabulated non-bonded kernels of the (deprecated)
group cutoff-scheme produced incorrect energies and forces. The errors are so large that they could not have
caused latent issues.

Issue 2424

Detected correct AMD Zen SMT topology

On recent AMD Zen processors, hardware thread detection and pinning handling have been fixed, improving
performance.

Issue 2388

Fixed POWER VSX SIMD usage for upcoming gcc version 8

Issue 2421

Fixed clang 6 with CUDA 9

Permits builds for sm_70 and may work around an issue with sm_37

Issue 2443

Miscellaneous

Made multi-atom TPI reproducible with different compilers

Documentation enhancements

In particular, for handling options to mdrun relating to GPUs and running mdrun with good performance.

11.10.2 Major release

Highlights

GROMACS 2018 was released on January 10, 2018. Patch releases may have been made since then, please use
the updated versions! Here are some highlights of what you can expect, along with more detail in the links below!

As always, we’ve got several useful performance improvements, with or without GPUs, and all enabled and
automated by default. We are extremely interested in your feedback on how well this worked on your simulations
and hardware. They are:

• PME long-ranged interactions can now run on a single GPU, which means many fewer CPU cores are
needed for good performance.

• Optimized SIMD support for recent CPU architectures: AMD Zen, Intel Skylake-X and Skylake Xeon-SP.

11.10. GROMACS 2018 series 851

https://gitlab.com/gromacs/gromacs/-/issues/2400
https://gitlab.com/gromacs/gromacs/-/issues/2424
https://gitlab.com/gromacs/gromacs/-/issues/2388
https://gitlab.com/gromacs/gromacs/-/issues/2421
https://gitlab.com/gromacs/gromacs/-/issues/2443

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

There are some new features available also:

• The AWH (Accelerated Weight Histogram) method is now supported, which is an adaptive biasing method
used for overcoming free energy barriers and calculating free energies (see https://doi.org/10.1063/1.
4890371).

• A new dual-list dynamic-pruning algorithm for the short-ranged interactions, that uses an inner and outer
list to permit a longer-lived outer list, while doing less work overall and making runs less sensitive to the
choice of the “nslist” parameter.

• A physical validation suite is added, which runs a series of short simulations, to verify the expected statistical
properties, e.g. of energy distributions between the simulations, as a sensitive test that the code correctly
samples the expected ensemble.

• Conserved quantities are computed and reported for more integration schemes - now including all Berendsen
and Parrinello-Rahman schemes.

New and improved features

Added support for AWH biasing

The AWH (Accelerated Weight Histogram) method is an adaptive biasing method used for overcoming free energy
barriers and calculating free energies (see https://doi.org/10.1063/1.4890371). Although AWH can in general bias
any system parameter, this change only implements biasing of reaction coordinates. The actual force distribution
and coordinate handling is taken care of by the pull code. AWH interacts with the pull code by registering itself
as the external potential module for the coordinate that should be AWH biased. The AWH code sets the potential
and force for those coordinates. See the reference manual for full documentation.

It includes a feature to compute the time-integrated force correlation, also known as the friction tensor (see e.g.
https://doi.org/10.1103/PhysRevLett.108.190602). The friction tensor defines a metric on the coordinate space
and the local volume element of this metric is a useful measure for determining which regions need more or less
sampling.

Dual pair-list buffer with dynamic pruning

The GROMACS simulation engine uses a new dual pair-list algorithm with dynamic pruning in cases where the
Verlet buffer is determined automatically (which is the default). This allows further reducing the frequency of
pair search (and domain decomposition) while avoiding large Verlet buffers and the previously inherent increased
computational cost in the short-ranged nonbonded kernels. This is achieved by constructing an “outer” pair-list
built infrequently, which includes many pairs in the list that are outside the cut-off range for most of the lifetime of
the list. Such pairs can be pruned out very efficiently every few steps and with that building a smaller, “inner” pair-
list with a shorter life-time, and importantly a correspondingly shorter Verlet buffer (still adhering to the specified
tolerance), which is then used in the nonbonded kernels. Thanks to this, simulations runs are significantly less
sensitive to tuning the search frequency parameter (“nstlist”). When short-ranged interactions are running on the
GPU, the dynamic pruning is overlapped with the integration on the CPU, so is usually free. This feature improves
all of simulation rate, hardware utilization, and power consumption.

Added physical validation suite

These tests run series of short simulations and verify the expected statistical properties, e.g. of energy distributions
between the simulations, as a sensitive test that the code correctly samples the expected ensemble.

To run everything locally (which can take a few hours!) use

cmake -DGMX_PHYSICAL_VALIATION=ON ..
make
make check-phys-run

11.10. GROMACS 2018 series 852

https://doi.org/10.1063/1.4890371
https://doi.org/10.1063/1.4890371
https://doi.org/10.1063/1.4890371
https://doi.org/10.1103/PhysRevLett.108.190602

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Currently, the script is only running a few systems, checking convergence of energy conservation in NVE system
with decaying timestep, and the ensembles generated by a few thermostating and barostating algorithms. Other
systems and ensembles covering a broader combination of settings will be added over time.

Added reporting of conserved quantities for coupling algorithms

The work that some more coupling algorithms (Berendsen pressure, Berendsen temperature, and Parrinello-
Rahman pressure) applies on the system is calculated and integrated. Formulae are in the reference manual.

Added acceleration correction VCM mode

New mdp option to remove the center of mass translational velocity and correct the center of mass position,
assuming linear acceleration. This is useful e.g. for pulling on a group using an absolute reference.

Changed handling of gmx mdrun -gpu_id

As more code is able to be offloaded to the GPU, task assignment has become more complex, and is likely to
get more complex still. The -gpu_id command-line option now merely enables the user to restrict which of the
detected GPUs are available to the automated task assignment scheme, somewhat like the CUDA_VISIBLE_-
DEVICES environment variable. For the rare cases where full control is needed, gmx mdrun -gputasks is
available and documented in the user guide.

Added log output for equivalent 1x1 pair-list setup

The GROMACS NxM setup can use a shorter pair-list buffer than other codes’ simpler 1x1 scheme, so our log
files now report the equivalent setup, to help people doing performance and correctness comparisons.

New mdp input for electric fields

EW3DC for non-neutral systems

Added the corrections to force and energy according to Ballenegger, Arnold, and Cerda, J. Chem. Phys. 131,
094107 2009 (https://doi.org/10.1063/1.3216473). Hinted that people read https://doi.org/10.1021/ct400626b to
help make good choices. Added a warning in grompp for charged systems with Ewald.

Reduce rounding errors in SETTLE

The parameters for SETTLE are now computed in double precision, which lowers the systematic error.

Made gmx mdrun -pforce terminate with non-finite forces

The gmx mdrun (page 215) option -pforce used to print non-finite forces, but would not terminate the run if any
were found. Now a fatal error is issued.

11.10. GROMACS 2018 series 853

https://doi.org/10.1063/1.3216473
https://doi.org/10.1021/ct400626b

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Performance improvements

Implemented support for PME long-ranged interactions on GPUs

A single GPU can now be used to accelerate the computation of the long-ranged PME interactions. This feature
provides excellent performance improvements, in particular that only 2-4 CPU cores per GPU will be about as
fast as the 2016 version that needed many more CPU cores to balance the GPU. Performance on hardware that
had good balance of GPU and CPU also shows minor improvements, and the capacity for hardware with strong
GPUs to run effective simulations is now greatly improved.

Currently, the GPU used for PME must be either the same GPU as used for the short-ranged interactions and in the
same single rank of the simulation, or any GPU used from a PME-only rank. mdrun -pme gpu now requires that
PME runs on a GPU, if supported. All CUDA versions and hardware generations supported by GROMACS can
run this code path, including CUDA 9.0 and Volta GPUs. However, not all combinations of features are supported
with PME on GPUs - notably FEP calculations are not yet available.

The user guide is updated to reflect the new capabilities, and more documentation will be forthcoming.

Added more SIMD intrinsics support for PME spread and gather

Achieved speedup on Intel KNL processors of around 11% for PME spread/gather on typical simulation systems.

Added SIMD intrinsics version of simple update

In the simple case of leap-frog without pressure coupling and with at most one temperature-coupling group, the
update of velocities and coordinates is now implemented with SIMD intrinsics for improved simulation rate.

Add SIMD intrinsics version of Urey-Bradley angle kernel

For steps where energies and shift forces are not required, this kernel improves performance, which can otherwise
be rate limiting in GPU-accelerated runs, particularly with CHARMM force fields.

Use OpenMP up to 16 threads with AMD Ryzen when automating run setup

AMD Ryzen appears to always perform slightly better with OpenMP than MPI, up to using all 16 threads on the
8-core die.

128-bit AVX2 SIMD for AMD Ryzen

While Ryzen supports 256-bit AVX2, the internal units are organized to execute either a single 256-bit instruction
or two 128-bit SIMD instruction per cycle. Since most of our kernels are slightly less efficient for wider SIMD,
this improves performance by roughly 10%.

11.10. GROMACS 2018 series 854

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Choose faster nbnxn SIMD kernels on AMD Zen

On AMD Zen, tabulated Ewald kernels are always faster than analytical. And with AVX2_256 2xNN kernels are
faster than 4xN. These faster choices are now made based on CpuInfo at run time.

Refs Issue 2328

Enabled group-scheme SIMD with GMX_SIMD=AVX2_128

The group-scheme kernels can use AVX instructions from either the AVX_128_FMA and AVX_256 extensions.
But hardware that supports the new AVX2_128 extensions also supports AVX_256, so we enable such support for
the group-scheme kernels.

Detect AVX-512 FMA units to choose best SIMD

Recent Intel x86 hardware can have multiple AVX-512 FMA units, and the number of those units and the way
their use interacts with the way the CPU chooses its clock speed mean that it can be advantageous to avoid using
AVX-512 SIMD support in GROMACS if there is only one such unit. Because there is no way to query the
hardware to count the number of such units, we run code at CMake and mdrun time to compare the performance
from using such units, and recommend the version that is best. This may mean that building GROMACS on the
front-end node of the cluster might not suit the compute nodes, even when they are all from the same generation
of Intel’s hardware.

Speed up nbnxn buffer clearing

Tweaked conditional in the nonbonded GPU kernels

GPU compilers miss an easy optimization of a loop invariant in the inner-lop conditional. Precomputing part of
the conditional together with using bitwise instead of logical and/or improves performance with most compilers
by up to 5%.

Improvements to GROMACS tools

Split off the NMR related analyses from gmx energy.

A new tool gmx nmr (page 227) is created by straight copying code from gmx energy (page 177) to a new tool.
The reason is to reduce complexity.

A few cleanups are introduced to pass the valgrind memory test.

Added references the gmx nmr (page 227) in the manual.

Added selection-enabled gmx trajectory

For now, this tool only plots coordinates, velocities, and forces for selections, so it should provide a full replace-
ment for -ox, -ov, -of, -com, and -mol from gmx traj (page 275).

11.10. GROMACS 2018 series 855

https://gitlab.com/gromacs/gromacs/-/issues/2328

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Decreased memory usage in gmx traj and gmx trjconv

Made TNG writing work with multiple identical steps

Introduce a wrapper structure around TNG so we detect and correct for cases when writing multiple frames with
the same step, or non-zero initial steps to TNG files. This will avoid frames overwriting each other, and make sure
the time per frame is correct.

Issue 2189

Improved frame time/step handling in gmx trjconv

Store the exact step in PDB/GRO file headers, and be more careful about not claiming to have time or step
information when it was not available. This change will avoid some of the problems described in Issue 2189, but
it does not yet properly fix the issue in the TNG library.

Issue 2189

Fixed gmx trjconv to always dump at correct time

Set frame timestep before starting the loop by reading first two frames and rewinding, and make sure we always
write something to the dump output based on best-guess (if there is at least one input frame present).

Issue 1832

Clarified gmx editconf help text

It is possible that users can confuse -c with -center so this patch makes it clear that -center doesn’t do anything
unless the user really wants to shift the center of the system away from the middle of the box.

Fixes Issue 2171

Added option -water tips3p to pdb2gmx.

Fixes Issue 2272

Removed incorrect comment for CHARMM tips3p

Removed CHARMM tips3p performance warning in gmx pdb2gmx (page 235) input file, since the performance
loss is negligible with the cutoff-scheme=Verlet (page 48).

Avoided gmx grompp charge warning from merely rounding error

Even though the gmx grompp (page 190) total charge check uses double for summation, there are rounding errors
for each charge when charges are stored in single precision. Now the charge check rounds the net charge of
molecules to integer when the difference is less than the maximum possible sum of charge rounding errors.

Fixes Issue 2192

11.10. GROMACS 2018 series 856

https://gitlab.com/gromacs/gromacs/-/issues/2189
https://gitlab.com/gromacs/gromacs/-/issues/2189
https://gitlab.com/gromacs/gromacs/-/issues/2189
https://gitlab.com/gromacs/gromacs/-/issues/1832
https://gitlab.com/gromacs/gromacs/-/issues/2171
https://gitlab.com/gromacs/gromacs/-/issues/2272
https://gitlab.com/gromacs/gromacs/-/issues/2192

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improved pdb2gmx for nonstandard residue types

If explicit non-blank chain identifiers are set, it will now be a hard error if the residue types in each chain do not
match. For blank chain ID we still need to allow detection of non-chain parts, but this case too now provides more
explicit output information.

Issue 2370

Allowed empty lines in hdb files

Skip lines that consist only of whitespace. Not a universal solution for fixing hdb files, but better than the user
getting very strange error messages that don’t say anything about whitespace.

Issue 2028

Changed to no longer require matching names between rtp and tdb files

This was only documented in the source. It’s a remnant from the days when all force fields were in the same
directory, and no longer necessary. With this change we will properly match all termini to all amino acids.

Issue 2026 Issue 2027

Made duplicate atoms in bondeds an error in gmx grompp

Having duplicate atom indices in bonded interactions used to be only a warning. But since in nearly all cases this
will lead to issues, this is now a error, except for angle restraints where it can be useful so there it is now a note.

Issue 2141

Made gmx grompp -r obligatory with position restraints

With position restraints it would often occur that users accidentally used equilibrated coordinates instead of the
original coordinates for position restraint coordinates due to -r defaulting to -c. Now -r always need to be supplied
with position restraints, but using the same file name as with -c will reproduce the old behavior.

Fixed gmx msd when using COM removal and molecules

Changed order of code to actually assign correct coordinates before copying the data, and modified data structure
size when using COM removal and individual molecules.

Issue 2043

Fixed index error in gmx chi

An error in the index construction could lead to segfaults. However, the actual indices were correct, so it should
not have produced any incorrect results.

Issue 1814

11.10. GROMACS 2018 series 857

https://gitlab.com/gromacs/gromacs/-/issues/2370
https://gitlab.com/gromacs/gromacs/-/issues/2028
https://gitlab.com/gromacs/gromacs/-/issues/2026
https://gitlab.com/gromacs/gromacs/-/issues/2027
https://gitlab.com/gromacs/gromacs/-/issues/2141
https://gitlab.com/gromacs/gromacs/-/issues/2043
https://gitlab.com/gromacs/gromacs/-/issues/1814

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed gmx grompp complexity for large exclusion orders

To avoid exploding computational complexity for highly connected molecules with large values for excluded
neighbors, avoid adding a neighbor to the temporary nnb structure if it is already present as a lower-order neighbor.

Issue 2260

Fixed gmx density for non-mass calculations

We now always use mass and never charge/electron density to center systems.

Issue 2230

Fixed gmx check for tprs with different numbers of atoms

Fixes Issue 2279

Bugs fixed

Fixed multiple time stepping with Parrinello-Rahman and Nose-Hoover.

These now work in correct Trotter style, applied once and scaled by the correct number of steps.

Fixes Issue 2031 Fixes Issue 2032

Applied Berendsen pressure coupling only at nstpcouple steps

Berendsen pressure coupling was mistakenly applied on successive steps. Since there is no need for this, this is
changed to act only on nstpcouple steps. Note that this change prevents continuation from old checkpoint files for
Berendsen pressuring-coupling runs, since the previous-step pressure is no longer stored.

Added missing Ewald correction for PME-User

With coulombtype=PME-User (page 50), the Ewald mesh energy was not subtracted leading to (very) incor-
rect Coulomb energies and forces.

Fixes Issue 2286

Fixed incorrect dV/dlambda for walls

The free-energy derivative dV/dlambda for walls, which can be perturbed by changing atom types of non-wall
atoms, only contained the B-state contribution.

Fixes Issue 2267

11.10. GROMACS 2018 series 858

https://gitlab.com/gromacs/gromacs/-/issues/2260
https://gitlab.com/gromacs/gromacs/-/issues/2230
https://gitlab.com/gromacs/gromacs/-/issues/2279
https://gitlab.com/gromacs/gromacs/-/issues/2031
https://gitlab.com/gromacs/gromacs/-/issues/2032
https://gitlab.com/gromacs/gromacs/-/issues/2286
https://gitlab.com/gromacs/gromacs/-/issues/2267

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Supported OpenMP for orientation restraints

Previously this was broken, but has been fixed and is now tested and supported.

Fixed orientation restraint reference

The resetting of the COM of the molecule with orientation restraints for fitting to the reference structure was done
with the COM of the reference structure instead of the instantaneous structure. This does not affect the restraining
(unless ensemble averaging is used), only the printed orientation tensor.

Fixes Issue 2219

Used graph with orientation restraints

With the Verlet cut-off scheme by default molecules are not made whole. Now they are made whole when orien-
tation restraints are used. Added checks and assertions for correct PBC treatment with orientation restraints.

Fixes Issue 2228

Fixed Ekin at step 0 with COM removal

The kinetic energy at step 0 was computed from the velocities without the center of mass velocity removed. This
could cause a relatively large jump in kinetic energy, especially for small systems. Now compute_globals is called
twice with COM removal so we get the correct kinetic energy.

Fixed gmx grompp with Andersen massive and no COM removal

Fixed a floating point exception leading to a segv. Also fixed possible different rounding for the interval for
Andersen massive in gmx grompp (page 190) in mdrun for the common case where tau-t is a multiple of delta-t.

Fixes Issue 2256

Improved Verlet buffer constraint estimate

The displacement estimate for a constrained atom (typically H) rotating around the COM with a partner atom is
now derived and documented correctly. Note that we (still) use a Gaussian with matched variance, which results
in a much larger buffer than necessary, since the tail of the displacement distribution sets the buffer size and the
Gaussian has a long tail whereas the actual distribution has no tail.

Fixed virtual site generation for water oxygens not named OW

gmx pdb2gmx (page 235) would break when generating virtual sites if water oxygens were not named OW. Now
checking for the atomnumber instead.

Fixes Issue 2268

11.10. GROMACS 2018 series 859

https://gitlab.com/gromacs/gromacs/-/issues/2219
https://gitlab.com/gromacs/gromacs/-/issues/2228
https://gitlab.com/gromacs/gromacs/-/issues/2256
https://gitlab.com/gromacs/gromacs/-/issues/2268

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed thread-MPI rank choice for orientation restraints

Only a single rank is supported, so that must be what the thread-MPI code will choose. There’s another check
later on that catches the multi-rank MPI case.

Fixed some incorrect behavior with gmx solvate

gmx solvate (page 268) cannot replicate non-rectangular solvent boxes correctly (there are several different places
that assume a diagonal box matrix), so give a fatal error if that is attempted. To support some uses with triclinic
boxes, skip the replication step if the solvent and target box sizes are already equal.

Support for general triclinic boxes can be added separately, and the check introduced here can be valuable even in
that case: it keeps a pre-equilibrated solvent box intact if the target box size is the same.

Related to fix of Issue 2148

Fixed DD exact continuation in reproducible node

With domain decomposition, the local atom density, used for setting the search grid for sorting particles, was
based on the local atom count including atoms/charge groups that would be moved to neighboring cells. This lead
to a different density value, which in turn could result in a different number of search grid cells and thus a different
summation order during a run compared with continuing that run from a checkpoint, when no atoms would be
moved. That difference violated the intention of mdrun -reprod, and is now fixed.

Refs Fixes Issue 2318

Made mdrun only stop at nstlist steps with mdrun -reprod

Stopping mdrun with two INT or TERM signals (e.g. from Ctrl-C from the terminal shell) would always happen
right after the first global communication step. But this breaks exact continuation. Now with mdrun -reprod
a second signal will still stop at a pair-list generation step, like with the first signal, so we can still have exact
continuation.

Fixes Issue 2318

Added check for GPU detection support before detecting GPU devices

When a CUDA-enabled binary was run on a node with no CUDA driver available, a note was issued that the
version of the CUDA driver is insufficient, which was wrong and now fixed.

Fixes Issue 2322

Removed duplicated lines from OPLS ffbonded.itp

Identical lines have been removed, as identified with uniq.

Fixes Issue 1678.

11.10. GROMACS 2018 series 860

https://gitlab.com/gromacs/gromacs/-/issues/2148
https://gitlab.com/gromacs/gromacs/-/issues/2318
https://gitlab.com/gromacs/gromacs/-/issues/2318
https://gitlab.com/gromacs/gromacs/-/issues/2322
https://gitlab.com/gromacs/gromacs/-/issues/1678

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

mdrun no longer warns about NVML clocks that are at max

If the clocks are already maxed out there is no point in echoing warnings about not being able to set them.

Fixes Issue 2313.

Used reduced default tolerances for tpx comparison

The tolerances for gmx check are mainly intended for handling slight statistical deviations, but they can hide
differences between tpr files, when the user likely wants exact checks on small quantities like Lennard-Jones
parameters. This changes changes the default relative tolerance to 0.000001 and the absolute tolerance to zero, so
that we only allow for any minor differences due to compiler optimization.

Fixes Issue 2024.

Fixed return values of frame-reading functions

This function was based on read_first_x that returned the number of atoms, and was documented to do the same,
but has always returned a logical boolean about whether a frame has been read. This led to aspects of gmx
spatial and gmx trjcat -demux being broken.

Fixed by returning a proper bool, and fixing the remaining logic that used the return value in a non-boolean sense.

Refs Issue 2157

Removed PBC before generating TPR with group scheme

Ensure that all molecules have been made whole before generating the run input file when using the group scheme,
to avoid error messages for large charge groups when molecules are broken over PBC boundaries.

Fixes Issue 2339

Fixed PBC error in gmx_spatial

Fixes Issue 2157.

Documented power spectrum options of gmx velacc

Fixes Issue 2019.

Changed to require .tpr file for gmx cluster

The program could crash without it, so it wasn’t optional.

Fixes Issue 2170.

11.10. GROMACS 2018 series 861

https://gitlab.com/gromacs/gromacs/-/issues/2313
https://gitlab.com/gromacs/gromacs/-/issues/2024
https://gitlab.com/gromacs/gromacs/-/issues/2157
https://gitlab.com/gromacs/gromacs/-/issues/2339
https://gitlab.com/gromacs/gromacs/-/issues/2157
https://gitlab.com/gromacs/gromacs/-/issues/2019
https://gitlab.com/gromacs/gromacs/-/issues/2170

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Disallowed ascii formats for gmx trjcat

Since gmx trjcat (deliberately) does not use any .tpr file, the tool can’t handle trajectory formats such as .gro or
.pdb where atom/residue names are needed.

Fixes Issue 2225.

Improved grompp missing-parameters error message

If an interaction entry had parameters but not the function type, then the error message has been confusing.
Note that even when only one function type is implemented, the field is still required, which makes for ready
extensibility.

Refs Issue 2144

Checked for large energy at first step

Also added step number to fatal error message.

Fixes Issue 2333

Disallowed combination of PME-user and verlet cutoff

Fixes Issue 2332

Avoided confusing message at end of non-dynamical runs

Energy minimization, test-particle insertion, normal-mode analysis, etc. are not targets for performance optimiza-
tion so we will not write performance reports. This commit fixes an oversight whereby we would warn a user
when the lack of performance report is normal and expected.

Fixes Issue 2172

Changed to require -ntmpi when setting -ntomp and using GPUs

With GPUs and thread-MPI, setting only gmx mdrun -ntomp could lead to oversubscription of the hardware
threads. Now, with GPUs and thread-MPI the user is required to set -ntmpiwhen using -ntomp. Here we chose
that to also require -ntmpi when the user specified both -nt and -ntomp; here we could infer the number of
ranks, but it’s safer to ask the user to explicity set -ntmpi. Note that specifying both -ntmpi and -nt has
always worked correctly.

Fixes Issue 2348

Removed features

Removed hybrid GPU+CPU nonbonded mode

This mode was not very useful, since it ran the non-local non-bonded interactions on the CPU. The fraction of
non-local interaction is set by the domain decomposition, so this is not flexible. Also this mode was not being
tested.

11.10. GROMACS 2018 series 862

https://gitlab.com/gromacs/gromacs/-/issues/2225
https://gitlab.com/gromacs/gromacs/-/issues/2144
https://gitlab.com/gromacs/gromacs/-/issues/2333
https://gitlab.com/gromacs/gromacs/-/issues/2332
https://gitlab.com/gromacs/gromacs/-/issues/2172
https://gitlab.com/gromacs/gromacs/-/issues/2348

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

QM/MM: removed optimization and transition-state search

These functionalities used to only work with old versions of Orca, had very limited use and will possibly not work
any longer now.

Updated application clock handling on Pascal+ GPUs

Starting with Pascal (CC >= 6.0) it is no longer possible to change application clocks without root privileges.
Application clocks are still reported for Pascal+, but there is no longer suggestions about changing them.

Removed continuation from gmx convert-tpr

Removed the obsolete option of gmx convert-tpr (page 146) to write a tpr file for continuation using a trajectory
and energy file. This is superseded by checkpointing.

Portability

Enabled compiling CUDA device code with clang

clang can be used as a device compiler by setting GMX_CLANG_CUDA=ON. A CUDA toolkit (>=7.0) is also
needed. Note that the resulting runtime performance is usually worse than that of binaries compiled by the official
NVIDIA CUDA compiler (nvcc).

Increased the oldest cmake, compiler and CUDA versions required

We now require gcc-4.8.1, clang-3.3 and icc-17.0.1, so we can rely on full C++11 support. We now also require
CUDA-6.5 and CMake-3.4.3.

Added check that CUDA available hardware and compiled code are compatible

Added an early check to detect when the gmx mdrun (page 215) binary does not embed code compatible with the
GPU device it tries to use nor does it have PTX that could have been just-in-time compiled.

Additionally, if the user manually sets GMX_CUDA_TARGET_COMPUTE=20 and no later SM or COMPUTE
but runs on >2.0 hardware, we’d be executing just-in-time-compiled Fermi kernels with incorrect host-side code
assumptions (e.g amount of shared memory allocated or texture type). This change also prevents such cases.

Fixes Issue 2273

Disabled ARM Neon native rsqrt iteration used in short-ranged interactions

Fixes Issue 2261

11.10. GROMACS 2018 series 863

https://gitlab.com/gromacs/gromacs/-/issues/2273
https://gitlab.com/gromacs/gromacs/-/issues/2261

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Avoided FTZ triggering simd test failures

For very small arguments on platforms without FMA support, the Intel compiler’s default usage of flush-to-zero
for denormal values can lead to slight deviations. Since this is a range we really don’t care about, and non-FMA
platforms are anyway a thing of the past, just avoid testing a very small range around that threshold for non-FMA
SIMD platforms.

Issue 2335

Fixed OpenCL compiles on Mac OS

Confirmed to work on Mac OS 10.13.2 running on a Macbook Pro with Radeon Pro 560.

Issue 2369

Tested that nvcc/host compiler combination works

We now compile a trivial CUDA program during a run of CMake to catch both unsupported nvcc/host compiler
version combinations and other unknown errors.

Issue 1616

Added AVX_512 and KNC symbols to FFTW SIMD test

Otherwise the CMake code might complain loudly about FFTW not being accelerated on KNC or KNL hosts.

Implemented changes for CMake policy 0068

CMake-3.9 introduced a changed behavior for RPATH vs. install_name options on OS X. This avoids relying on
functionality that will be removed in future CMake versions.

Miscellaneous

Updated note in manual on stochastic dynamics integrator

The comment in the SD section about Berendsen was outdated. Added a few sentences on equilibration/damping
of modes.

Added grompp note for Parrinello-Rahman + position restraints

This combination can be unstable and is often not desirable, so grompp now issues a note to suggest alternatives
to the user.

Refs Issue 2330

11.10. GROMACS 2018 series 864

https://gitlab.com/gromacs/gromacs/-/issues/2335
https://gitlab.com/gromacs/gromacs/-/issues/2369
https://gitlab.com/gromacs/gromacs/-/issues/1616
https://gitlab.com/gromacs/gromacs/-/issues/2330

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Clarified the description of Fmax during energy minimization

Improved vsite parallel checking

The vsite struct now stores internally whether it has been configured with domain decomposition. This allows for
internal checks on valid commrec, which have now been added, and would have prevented Issue 2257.

Added partial support for writing masses and partial charges with TNG files

Issue 2188

Updated TNG to version 1.8.1

Added data block for atom masses.

Fixes Issue 2187 and Issue 2250 and other bugs and warnings.

Added load balance fraction to DLB print

DLB can often be based on a small fraction of the total step time, especially with GPUs. Now this is printed to
md.log and stderr.

Added reference for dihedral function in OPLS.

The OPLS four-term dihedral function was not described in the reference listed earlier, so this was updated. Also
updated the reference to the three term dihedral to an older paper.

Updated many aspects of the documentation

Imported and updated more material from the wiki. Incorporated suggestions arising from many tracked issues.
Updated user guide, developer guide, install guide, and reference manual.

Updated mdrun signal help text

Updated mdrun help text on signal handling for old and recent changes to the behavior.

Fixes Issue 2324

Changed to handle erroneous command line args better

Some gmx modules need to be able to accept non-option arguments, and some should not. Introduced enough
functionality to support such behaviour, while giving useful error messages in cases where the command line is
merely missing hyphens (which can happen e.g. when people copy-paste from inconveniently built PDF files for
tutorials). Increased test coverage of relevant cases.

Removed some useless command-line argument strings from test cases that never needed them.

Also tested some behaviours of handling string options, and renamed some test input strings to reflect the intent.

Issue 2153

11.10. GROMACS 2018 series 865

https://gitlab.com/gromacs/gromacs/-/issues/2257
https://gitlab.com/gromacs/gromacs/-/issues/2188
https://gitlab.com/gromacs/gromacs/-/issues/2187
https://gitlab.com/gromacs/gromacs/-/issues/2250
https://gitlab.com/gromacs/gromacs/-/issues/2324
https://gitlab.com/gromacs/gromacs/-/issues/2153

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Changed to no longer allow multiple energy groups for GPU runs

Exit with a fatal error instead of only warning, since the latter leads to writing data for energy groups that is
incorrect to the energy file.

Issue 1822

Removed duplications in GMXLIB search paths

Remove entries that are duplicated, or identical to the default search path, to avoid e.g. listing identical force fields
multiple times.

Issue 1928

Changed to no longer write reference pull group 0 to log

This is an internal group used for absolute references, which cannot be set by users, so printing it just leads to
confusion.

Issue 2143

11.11 GROMACS 2016 series

11.11.1 Patch releases

GROMACS 2016.5 Release Notes

This version was released on February 16, 2018. These release notes document the changes that have taken place
in GROMACS since version 2016.4 to fix known issues. It also incorporates all fixes made in version 5.1.5 (which
was the last planned release in that series).

Fixes where mdrun could behave incorrectly

Fixed triclinic domain decomposition bug

With triclinic unit-cells with vectors a,b,c, the domain decomposition would communicate an incorrect halo along
dimension x when b[x]!=0 and vector c not parallel to the z-axis. The halo cut-off bound plane was tilted incorrect
along x/z with an error approximately proportional to b[x]*(c[x] - b[x]*c[y]/b[y]). When c[x] > b[x]*c[y]/b[y],
the communicated halo was too small, which could cause instabilities or silent errors. When c[x] < b[x]*c[y]/b[y],
the communicated halo was too large, which could cause some communication overhead.

Issue 2125

Required -ntmpi with setting -ntomp with GPUs

With GPUs and thread-MPI, setting only -ntomp could lead to oversubscription of the hardware threads. Now
with GPUs and thread-MPI the user is required to set -ntmpi when using -ntomp. Here we chose that to also
require -ntmpi when the user specified both -nt and -ntomp; here we could infer the number of ranks, but
it’s safer to ask the user to explicity set -ntmpi. Note that specifying both -ntmpi and -nt has always worked
correctly.

Issue 2348

11.11. GROMACS 2016 series 866

https://gitlab.com/gromacs/gromacs/-/issues/1822
https://gitlab.com/gromacs/gromacs/-/issues/1928
https://gitlab.com/gromacs/gromacs/-/issues/2143
https://gitlab.com/gromacs/gromacs/-/issues/2125
https://gitlab.com/gromacs/gromacs/-/issues/2348

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Prevented dynamic load balancing activating immediately after exchange

Turning on DLB right after exchanging replicas caused an assertion failure and is also useless.

Issue 2298

Avoided confusing message at end of non-dynamical runs

EM, TPI, NM, etc. are not targets for performance optimization so we will not write performance reports. This
commit fixes and oversight whereby we would warn a user when the lack of performance report is normal and
expected.

Issue 2172

Changed to issue fewer messages when -cpi checkpoint file is not present

Removed duplicated message.

Issue 2173

Disallowed combination of PME-user and Verlet cutoff

Issue 2332

Added missing Ewald correction for pme-user

With coulomb-type = pme-user, the Ewald mesh energy was not subtracted leading to (very) incorrect
Coulomb energies and forces.

Issue 2286

Fixed thread-MPI rank choice for orientation restraints

Only a single rank is supported, so that must be what the thread-MPI code will choose. There’s another check
later on that catches the multi-rank MPI case.

Fixed nstlist increase warning print

The log file warning message had a buggy conditional which this commit fixes.

Removed incorrect comment for CHARMM tips3p

Fixed incorrect dV/dlambda for walls

The free-energy derivative dV/dlambda for walls, which can be perturbed by changing atom types of non-wall
atoms, only contained the B-state contribution.

Issue 2267

11.11. GROMACS 2016 series 867

https://gitlab.com/gromacs/gromacs/-/issues/2298
https://gitlab.com/gromacs/gromacs/-/issues/2172
https://gitlab.com/gromacs/gromacs/-/issues/2173
https://gitlab.com/gromacs/gromacs/-/issues/2332
https://gitlab.com/gromacs/gromacs/-/issues/2286
https://gitlab.com/gromacs/gromacs/-/issues/2267

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed warning for confout with periodic molecules

With periodic molecules, gmx mdrun would incorrectly attempt to make molecules whole for writing the final
state to confout.

Issue 2275

Fixed wrong megaflop accounting

Some nrnb index entries were missing in the interaction_function array, leading to that wrong megaflops account-
ing printed.

Issue 2274

Fixes for gmx tools

Fixed gmx grompp net charge check

The grompp check for the net charge would ignore molecule blocks at the end when molecule types are used in
multiple, non consecutive molecule blocks.

Issue 2407

Extended gmx grompp missing energy term message

Issue 2301

Fixed gmx genion charge summation accuracy

gmx genion accumulated the charge is a float, which could cause underestimation of the net charge for highly
charged systems.

Issue 2290

Fixed gmx check for tprs with different #atoms

Issue 2279

Fixed gmx grompp with Andersen massive and no COM removal

Fixed a floating point exception leading to a crash. Also fixed possible different rounding for the interval for
Andersen massive in gmx grompp from gmx mdrun for the common case where tau_t is a multiple of
delta_t.

Issue 2256

11.11. GROMACS 2016 series 868

https://gitlab.com/gromacs/gromacs/-/issues/2275
https://gitlab.com/gromacs/gromacs/-/issues/2274
https://gitlab.com/gromacs/gromacs/-/issues/2407
https://gitlab.com/gromacs/gromacs/-/issues/2301
https://gitlab.com/gromacs/gromacs/-/issues/2290
https://gitlab.com/gromacs/gromacs/-/issues/2279
https://gitlab.com/gromacs/gromacs/-/issues/2256

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improved documentation

Updated documention of Nose-Hoover output

The documentation of Nose-Hoover chain variable printing was (long) outdated.

Issue 2301

Clarified docs for Fmax in EM

GROMACS 2016.4 Release Notes

This version was released on September 15, 2017. These release notes document the changes that have taken place
in GROMACS since version 2016.3 to fix known issues. It also incorporates all fixes made in version 5.1.4 and
several since.

Fixes where mdrun could behave incorrectly

Disabled PME tuning with the group scheme

PME tuning with the group cut-off scheme did not work correctly. Interactions between charge-group pairs at
distances between rlist and rcoulomb can go missing. The group scheme is deprecated, and this issue would
require considerable effort to fix and test, so we have simply disabled PME tuning with the group scheme.

Issue 2200

Fixed value of Ewald shift

In all the Ewald short-ranged kernel flavours, the value of the potential at the cutoff is subtracted from the potential
at the actual distance, which was done incorrectly (failing to divide the shift value by cutoff distance). Fortunately,
the value of that distance is often close to 1, and the inconsistent shifts often cancel in practice, and energy
differences computed on neighbour lists of the same size will have the error cancel. The difference doesn’t even
show up in the regressiontests, but would if we had a unit test of a single interaction.

Issue 2215

Fixed orientation restraint reference

The resetting of the COM of the molecule with orientation restraints for fitting to the reference structure was done
with the COM of the reference structure instead of the instantaneous structure. This does not affect the restraining
(unless ensemble averaging is used), only the printed orientation tensor.

Issue 2219

Fixed bugs with setup for orientation restraints

The orientation restraint initialization got moved to before the initialization of the domain decomposition, which
made the check for domain decomposition fail. Also fixed orientation restraints not working with the whole
system as fitting group.

11.11. GROMACS 2016 series 869

https://gitlab.com/gromacs/gromacs/-/issues/2301
https://gitlab.com/gromacs/gromacs/-/issues/2200
https://gitlab.com/gromacs/gromacs/-/issues/2215
https://gitlab.com/gromacs/gromacs/-/issues/2219

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Worked around missing OpenMP implementation in orientation restraints

The orientation restraint code is not aware of OpenMP threads and uses some global information. By only running
it on the master rank, results are now independent of number of threads used.

Issue 2223

Enable group-scheme SIMD kernels on recent AVX extensions

The group-scheme code only runs using the feature set of AVX_256, but that is supported on the more recent
hardware, so we should have the group scheme run with the maximum suitable SIMD. With previous releases,
building AVX_256 binaries was required for best performance with the (deprecated) group scheme.

Fix FEP state with rerun

When using FEP states with rerun, the FEP state was always 0.

Issue 2244

Fixed COM pull force with SD

The reported COM pull force when using the SD integrator was random only. Now the pull force is summed over
the systematic and random SD update components. A better solution is to not add the random force at all, but such
a change should not be done in a release branch.

Issue 2201

Fix PBC bugs in the swap code

Issue 2245

Fixed flat-bottomed position restraints with multiple ranks

Reallocation was never done for flat-bottomed restraints, during domain decomposition, so the indexing could go
out of range, leading to segfaults.

Issue 2236

Fixed null pointer print in DD

Fixed a (rather harmless) print of a null pointer string during DD initialization. This would only show up with
gmx mdrun -dlb yes.

11.11. GROMACS 2016 series 870

https://gitlab.com/gromacs/gromacs/-/issues/2223
https://gitlab.com/gromacs/gromacs/-/issues/2244
https://gitlab.com/gromacs/gromacs/-/issues/2201
https://gitlab.com/gromacs/gromacs/-/issues/2245
https://gitlab.com/gromacs/gromacs/-/issues/2236

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improved the “files not present” error message

It’s possible to use gmx mdrun -deffnm in restarts even if it wasn’t used in the initial simulation. This can
lead to absurd situations such as:

Expected output files not present or named differently:
pullx.xvg pullf.xvg

where pullx.xvg and pullf.xvg are present and named exactly as listed, but GROMACS expects them to
be named as -deffnm requested.

The improved error message suggest to the user to check for that possibility.

Issue 942 (partial workaround)

Fixed LJ-PME + switch grompp error

An error call was missing in grompp when LJ-PME was requested in combination with a force or potential switch
modifier.

Issue 2174

Fixed unused SIMD PME table kernel

The Verlet-scheme 2xNN PME kernel with tabulated correction had several issues. This kernel flavor could only
be selected manually by setting an environment variable, so no user simulations should be affected.

Issue 2247

Fixed bugs in most double-precision Simd4 implementations

The double precision version of reduce() and dotProduct() returned a float with AVX2_256, AVX_256, AVX_-
128_FMA, AVX_512, MIC and IBM_QPX. Only reduce() is used in double, in the PME force gather, and the
difference is small.

Issue 2162

Avoid inf in SIMD double sqrt()

Arguments > 0 and < float_min to double precision SIMD sqrt() would produce inf on many SIMD architectures.
Now sqrt() will return 0 for arguments in this range, which is not fully correct, but should be unproblematic.

Issue 2164 Issue 2163

Fix NVML error messages

These should refer to the API calls that failed, e.g. when users lack permissions to change clocks.

11.11. GROMACS 2016 series 871

https://gitlab.com/gromacs/gromacs/-/issues/942
https://gitlab.com/gromacs/gromacs/-/issues/2174
https://gitlab.com/gromacs/gromacs/-/issues/2247
https://gitlab.com/gromacs/gromacs/-/issues/2162
https://gitlab.com/gromacs/gromacs/-/issues/2164
https://gitlab.com/gromacs/gromacs/-/issues/2163

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed IMD interface malfunctions

Issue 2206

Fixed initial temperature reporting

When continuing a simulation from a checkpoint, mdrun could report double the intial temperature when
nstcalcenergy=1 or nsttcoupl=1. Note that this only affected reporting, the actual velocities were cor-
rect. Now the initial temperature is no longer reported for continuation runs, since at continuation there is no
“initial” temperature.

Issue 2199

Fix exception in SIMD LJ PME solve

Clear SIMD padding elements in solve helper arrays to avoid, otherwise harmles, fp overflow exceptions.

Issue 2242

Fixes for gmx tools

Fixed memory access issues in gmx solvate

There was out-of-bounds access if

1) the solvent configuration was given as a .pdb file, or

2) there was more than one type of residue in the solvent (which triggered sorting).

Also fix a memory leak in the sorting routine.

Should fix crashes mentioned in Issue 2148

Fixed a consistency check in gmx make_edi for flooding

If one sets up a flooding .edi input file with gmx make_edi, the code should check that one does not use of
the last 6 eigenvectors of the covariance matrix, which correspond to the rotational and translational degrees of
freedom. The check that was in the code erroneously checked against the number of eigenvalues neig that was
stored in the .xvg file, not against the total number of eigenvectors which depends on the number of atoms nav
used in gmx covar. Thus the original check would always fail if the .xvg eigenvalue file contained 1-6 values only.

Supported quiet trajectory-handling I/O

Permits GMX_TRAJECTORY_IO_VERBOSITY=0 to be set to keep frame-reading code quiet, which is conve-
nient for tools using libgromacs.

11.11. GROMACS 2016 series 872

https://gitlab.com/gromacs/gromacs/-/issues/2206
https://gitlab.com/gromacs/gromacs/-/issues/2199
https://gitlab.com/gromacs/gromacs/-/issues/2242
https://gitlab.com/gromacs/gromacs/-/issues/2148

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improved documentation

Migrated much content from the wiki to the user guide

This includes * expanding the “Performance” section, * reworking extending simulations, doing restarts and
reproducibility, * adding documentation for mdp option simulation-part. * adding documentation for issues
relating to floating-point arithmetic * adding documentation for run-time errors

Corrected the PDF manual to reflect that all tools are called gmx <tool>

There were still a few occurrences of the old-style g_tool naming, this patch removes. Deliberately left g_-
membed as is, because there was never a gmx membed, but instead it got incorporated into gmx mdrun.

Clarified gmx editconf help text

It is possible that users can confuse -c with -center so this patch makes it clear that -center doesn’t do
anything unless the user really wants to shift the center of the system away from the middle of the box.

Issue 2171

Added missing .mdp file documentation for the enforced rotation module

Fixed parameter description for dihedral_restraints

The force-constant parameter for dihedral_restraints was not documented in the table of interaction types.

Issue 2144

Replaced instance of “group” by “coord” in pull .mdp documentation

Portability enhancements

Supported CUDA 9/Volta for nonbonded kernels

Implemented production-quality support for Volta GPUs and CUDA 9.

The code was adapted to support changes to the nature of warp synchrony, without disturbing support for older
GPUs and/or CUDA. Further improvements may be seen (e.g. in the 2017 release).

Really enabled AVX512 in the GROMACS-managed build of FFTW

An earlier attempt to enable AVX512 on GCC 4.9 or newer and Clang 3.9 or newer was wrongly implemented.
Now this works on all compilers we officially support (MSVC, GCC, clang, ICC).

11.11. GROMACS 2016 series 873

https://gitlab.com/gromacs/gromacs/-/issues/2171
https://gitlab.com/gromacs/gromacs/-/issues/2144

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed aspects for compiling and running on Solaris

Fixed AVX512F compiler flags

Avoid using the MIC code generation flags for the Xeon code path.

Fixed compiler flags for using MKL

Fixes compilation issues with ARM SIMD

ARM_NEON has never supported double precision SIMD, so disabled it with GROMACS double-precision build.

The maskzR* functions used the wrong argument order in the debug-mode pre-masking (and sometimes in a
typo-ed syntax).

In the shift operators, the clang-based compilers (including the armclang v6 compiler series) seem to check that
the required immediate integer argument is given before inlining the call to the operator function. The inlining
seems to permit gcc to recognize that the callers always use an immediate. In theory, the new code might generate
code that runs a trifle slower, but we don’t use it at the moment and the cost might be negligible if other effects
dominate performance.

GROMACS 2016.3 Release Notes

This version was released on March 14, 2017. These release notes document the changes that have taken place
in GROMACS since version 2016.2 to fix known issues. It also incorporates all fixes made in version 5.1.4 and
several since.

Fixes where mdrun could behave incorrectly

Fixed mdrun with separate PME ranks hanging upon exit

A recent fix for another issue led to mdrun hanging while communicating with PME ranks to coordinate end-of-run
performance statistics.

Issue 2131

Fixed handling of previous virials with md-vv integrator

These quantities get written to checkpoint files only for the Trotter pressure-coupling integrators that need them,
but they were being copied in do_md for all Trotter integrators. This meant that an appending restart of md-vv
plus nose-hoover plus no pressure coupling truncated off a correct edr frame and wrote one with zero virial and
wrong pressure. And in the same case, a no-append restart writes a duplicate frame that does not agree with the
one written before termination.

Issue 1793

11.11. GROMACS 2016 series 874

https://gitlab.com/gromacs/gromacs/-/issues/2131
https://gitlab.com/gromacs/gromacs/-/issues/1793

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed an incorrect check that nstlog != 0 for expanded ensembles

The original version was accidentally reversed, causing it to fail when nstlog was not equal to 0.

Fixes for gmx tools

Fixed gmx tune_pme detection of GPU support

Fixed spacing in gmx tune_pme call to thread-MPI mdrun

Fixed minor issues in gmx traj -av -af

Made the description of the xvg y-axis more useful. Also works for option -af.

Issue 2133

Removed rogue printing to xvg file in gmx mindist

gmx mindist -xvg none is now adhered to, and printing is preceded by a comment.

Issue 2129

Fixed bug in gmx solvate -shell if it yielded 0 SOL.

In the transition from genbox to solvate, some incorrect logic was introduced.

Issue 2119

Corrected output of gmx do_dssp -sc

This code has always written a probability, and not a percentage, so fixed the label. It still fits within the expected
8-character field.

Issue 2120

Improved documentation

Made several minor improvements to documentation and messages to users

Removed documentation of unimplemented gmx trjconv -clustercenter.

Introduced system preparation section to user guide, to create somewhere to document the use and limitations of
vdwradii.dat. Enchanced documentation of solvate and insert-molecules, similarly.

Issue 2094

11.11. GROMACS 2016 series 875

https://gitlab.com/gromacs/gromacs/-/issues/2133
https://gitlab.com/gromacs/gromacs/-/issues/2129
https://gitlab.com/gromacs/gromacs/-/issues/2119
https://gitlab.com/gromacs/gromacs/-/issues/2120
https://gitlab.com/gromacs/gromacs/-/issues/2094

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Documented that we now support AMD GCN on Mesa/LLVM

AMD GPUs using Mesa 17.0+ and LLVM 4.0+ run GROMACS using OpenCL.

Documented running Clang static analyzer manually

Portability enhancements

Enabled avx512 in the GROMACS FFTW build only if the compiler supports it

Enabling avx512 requires GCC 4.9 or newer or Clang 3.9 or newer. Since we support compilers older than those,
we can not afford to enable avx512 in GMX_BUILD_OWN_FFTW=on unconditionally.

Worked around false positives in SIMD test from bug in xlc 13.1.5

atan2(0,0) should return 0.0, which the GROMACS simd implementation does. However, since at least one
compiler produces -nan for the standard library version it’s better to compare with the known correct value rather
than calling std:atan2(0,0).

Issue 2102

Fixed compile with icc of GMX_SIMD=None

ICC defines invsqrt in math.h

GROMACS 2016.2 Release Notes

This version was released on February 7, 2016. These release notes document the changes that have taken place
in GROMACS since version 2016.1 to fix known issues. It also incorporates all fixes made in version 5.1.4 and
several since.

Fixes where mdrun could behave incorrectly

Add grompp check for equipartition violation risk for decoupled modes

When atoms involved in an angle with constrained bonds have very different masses, there can be very weakly
coupled dynamics modes. Default mdp settings are often not sufficiently accurate to obtain equipartitioning. This
change adds a grompp check for this issue.

Part of Issue 2071

Disallow overwriting of dihedral type 9

It is no longer allowed to repeat blocks of parameter of multiple lines for dihedrals of type 9. It is also no longer
allowed to override parameters or dihedrals of type 9. Both are too complex to properly check. It is still allowed
to repeat parameters blocks consisting of a single line. Repeating a block with the same parameters would lead to
incorrect dihedral potentials and forces.

Issue 2077

11.11. GROMACS 2016 series 876

https://gitlab.com/gromacs/gromacs/-/issues/2102
https://gitlab.com/gromacs/gromacs/-/issues/2071
https://gitlab.com/gromacs/gromacs/-/issues/2077

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed flat-bottom position restraints + DD + OpenMP

A (re)allocation was missing, causing a crash.

Issue 2095

Fixed multi-domain reruns

Old code cleanup led multi-domain rerun to crash because it failed to consider logic separated over two places.

Issue 2105

Fixes for mdrun performance issues

Corrected CUDA sm_60 performance

The kernel launch now suits the SM size of the GP100 architecture.

Fixes for gmx tools

Fixed some FFT handling in cross-corrrelation calculations

An array of complex number was created as an array of pointers and then passed to gmx_fft_1d. This does not
work.

Issue 2109

Fixed gmx rmsf -q -oq

This led to the PDB file containing B-factors using coordinates based on those from the -s file, rather than -q file.
gmx rmsf -oq was otherwise fine.

Fixed crash in gmx order

gmx order used a cumbersome floating point method to compute a histogram, leading to an index value that could
be negative.

Issue 2104

Fixed minor trjconv bug

gmx trjconv -novel -f in.pdb -o out.pdb probably works better now.

11.11. GROMACS 2016 series 877

https://gitlab.com/gromacs/gromacs/-/issues/2095
https://gitlab.com/gromacs/gromacs/-/issues/2105
https://gitlab.com/gromacs/gromacs/-/issues/2109
https://gitlab.com/gromacs/gromacs/-/issues/2104

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed time label print in gmx vanhove

Handled issuing warnings correctly in xpm2ps and membed

The code should not (over)write the output file before checking for errors. For membed, it is useful to require the
user to fix issues in their input file before we unilaterally over-write it.

Corrected documentation about eigenvalue handling

Some file format docs were out of step with the implementation in eigio.cpp.

The behaviour of gmx anaeig -eig -eig2 was not properly documented.

Made editconf B-factor attachment more useful in practice

B-factor values will be added to residues unless an index is larger than the number of residues or an option is
specified. Protein residue indices can start from any number and, in case they start from a large number, there is
no way to add B-factor values to residues.

This patch changes it to add B-factor values to residues unless the number of B-factor values is larger than the
number of residues.

Fixed possible memory error with long selections

If a selection was more than 1000 characters long and there was a whitespace exactly at the 1000 point, a buffer
overflow could occur. Replaced the buffer with std::string, simplifying the code significantly.

Issue 2086

Fixed use of position variables with plus/merge

If a selection contained a position variable (e.g., ‘com of . . . ’) that was used more than once, and at least one
of those uses was with plus/merge, there were out-of-bounds memory writes. This was caused by the internal
position structure not getting fully initialized. Incomplete initialization happens in all contexts with such variables,
but only plus/merge (and possibly permute) actually use the values that remained uninitialized, which caused them
to incorrectly compute the amount of memory required to store the result.

Issue 2086

Improved documentation

Made several minor improvements to documentation and messages to users

In particular, for selections:

• Explained resindex and resnr keywords in selection help.

• Explained how selection-enabled tools treat -s and -f input files.

Issue 2083

11.11. GROMACS 2016 series 878

https://gitlab.com/gromacs/gromacs/-/issues/2086
https://gitlab.com/gromacs/gromacs/-/issues/2086
https://gitlab.com/gromacs/gromacs/-/issues/2083

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Clarified use of tau-p and pcoupltype

grompp used to permit the erroneous “tau-p = 5 5”. This does not reflect that only one time constant is permitted
for pressure coupling (unlike group-based temperature coupling). The recent fix for Issue 1893 leads to the user
receiving a grompp warning, so this improves the docs to make clear that pressure coupling is different.

Issue 1893

Portability enhancements

Fixed x86 conditional on IBM s390x

The CpuInfoTest.SupportLevel test fails on IBM s390x because wrong condition was used.

Fixes: https://bugzilla.redhat.com/show_bug.cgi?id=1390149

Issue 2072

Build system enhancements

Fixed compilation with CMAKE_CXX_FLAGS=”-Wall -Werror”

Issue 2073

Stopped trying to use objdump –reloc in the build system on Mac

Recent Xcode objdump does not support –reloc.

The warning that is based on the output of running objdump was only implemented to work on Linux-like things,
so should not spam the cmake output on other platforms.

Improved the support for plugin loading in the build system

The mdrun-only and prefer-static-libs builds set the default for BUILD_SHARED_LIBS to off, which silently
disabled plugin support for things like VMD-based I/O handling.

Converted GMX_LOAD_PLUGINS to tri-state ON/OFF/AUTO so that if the preconditions for support are not
met we can have suitable behaviour in each case.

Issue 2082

Turn off hwloc support when static lib found

Hwloc dependencies are not resolved at CMake time when static libwloc.a is detected and in most of these cases
link-time errors will prevent building GROMACS. As it is hard for a user to know how to solve such cryptic errors
and hwloc is not a required dependency, we turn off hwloc support when a static lib is detected. The user can
override this on the cmake command line.

Issue 1919

11.11. GROMACS 2016 series 879

https://gitlab.com/gromacs/gromacs/-/issues/1893
https://gitlab.com/gromacs/gromacs/-/issues/1893
https://bugzilla.redhat.com/show_bug.cgi?id=1390149
https://gitlab.com/gromacs/gromacs/-/issues/2072
https://gitlab.com/gromacs/gromacs/-/issues/2073
https://gitlab.com/gromacs/gromacs/-/issues/2082
https://gitlab.com/gromacs/gromacs/-/issues/1919

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed build with GMX_EXTERNAL_TNG=ON

House-keeping that reduces users’ problems

Mdrun prints invalid performance data less often

If mdrun finished before a scheduled reset of the timing information (e.g. from mdrun -resetstep or mdrun -
resethway), then misleading timing information should not be reported.

Related, the default reset step for gmx tune_pme was increased to 1500.

Issue 2041

Added a runtime check for number of threads in bonded code

Replaced a debug assertion on the number of OpenMP threads not being larger than GMX_OPENMP_MAX_-
THREADS by fatal error. But since the listed-forces reduction is actually not required with listed forces, these are
now conditional and mdrun can run with more than GMX_OPENMP_MAX_THREADS threads.

Issue 2085

Fixed integer narrowing in TNG reading for long trajectories

Reading of TNG trajectories with sufficiently large numbers of frames could truncate integers used for frame
numbers. Fixed to use 64-bit integers as originally intended.

Fixed logic of TRR reading

When reading a trr file, reaching the end of the file was indistinguishable from a reading error or a magic-number
error. This is now fixed, restoring the intended behaviour in each case.

Issue 1926

GROMACS 2016.1 Release Notes

This version was released on October 28, 2016. These release notes document the changes that have taken place
in GROMACS since the initial version 2016 to fix known issues. It also incorporates all fixes made in version
5.1.4.

Made distance restraints work with threads and DD

The NMR distance restraints use several buffers for summing distances that were indexed based on the index of the
thread+domain local ilist force atoms. This gives incorrect results with OpenMP and/or domain decomposition.
Using the type index for the restraint and a domain- local, but not thread-local index for the pair resolves these
issues. The are now only two limitations left:

• Time-averaged restraint don’t work with DD.

• Multiple copies of molecules in the same system without ensemble averaging does not work with DD.

Note that these fixes have not been made in any 5.1.x release.

Issue 1117 Issue 1989 Issue 2029

11.11. GROMACS 2016 series 880

https://gitlab.com/gromacs/gromacs/-/issues/2041
https://gitlab.com/gromacs/gromacs/-/issues/2085
https://gitlab.com/gromacs/gromacs/-/issues/1926
https://gitlab.com/gromacs/gromacs/-/issues/1117
https://gitlab.com/gromacs/gromacs/-/issues/1989
https://gitlab.com/gromacs/gromacs/-/issues/2029

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Fixed Ewald surface+3DC corrections

Ewald surface and 3DC correction forces were only applied up to, but not including, the last atom with exclusions.
With water at the end of the system only the last H would not be corrected. With ions at the end all ions would be
missing. In addition, with the Verlet scheme and domain decomposition no force correction was applied at all.

Issue 2040

Fixed opening of wall table files

Issue 2033

Fixed bug in gmx insert-molecules.

With option -ip, and if all trials were unsuccessful, a molecule was eventually incorrectly placed at 0/0/0 due to a
memory error when referencing to rpos[XX][mol].

Made virial reproducible

OpenMP reduction was used to reduce virial contributions over threads, which does not have a defined order. This
leads to different rounding, which makes runs non-reproducible (but still fully correct). Now thread local buffers
are used. Also removed OpenMP parallezation for small count (e.g. shift forces).

Updated to support FFTW 3.3.5

The auto-download of FFTW now gets FFTW 3.3.5 and builds it properly, including with --enable-vsx when
GMX_SIMD is set to VSX, i.e. for Power8, and --enable-avx512 when GMX_SIMD is any of the AVX
flavours (which is safe on non-512 now, works on KNL, and is presumed useful for future AVX512 architectures).

Permitted automatic load balancing to disable itself when it makes the run slower

Under certain conditions, especially with (shared) GPUs, DLB can decrease the performance. We now measure
the cycles per step before turning on DLB. When the running average of cycles per step with DLB gets above the
average without DLB, we turn off DLB. We then measure again without DLB. If without DLB the cycle count is
still lower, we keep DLB off for the remainder of the run. Otherwise is can turn on again as before. This procedure
ensures that the performance will never deteriorate due to DLB.

Improved the accuracy of timing for dynamic load balancing with GPUs

With OpenCL, the time for the local non-bonded to finish on the GPU was ignored in the dynamic load balancing.
This change lets OpenCL take the same code path as CUDA.

One internal heuristic parameter was far too small for both CUDA and OpenCL, which is now fixed.

11.11. GROMACS 2016 series 881

https://gitlab.com/gromacs/gromacs/-/issues/2040
https://gitlab.com/gromacs/gromacs/-/issues/2033

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Corrected kernel launch bounds for Tesla P100 GPUs

This corrects our initial guess of kernel tuning parameters that resulted in reduced occupancy on sm_60 GPU, and
thus improves performance.

Improved logic handling if/when the run is terminated for SETTLE warnings

The code now honours that when the environment variable GMX_MAXCONSTRWARN is set to -1, there is no
maximum number of warnings.

Issue 2058

Fixed bug in gmx wham for reading pullx files.

Because the order of columns in the pullx files has changed recently, gmx wham did not pick the reaction coor-
dinate from pullx.xvg if the COM of the pull groups were written. gmx wham was tested with various pull
options and geometries.

Fixed ouput bug in gmx wham

Fixed deadlock with thread-MPI

With thread-MPI mdrun could deadlock while pinning threads.

Issue 2025

Made error reporting in grompp more user friendly

This tool now always reports the file and line in user input files that lead to a condition such that subsequent
parsing cannot continue.

Fixed SIMD suggestion for VMX

Fixed script xplor2gmx.pl to work with GMXDATA

Fixed default nice level in mdrun-only build

Now an mdrun-only build should default to zero nice level, the same as gmx mdrun in a normal build.

Fixed math-test false positive

Depending on the accuracy of the floating point division, the input of the test function could be 1ulp too large or
too small. If it was too large the result of the test function wasn’t within 4ulp and the test failed.

11.11. GROMACS 2016 series 882

https://gitlab.com/gromacs/gromacs/-/issues/2058
https://gitlab.com/gromacs/gromacs/-/issues/2025

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improved documentation

Approaches for reducing overhead for GPU runs are now documented.

The available wallcycle counters and subcounters reported in the md.log files are now listed and and explained in
the user guide, along with how to enable reporting of the subcounters.

Several install-guide sections have been improved, including those for OpenCL, mdrun-only, and “make check”.
A “quick and dirty” cluster installation section was added.

OpenCL error string are now written, instead of cryptic error codes

Fixed build with GMX_USE_TNG=off

Removed variable-precision .gro writing

The precision used when writing .gro files is now fixed to 3, 4 and 5 decimal places for x, v and box respectively
to ensure compatibility with other software. Variable-precision reading is still supported.

Issue 2037

Fixed BG/Q platform files and install guide

Renamed the platform file to reflect normal practice and the install guide.

Reduced the memory required for free-energy simulations

Pair lists with atoms whose short-ranged parameters are perturbed now use less memory.

Issue 2014

11.11.2 Major release

Highlights

GROMACS 2016 was released on August 4, 2016. Patch releases have been made since then, please use the
updated versions! Here are some highlights of what you can expect, along with more detail in the links below!

• As always, we’ve got several useful performance improvements, with or without GPUs. CPU-side SIMD
and threading enhancements will make GPU-accelerated simulations faster even if we’d left the GPU code
alone! Thanks to these and additional GPU kernel improvements, in GPU-accelerated runs expect around
15% improvement in throughput. (And not just for plain vanilla MD, either. . . the pull code now supports
OpenMP threading throughout, and multi-simulations have less coupling between simulations.)

• We have a new C++11 portability layer permitting us to accelerate in SIMD on the CPU lots of minor rou-
tines. These will also often improve runs that use accelerators or many nodes through better load balancing.
POWER8, ARM64, AVX512 (KNL), and more are fully SIMD accelerated now because they are supported
in the new portability layer!

• We made further SIMD acceleration of bonded interactions which reduces their calculation time by about
a factor of 2. This improves load balance at high parallelization by a factor of 2, and shows significantly
better scaling.

• Similarly, SIMD acceleration of SETTLE reduces the time for constraints by a factor of 3 to 5 - which has
a strong effect for GPU runs.

11.11. GROMACS 2016 series 883

https://gitlab.com/gromacs/gromacs/-/issues/2037
https://gitlab.com/gromacs/gromacs/-/issues/2014

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

• OpenCL GPU support is now available with all combinations of MPI, thread-MPI and GPU sharing (ie. the
same as CUDA). Kernel performance has improved by up to 60%. AMD GPUs benefit the most, OpenCL
on NVIDIA is generally still slow.

• Tools in the new analysis framework can handle trajectories that are subsets of the simulation system.

• New pull coordinate geometries angle-axis, dihedral, and normal angle.

• Checkpoint restarts work only in the cases where the implementation can always do what the user wants.

• The version numbering has changed to be the year of the release, plus (in future) a patch number. GRO-
MACS 2016 will be the initial release from this branch, then GROMACS 2016.1 will have the set of bugs
that have been fixed in GROMACS 2016, etc.

New and improved features

Changed to require a C++11 compiler

GROMACS now requires both a C++11 and C99 compiler. For details, see the install guide.

Changed to support only CUDA 5.0 and more recent versions

Issue 1831

Allowed rcoulomb > rvdw with PME

GROMACS has had kernels that support Coulomb PME + cut-off LJ with rcoulomb > rvdw for a while, but these
were only available via PME load balancing. Now we allow this setup to be chosen also through mdp options.

Added optional support for portable hardware locality (hwloc)

Added CMake support to detect and build GROMACS with hwloc, which will improve GROMACS ability to
recognize and take advantage of all the available hardware. If hwloc is unavailable, GROMACS will fall back on
other detection routines.

Made normal-mode calculations work with shells and vsites

Implemented shells and vsites in normal-mode analysis in mdrun and in analysis of eigenvalues and frequencies.
The normal-mode analysis is done on real atoms only and the shells are minimized at each step of the analysis.

Issue 879

Changed pull group count for coords stored in tpr file

Added a parameter ngroup to the pull coord parameters. This is now also stored in the tpr file. This makes the pull
geometry forward compatible, which is useful since it avoid bumping the .tpr version with every new geometry,
and we expect that users want to experiment with new geometries.

11.11. GROMACS 2016 series 884

https://gitlab.com/gromacs/gromacs/-/issues/1831
https://gitlab.com/gromacs/gromacs/-/issues/879

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Added pull coordinate geometry angle-axis

The new geometry is described in the docs. Some checks in readpull.cpp where reorganized since adding new
geometries made some old logic a bit convoluted.

Added pull coordinate geometry dihedral (angle)

How to use the new geometry is explained in the docs.

Added pull coordinate geometry angle

A new subsection was added to the docs explaining the new geometry.

Replaced pull-print-com1,2 mdp option with pull-print-com

Changes were made to the pull output order and naming.

Added pull potential flat-bottom-high

Added the new pull coordinate type flat-bottom-high, which is a flat potential above the reference value and
harmonic below.

Added gmx grompp check for pull group

Added a check for valid pull groups in a pull coordinate. Using a pull group index that was out of range would
cause invalid memory access.

Added new swapping functionality to computational electrophysiology module

Support was added for ion/water position swapping for multiple ion types and polyatomic ions, including use of a
user-defined number of ionic species, and (small) polyatomic ions.

Also added two extra .mdp file parameters ‘bulk-offset’ that allow the user to specify an offset of the swap layers
from the compartment midplanes. This is useful for setups where e.g. a transmembrane protein extends far into at
least one of the compartments. Without an offset, ions would be swapped in the vicinity of the protein, which is
not wanted. Adding an extended water layer comes at the cost of performance, which is not the case for the offset
solution.

Documentation and testing was improved.

Fixed logic for DD missing-interactions check

The code that was intended to double check that the domain decomposition algorithm has not missed any interac-
tions was inactive in several cases, and has been fixed.

Issue 1882, Issue 1793

11.11. GROMACS 2016 series 885

https://gitlab.com/gromacs/gromacs/-/issues/1882
https://gitlab.com/gromacs/gromacs/-/issues/1793

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Permitted forces and velocities to be written to compressed TNG

If there is no uncompressed coordinate output, write forces and velocities to the TNG file with compressed coor-
dinate output. If there is uncompressed coordinate output to a TNG file, forces and velocities will be written to
it.

Use a greatest common divisor to set the frequency of some TNG data output to ensure lambdas and box shape
are written at least as often as anything else.

Issue 1863

Added new notes to the user when coupling algorithms are unavailable

mdrun will now give the user an explanatory note when pressure and/or temperature coupling is turned off.

Added mdrun check for finite energies

Added a check that the total potential energy is finite. This check is nearly free and can catch issues with incorrectly
set up systems before users get a confusing constraint or PME error. Note that this check is only performed at
steps where energies are calculated, so it will often not catch an exploding system.

Added gmx grompp check for unbound atoms

gmx grompp now prints a note for atoms that are not connected by a potential or constraint to any other atom in
the same moleculetype, since this often means the user made a mistake.

Issue 1958

Improved multi-simulation signalling

Multi-simulations (including REMD) may have need to send messages between the simulations. For example,
REMD needs to write a fully-consistent set of checkpoint files so that the restart works correctly, but normal multi-
simulations are fine with decoupled progress and will simulate more efficiently if they can do so. Similarly, gmx_-
mpi mdrun -maxh -multi needs to synchronize only for REMD. The implementation has been upgraded
so that such coupling happens only when an algorithm chosen by the user requires it.

Issue 860, Issue 692, Issue 1857, Issue 1942

Changed multi-simulation nsteps behaviour “”””-

It is unclear what the expected behaviour of a multi-simulation should be if the user supplies any of the possible
non-uniform distributions of init_step and nsteps, sourced from any of .mdp, .cpt or command line. Previously
mdrun adjusted the total number of stesps to run so that each run did the same number of steps, but now it reports
on the non-uniformity and proceed, assuming the user knows what they are doing.

Issue 1857

11.11. GROMACS 2016 series 886

https://gitlab.com/gromacs/gromacs/-/issues/1863
https://gitlab.com/gromacs/gromacs/-/issues/1958
https://gitlab.com/gromacs/gromacs/-/issues/860
https://gitlab.com/gromacs/gromacs/-/issues/692
https://gitlab.com/gromacs/gromacs/-/issues/1857
https://gitlab.com/gromacs/gromacs/-/issues/1942
https://gitlab.com/gromacs/gromacs/-/issues/1857

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Added working directory to things reported in .log file

When running GROMACS via a batch script, it is useful to know which working directory is being used for
relative paths (file names) in the command line. This is now written alongside other header information.

Prevented fragile use cases involving checkpoint restarts and/or appending

All output files named in the checkpoint file (ie. that were used in the previous run) must be present before a check-
point restart will be permitted. Thus, workflows where people used things like gmx mdrun -s production
-cpi equilibration are no longer available to do a “continuous” restart. Instead, use gmx grompp -t
equilibration -o production.

Issue 1777

Removed warning after OpenMP core-count check

In many cases gmx_mpi mdrun issued a warning that compared the total core count with something different
returned from OpenMP. This problem is caused by inappropriate management of thread affinity masks, but the
wording of the message did not help the user realise this, so has been removed. gmx_mpi mdrun -pin on
may help improve performance in such cases.

Preparation for hardware detection might try to force offline cores to work

Hardware detection might be foiled by kernels that take cores offline when work is unavailable. We are not aware
of any such platforms on which GROMACS is likely to be used, but we will probably start to see them soon. On
such platforms, if the number of cores physically present differs from the count that are online, we try to force
them online before deciding how GROMACS will use the online cores. For now, no x86 or PowerPC platforms
need such code, so it will never run on those platforms. The good news is that we no longer have to risk making a
confusing warning about such possibilities.

Added new suggestion for users to try e.g. hyper-threading, if its disabled

GROMACS tends to perform best with several hardware threads available per core (e.g. hyper-threading turned
on, on x86), and now the log file will note explicitly when such opportunities exist.

Performance improvements

GPU improvements

In addition to those noted below, overall minor improvements contribute up to 5% increase in CUDA performance,
so depending on parameters and compilers an 5-20% GPU kernel performance increase is expected. These benefits
are seen with CUDA 7.5 (which is now the version we recommend); certain older versions (e.g. 7.0) see even larger
improvements.

Even larger improvements in OpenCL performance on AMD devices are expected, e.g. can be >50% with RF/plain
cut-off and PME with potential shift with recent AMD OpenCL compilers.

Note that due to limitations of the NVIDIA OpenCL compiler CUDA is still superior in performance on NVIDIA
GPUs. Hence, it is recommended to use CUDA-based GPU acceleration on NVIDIA hardware.

11.11. GROMACS 2016 series 887

https://gitlab.com/gromacs/gromacs/-/issues/1777

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Improved support for OpenCL devices

The OpenCL support is now fully compatible with all intra- and inter-node parallelization mode, including MPI,
thread-MPI, and GPU sharing by PP ranks. (The previous limitations were caused by bugs in high-level GRO-
MACS code.)

Additionally some prefetching in the short-ranged kernels (similar to that in the CUDA code) that had been dis-
abled was found to be useful after all.

Added Lennard-Jones combination-rule kernels for GPUs

Implemented LJ combination-rule parameter lookup in the CUDA and OpenCL kernels for both geometric and
Lorentz-Berthelot combination rules, and enabled it for plain LJ cut-off. This optimization was already present
in the CPU kernels. This improves performance with e.g. OPLS, GROMOS and AMBER force fields by about
10-15% (but does not help with CHARMM force fields because they use force-switched kernels).

Added support for CUDA CC 6.0/6.1

Added build-system and kernel-generator support for the Pascal architectures announced so far (GP100: 6.0,
GP104: 6.1) and supported by the CUDA 8.0 compiler.

By default we now generate binary as well as PTX code for both sm_60 and sm_61 and given the considerable
differences between the two, we also generate PTX for both virtual arch. For now we don’t add CC 6.2 (GP102)
compilation support as we know nothing about it.

On the kernel-generation side, given the increased register file, for CC 6.0 the “wider” 128 threads/block kernels
are enabled, on 6.1 and later the 64 threads/block remains.

Improved GPU pair-list splitting to improve performance

Instead of splitting the GPU lists (to generate more work units) based on a maximum cut-off, we now generate
lists as close to the target list size as possible. The heuristic estimate for the number of cluster pairs is now too
high by 0-1% instead of 10%. This results in a few percent fewer pair lists, but still slightly more than requested.

Improved CUDA GPU memory configuration

This makes use of the larger amount of L1 cache available for global load caching on hardware that supports it
(K40, K80, Tegra K1, & CC 5.2) by passing the appropriate command line option (“-dlcm=ca”).

Issue 1804

Automatic nstlist changes were tuned for Intel Knight’s Landing

CPU improvements

These improvements to individual kernels will provide incremental improvements to CPU performance for simu-
lations where they are active, but their value for simulations using GPU offload are much higher, because via the
auto-tuning, they permit all kinds of resource utilization and throughput to increase.

11.11. GROMACS 2016 series 888

https://gitlab.com/gromacs/gromacs/-/issues/1804

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Optimized the bonded thread force reduction

The code for multi-threading of bonded interactions has to combine the forces afterwards. This reduction now
uses fixed-size blocks of 32 atoms, and instead of dividing reduction of the whole range of blocks uniformly over
the threads, now only used blocks are divided (uniformly) over the threads. This speeds up the reduction by a
factor of the number of threads (!) for typical protein+water systems when not using domain decomposition. With
domain decomposition, the speed up is up to a factor of 3.

Used SIMD transpose-scatter in bonded force reduction

The angle and dihedral SIMD functions now use the SIMD transpose scatter functions for force reduction. This
change gives a massive performance improvement for bondeds, mainly because the dihedral force update did a lot
of vector operations without SIMD that are now fully replaced by SIMD operations.

Added SIMD implementation of Lennard-Jones 1-4 interactions

The gives a few factors speed improvement. The main improvement comes from simplified analytical LJ instead
of tables; SIMD helps a bit.

Added SIMD implementation of SETTLE

On Haswell CPUs, this makes SETTLE a factor 5 faster.

Added SIMD support for routines that do periodic boundary coordinate transformations

Threading improvements

These improvements enhance the performance of code that runs over multiple CPU threads.

Improved Verlet-scheme pair-list workload balancing

Implemented near perfect load-balancing for Verlet-scheme CPU pair-lists. This increases the search cost by 3%,
but this is outweighed by the more balanced non-bonded kernel times, particularly for small systems.

Improved the threading of virtual-site code

On many threads, a significant part of the vsites would end up in the separate serial task, thereby limiting scaling.
Now two weakly dependent tasks are generated for each thread and one of them uses a thread-local force buffer,
parts of which are reduced by different threads that are responsible for those parts.

Also the setup now runs multi-threaded.

11.11. GROMACS 2016 series 889

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Add OpenMP support to more loops

Loops over number of atoms cause significant amount of serial time with large number of threads, which limits
scaling.

Add OpenMP parallelization for the pull code

The pull code could take up to a third of the compute time for OpenMP parallel simulation with large pull groups.
Now all pull-code loops over atoms have an OpenMP parallel version.

Other improvements

Multi-simulations are coupled less frequently

For example, replica-exchange simulations communicate between simulations only at exchange attempts. Plain
multi-simulations do not communicate between simulations. Overall performance will tend to improve any time
the progress of one simulation might be faster than others (e.g. it’s at a different pressure, or using a quieter part
of the network).

Improvements to GROMACS tools

Supported replacing solvent in gmx insert-molecules

Make it possible to specify the solvent (or other set of atoms) with -replace (as a selection) for gmx
insert-molecules, and make the tool replace residues from this set with the inserted molecules, instead
of not inserting there. It is assumed that the solvent consists of single-residue molecules, since molecule informa-
tion would require a tpr input, which might not be commonly available when preparing the system.

Default random seeds have changed for some analysis tools

See individual tools documentation for their functionality. In some cases, the magic value to obtain a generated
seed has changed (or is now documented.)

Made gmx solvate and gmx insert-molecules work better with PDB inputs

When both -f and -o were .pdb files, the pdbinfo struct got out-of-sync when the atoms were added/removed.

Issue 1887

Tools in the new analysis framework can read trajectory files with subsets

Make tools written for the new C++ analysis framework support analyzing trajectories that contain an arbitrary
subset of atoms.

Issue 1861

11.11. GROMACS 2016 series 890

https://gitlab.com/gromacs/gromacs/-/issues/1887
https://gitlab.com/gromacs/gromacs/-/issues/1861

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Made moleculetype name case sensitive

This is useful in case you have more than 36 chains in your system with chain IDs set. PDB allows using both
uppercase letters, lowercase letters and numbers for chain identifiers. Now we can use the maximum of 62 chains.

Added number density normalization option for gmx rdf

Add an option to gmx rdf that allows selecting a radial number density as the normalization for the output (in
addition to current raw neighbor counts and the actual RDF).

Simplified gmx genconf by removing -block, -sort and -shuffle

Option -block isn’t useful since particle decomposition was removed. Options -sort and -shuffle were
undocumented and don’t seem very useful - these days they would be somebody’s simple python script.

Used macros for units and conversions in gmx wham

Also Issue 1841

Improved gmx sasa error message

Print more information when an output group is not part of the group selected for calculation, which should help
the user diagnosing the issue.

Made gmx vanhove work without PBC

Fix gmx hbond group overlap check

gmx hbond does not support partially overlapping analysis groups. The check in the code was broken and
never caught this, resulting incorrect output that might OK at first sight. Also corrected bitmasks = enums that
(intentionally?) seemed to give correct results by not using non power of 2 enum index entries.

Made gmx dos work again.

Due to an error in the index handling gmx dos always stopped with a fatal error.

Issue 1996

Add checks for too much memory in gmx nmeig

gmx nmeig could request storage for eigenvector output and matrices for more than INT_MAX elements, but
nearly all loop variables are int. Now a fatal error is produced in this case. This also avoids the confusing error
message when too much memory is requested; the allocation routine will get the correct size, but gmx_fatal prints
it as a smaller integer. Added support for -first > 1 with sparse matrices.

11.11. GROMACS 2016 series 891

https://gitlab.com/gromacs/gromacs/-/issues/1841
https://gitlab.com/gromacs/gromacs/-/issues/1996

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Bugs fixed

These document fixes for issues that have been fixed for the 2016 release, but which have not been back-ported to
other branches.

Fixed two problems related to restarts for velocity-Verlet

The first problem is more serious; in addition to causing problems with restarts in most cases for velocity-Verlet
integrators plus either Berendsen or v-rescale temperature-coupling algorithms, the temperature coupling code
was called twice. This made the distribution of kinetic energies too broad (but with the correct average). Other
algorithm combinations were unaffected.

In the second problem, the initial step after restarts with velocity-Verlet integrators and either Berendsen or v-
rescale temperature-coupling algorithms had too high a pressure because they used an empty virial matrix that
was only filled with MTTK pressure control. The effects of this bug were very small; it only affected the volume
integration for one step on restarts.

Issue 1883

Fixed Verlet buffer calculation with nstlist=1

Under rare circumstances the Verlet buffer calculation code was called with nstlist=1, which caused a division by
zero. The division by zero is now avoided. Furthermore, grompp now also determines and prints the Verlet buffer
sizes with nstlist=1, which provider the user information and adds consistency checks.

Issue 1993

Fixed large file issue on 32-bit platforms

At some point gcc started to issue a warning instead of a fatal error for the checking code; fixed to really generate
an error now.

Issue 1834

Avoided using abort() for fatal errors

This avoids situations that produce useless core dumps.

Issue 1866

Fixed possible division by zero in polarization code

Avoided numerical overflow with overlapping atoms in Verlet scheme

The Verlet-scheme kernels did not allow overlapping atoms, even if they were not interacting (in contrast to the
group kernels). Fixed by clamping the interaction distance so it can not become smaller than ~6e-4 in single and
~1e-18 in double, and when this number is later multiplied by zero parameters it will not influence forces. The
clamping should never affect normal interactions; mdrun would previously crash for distances that were this small.
On Haswell, RF and PME kernels get 3% and 1% slower, respectively. On CUDA, RF and PME kernels get 1%
and 2% faster, respectively.

Issue 1958

11.11. GROMACS 2016 series 892

https://gitlab.com/gromacs/gromacs/-/issues/1883
https://gitlab.com/gromacs/gromacs/-/issues/1993
https://gitlab.com/gromacs/gromacs/-/issues/1834
https://gitlab.com/gromacs/gromacs/-/issues/1866
https://gitlab.com/gromacs/gromacs/-/issues/1958

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Relax pull PBC check

The check in the pull code for COM distances close to half the box was too strict for directional pulling. Now
dimensions orthogonal to the pull vector are no longer checked. (The check was actually not strict enough for
directional pulling along x or y in triclinic units cells, but that is a corner case.) Furthermore, the direction-periodic
hint is now only printed with geometry direction.

Issue 1962

Add detection for ARMv7 cycle counter support

ARMv7 requires special kernel settings to allow cycle counters to be read. This change adds a cmake setting
to enable/disable counters. On all architectures but ARMv7 it is enabled by default, and on ARMv7 we run a
small test program to see if the can be executed successfully. When cross-compiling to ARMv7 counters will be
disabled, but either choice can be overridden by setting a value for GMX_CYCLECOUNTERS in cmake.

Issue 1933

Introduced fatal error for too few frames in gmx dos

To prevent gmx dos from crashing with an incomprehensible error message when there are too few frames, test
for this.

Part of Issue 1813

Properly reset CUDA application clocks

We now store the application clock values we read when starting mdrun and reset to these values, but only when
clocks have not been changed (by another process) in the meantime.

Issue 1846

Fixed replica-exchange debug output to all go to the debug file

When mdrun -debug was selected with replica exchange, some of the order description was printed to mdrun’s
log file, but it looks like the actual numbers were being printed to the debug log. This puts them both in the debug
log.

Fixed gmx mdrun -membed to always run on a single rank

This used to give a fatal error if default thread-MPI mdrun had chosen more than one rank, but it will now correctly
choose to use a single rank.

Fixed issues with using int for number of simulation steps

Mostly we use a 64-bit integer, but we messed up a few things.

During mdrun -rerun, edr writing complained about the negative step number, implied it might be working around
it, and threatened to crash, which it can’t do. Silenced the complaint during writing, and reduced the scope of the
message when reading.

Fixed TNG wrapper routines to pass a 64-bit integer like they should.

11.11. GROMACS 2016 series 893

https://gitlab.com/gromacs/gromacs/-/issues/1962
https://gitlab.com/gromacs/gromacs/-/issues/1933
https://gitlab.com/gromacs/gromacs/-/issues/1813
https://gitlab.com/gromacs/gromacs/-/issues/1846

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Made various infrastructure use gmx_int64_t for consistency, and noted where in a few places the practical range
of the value stored in such a type is likely to be smaller. We can’t extend the definition of XTC or TRR, so there
is no proper solution available. TNG is already good, though.

Issue 2006

Fixed trr magic-number reading

The trr header-reading routine returned an “OK” value even if the magic number was wrong, which might lead to
chaotic results everywhere. This led to problems if other code (e.g. cpptraj) mistakenly wrote a wrong-endian trr
file, which was then used with GROMACS. (This should never be a thing for XDR files, which are defined to be
big endian, but such code has existed.)

Issue 1926

Changed to use only legal characters in OpenCL cache filename

The option to cache JIT-compiled OpenCL short-ranged kernels needed to be hardened, so that mdrun would
write files whose names would usually be specific to the device, but also only contain filenames that would work
everywhere, ie only alphanumeric characters from the current locale.

Fixes for bugs introduced during development

These document fixes for issues that were identified as having been introduced into the release-2016 branch since
it diverged from release-5-1. These will not appear in the final release notes, because no formal release is thought
to have had the problem. Of course, the tracked issues remain available should further discussion arise.

Fixed bug in v-rescale thermostat & replica exchange

Commit 2d0247f6 made random numbers for the v-rescale thermostat that did not vary over MD steps, and
similarly the replica-exchange random number generator was being reset in the wrong place.

Issue 1968

Fixed vsite bug with MPI+OpenMP

The recent commit b7e4f30d caused non-local virtual sites not be treated when using OpenMP. This means their
coordinates lagged one step behind and their forces are not spread to the atoms, leading to small errors in the
forces. Note that non-local virtual sites are only used when local virtual sites use them as a constructing atom; the
most common case is a C/N in a CH3/NH3 group with vsite H’s. Also added a check on the vsite count for debug
builds.

Issue 1981

Fixed some thread affinity cases

Fixed one deadlock in newly refactored thread-affinity code, which happened with automatic pinning, if only part
of the nodes were full.

There is one deadlock still theoretically possible: if thread-MPI reports that setting the affinity is not possible only
on a subset of ranks, the code deadlocks. This has always been there and might never happen, so it is not fixed
here.

11.11. GROMACS 2016 series 894

https://gitlab.com/gromacs/gromacs/-/issues/2006
https://gitlab.com/gromacs/gromacs/-/issues/1926
https://gitlab.com/gromacs/gromacs/-/issues/
https://gitlab.com/gromacs/gromacs/-/issues/1968
https://gitlab.com/gromacs/gromacs/-/issues/1981

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Removed OpenMP overhead at high parallelization

Commit 6d98622d introduced OpenMP parallelization for for loops clearing rvecs of increasing rvecs. For small
numbers of atoms per MPI rank this can increase the cost of the loop by up to a factor 10. This change disables
OpenMP parallelization at low atom count.

Removed std::thread::hardware_concurrency()

We should not use std::thread::hardware_concurrency() for determining the logical processor count, since it only
provides a hint. Note that we still have 3 different sources for this count left.

Added support for linking against external TinyXML-2

This permits convenient packaging of GROMACS by distributions, but it got lost from gerrit while rebasing.

Issue 1956

Fixed data race in hwinfo with thread-MPI

Issue 1983

Fixes for Power7 big-endian

Now compiles and passes all tests in both double and single precision with gcc 4.9.3, 5.4.0 and 6.1.0 for big-endian
VSX.

The change for the code in incrStoreU and decrStoreU addresses an apparent regression in 6.1.0, where the com-
piler thinks the type returned by vec_extract is a pointer-to-float, but my attempts a reduced test case haven’t
reproduced the issue.

Added some test cases that might hit more endianness cases in future.

We have not been able to test this on little-endian Power8; there is a risk the gcc-specific permutations could be
endian-sensitive. We’ll test this when we have hardware access, or if somebody runs the tests for us.

Issue 1997 Issue 1988

Reduce hwloc & cpuid test requirements

On some non-x86 linux platforms hwloc does not report caches, which means it will fail our strict test requirements
of full topology support. There is no problem whatsoever with this, so we reduce the test to only require basic
support from hwloc - this is still better than anything we can get ourselves. Similarly for CPUID, it is not an error
for an architecture to not provide any of the specific flags we have defined, so avoid marking it as such.

Issue 1987

11.11. GROMACS 2016 series 895

https://gitlab.com/gromacs/gromacs/-/issues/1956
https://gitlab.com/gromacs/gromacs/-/issues/1983
https://gitlab.com/gromacs/gromacs/-/issues/1997
https://gitlab.com/gromacs/gromacs/-/issues/1988
https://gitlab.com/gromacs/gromacs/-/issues/1987

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Work around compilation issue with random test on 32-bit machines

gcc 4.8.4 running on 32-bit Linux fails a few tests for random distributions. This seems to be caused by the
compiler doing something strange (that can lead to differences in the lsb) when we do not use the result as floating-
point values, but rather do exact binary comparisions. This is valid C++, and bad behaviour of the compiler
(IMHO), but technically it is not required to produce bitwise identical results at high optimization. However, by
using floating-point tests with zero ULP tolerance the problem appears to go away.

Issue 1986

Updated gmx wham for the new pull setup

This bring gmx wham up to date with the new pull setup where the pull type and geometry can now be set per
coordinate and the pull coordinate has changed and is more configurable.

Fix membed with partial revert of 29943f

The membrane embedding algorithm must be initialized before we call init_forcerec(), so it cannot trivially be
moved into do_md(). This has to be cleaned up anyway for release-2017 since we will remove the group scheme
be then, but for now this fix will allow us have the method working in release-2016.

Issue 1998

Removed mdrun features

Removed SD2 integrator

This integrator has known problems, and is in all ways inferior to sd. It has no tests, and was deprecated in
GROMACS 5.0. There are no plans to replace it.

Issue 1137

Removed the twin-range scheme

Only the (deprecated) group scheme supports this, and the Verlet scheme will not support it in the foreseeable
future. There is now the explicit requirement that rlist >= max(rcoulomb,rvdw).

Removed support for twin-range with VV integrators

Group-scheme twin-ranged non-bonded interactions never worked with velocity-Verlet integrators and constraints.
There are no plans to make that combination work.

Issue 1137, Issue 1793

11.11. GROMACS 2016 series 896

https://gitlab.com/gromacs/gromacs/-/issues/1986
https://gitlab.com/gromacs/gromacs/-/issues/1998
https://gitlab.com/gromacs/gromacs/-/issues/1137
https://gitlab.com/gromacs/gromacs/-/issues/1137
https://gitlab.com/gromacs/gromacs/-/issues/1793

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Removed Reaction-Field-nec

The reaction-field no-exclusion correction option was only introduced for backward compatibility and a perfor-
mance advantage for systems with only rigid molecules (e.g. water). For all other systems the forces are incorrect.
The Verlet scheme does not support this option and even if it would, it wouldn’t even improve performance.

Removed AdResS module

This feature requires the (deprecated) group scheme, and there are no plans to port it to the Verlet scheme.

Issue 1852

Removed mdrun -compact

It is too complicated to support multiple ways of analysing per-step data.

Removed lambda printing from mdrun log file

Issue 1773

Removed GMX_NOCHARGEGROUPS

This undocumented feature was only useful with the (deprecated) group scheme.

Miscellaneous

Various improvements to documentation and tests

In particular, the definition of pressure in the reference manual should be in bar, and a spurious r_ij in the force
for the Morse potential was removed. Added documentation and literature references for membrane embedding.
Improved template analysis program documentation. gmock was patched to work with gcc 6.

Issue 1932

Improved make_ndx help text

Clarified the use of boolean operators. The old help text could incorrectly hint that AND, OR, and NOT would
work as keywords. Added a reference to gmx select that in most cases can serve as a replacement.

Issue 1976

Addded checks on number of items read in mdp statements

Added checks for the number of items read in all sscanf() statements processing data from the mdp file.

Issue 1945.

11.11. GROMACS 2016 series 897

https://gitlab.com/gromacs/gromacs/-/issues/1852
https://gitlab.com/gromacs/gromacs/-/issues/1773
https://gitlab.com/gromacs/gromacs/-/issues/1932
https://gitlab.com/gromacs/gromacs/-/issues/1976
https://gitlab.com/gromacs/gromacs/-/issues/1945

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Work around glibc 2.23 with CUDA

glibc 2.23 changed the behaviour of string.h in a way that broke all versions of CUDA with all gcc compiler
versions. The GROMACS build system detects this glibc, and works around it by adding the _FORCE_INLINE
preprocessor define to CUDA compilation.

Issue 1982

Split NBNXN CUDA kernels into four compilation units

The CUDA nonbonded kernels are now built in four different compilation units when this is possible; ie. devices
with compute capability >= 3.0. This can dramatically reduce compilation time.

Forcing the use of a single compilation unit can be done using the GMX_CUDA_NB_SINGLE_COMPILA-
TION_UNIT cmake option.

Issue 1444

Added stream flushes when not writing newline character

Some of our routines use the carriage return without a newline to keep writing the status e.g. on stderr. For some
operating systems this seems to lead to the output being cached in the buffers, so this change adds an explicit
fflush() for these print stamements.

Fixed Issue 1772

Supported cmap with QMMM

Formerly, QMMM only supported bonded interactions using up to 4 atoms. Now any number is supported and
some hard-coded assumptions have been removed.

Upgraded support for lmfit library

Now based on lmfit 6.1. The CMake option GMX_EXTERNAL_LMFIT permits linking an external lmfit pack-
age, rather than the one bundled in GROMACS.

Issue 1957

libxml2 is no longer a dependency

GROMACS used to use libxml2 for running its test code. This has been replaced by a bundled version of tinyxml2
(or optionally, a system version of that library).

Disable automated FFTW3 builds on Windows

The FFTW distribution does not include configurations to build it automatically on windows, in particular not
through the ./configure; make; make install triad.

Issue 1961

11.11. GROMACS 2016 series 898

https://gitlab.com/gromacs/gromacs/-/issues/1982
https://gitlab.com/gromacs/gromacs/-/issues/1444
https://gitlab.com/gromacs/gromacs/-/issues/1772
https://gitlab.com/gromacs/gromacs/-/issues/1957
https://gitlab.com/gromacs/gromacs/-/issues/1961

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

Remove warnings on checkpoint mismatch

mdrun now only warns for mismatch in minor version, build or number of ranks used when reproducibility is
requested. Also added a separate message for not matching precision.

Issue 1992

Report the filename and the line number on failure

Extend the call to gmx_fatal in fget_lines() to report the filename and the line number where the read failed.

Handled constraint errors with EM

All energy minimizers could fail with random errors when constraining produced NaN coordinates. Steepest
descents now rejects steps with a constraint error. All other minimizer produce a fatal error with the suggestion to
use steepest descents first.

Issue 1955

Disable static libcudart on OS X

Recent versions of CMake enable a static version of libcudart by default, but this breaks builds at least on the most
recent version (10.11) of OS X, so we disable it on this platform.

Fixed rare issue linking with clock_gettime

Misuse of preprocessing commands might have led to inappropriate use of clock_gettime().

Issue 1980

Disabled NVIDIA JIT cache with OpenCL

The NVIDIA JIT caching is known to be broken with OpenCL compilation in the case when the kernel source
changes but the path does not change (e.g. kernels get overwritten by a new installation). Therefore we disable
the JIT caching when running on NVIDIA GPUs. AMD GPUs are unaffected.

Issue 1938

Release notes for older GROMACS versions

Unfortunately, resources are finite and many versions of GROMACS are no longer actively maintained. This page
records the release notes for all such versions, so that users can find a record of the changes made in all major
and patch releases of GROMACS. Major releases contain changes to the functionality supported, whereas patch
releases contain only fixes for issues identified in the corresponding major releases.

Where issue numbers are reported in these release notes, more details can be found at https://gitlab.com/gromacs/
gromacs/-/issues at that issue number.

11.11. GROMACS 2016 series 899

https://gitlab.com/gromacs/gromacs/-/issues/1992
https://gitlab.com/gromacs/gromacs/-/issues/1955
https://gitlab.com/gromacs/gromacs/-/issues/1980
https://gitlab.com/gromacs/gromacs/-/issues/1938
https://gitlab.com/gromacs/gromacs/-/issues
https://gitlab.com/gromacs/gromacs/-/issues

GROMACS Documentation, Release 2026.0-dev-20241113-4b16639

GROMACS 5.1 series

TODO coming soon

11.11. GROMACS 2016 series 900

PYTHON MODULE INDEX

g
gmxapi, 607
gmxapi._gmxapi, 617
gmxapi._logging, 614
gmxapi.exceptions, 615
gmxapi.runtime, 613
gmxapi.simulation, 610
gmxapi.utility, 612
gmxapi.version, 616

s
scripted_gmx_docker_builds, 686

u
utility, 688

901

	Downloads
	Source code
	Regression tests

	Installation guide
	Installation guide for exotic configurations
	Special instructions for building GROMACS on less-common systems
	SYCL GPU acceleration for AMD and NVIDIA GPUs using Intel oneAPI DPC++
	AMD GPUs
	NVIDIA GPUs

	SYCL GPU acceleration for NVIDIA GPUs using AdaptiveCpp (hipSYCL)
	Static linking
	Building on Solaris

	Introduction to building GROMACS
	Quick and dirty installation
	Quick and dirty cluster installation
	Typical installation
	Building older versions

	Prerequisites
	Platform
	Compiler
	Compiling with parallelization options
	GPU support
	MPI support
	GPU-aware MPI support

	CMake
	Fast Fourier Transform library
	Using FFTW
	Using MKL
	Using oneMKL Interface Library
	Using double-batched FFT library
	Using ARM Performance Libraries
	Using cuFFTMp
	Using heFFTe
	Using VkFFT

	Other optional build components

	Doing a build of GROMACS
	Configuring with CMake
	Where to install GROMACS
	Using CMake command-line options
	SIMD support
	CMake advanced options
	Helping CMake find the right libraries, headers, or programs
	CUDA GPU acceleration
	OpenCL GPU acceleration
	SYCL GPU acceleration
	SYCL GPU acceleration for Intel GPUs
	SYCL GPU acceleration for AMD GPUs
	SYCL GPU compilation options

	AMD HIP GPU acceleration
	Build instructions

	Static linking
	gmxapi C++ API
	Portability of a GROMACS build
	Linear algebra libraries
	Building with MiMiC QM/MM support
	Building with CP2K QM/MM support
	Building with Colvars support
	Building with PLUMED support
	Building with Neural Network potential support
	Changing the names of GROMACS binaries and libraries
	Changing installation tree structure

	Compiling and linking
	Installing GROMACS
	Getting access to GROMACS after installation
	Testing GROMACS for correctness
	Non-standard suffix
	Running MPI-enabled tests

	Testing GROMACS for performance
	Having difficulty?

	Special instructions for some platforms
	Building on Windows
	Building on Cray
	Intel Xeon Phi
	NVIDIA Grace

	Tested platforms
	Support

	User guide
	Known issues affecting users of GROMACS
	Unable to compile with CUDA 11.3
	The deform option is not suitable for flow
	SYCL build unstable when using oneAPI with LevelZero backend
	Unable to build with CUDA 11.5-11.6 and GCC 11 on Ubuntu 22.04
	FFT errors with NVIDIA RTX 40xx-series GPUs and CUDA 11.7 or earlier
	“Cannot find a working standard library” error with ROCm Clang
	Expanded ensemble does not checkpoint correctly
	Compiling with GCC 12 on POWER9 architectures
	Launching multiple instances of GROMACS on the same machine with AMD GPUs

	Getting started
	Flow Chart
	Setting up your environment
	Flowchart of typical simulation
	Important files
	Molecular Topology file (.top)
	Topology #include file mechanism
	Molecular Structure file (.gro, .pdb)
	Molecular Dynamics parameter file (.mdp)
	Index file (.ndx)
	Run input file (.tpr)
	Trajectory file (.trr, .tng, or .xtc)

	Tutorial material
	Background reading

	System preparation
	Steps to consider
	Tips and tricks
	Database files

	Managing long simulations
	Appending to output files
	Backing up your files
	Extending a .tpr file
	Changing mdp options for a restart
	Restarts without checkpoint files
	Are continuations exact?
	Reproducibility

	Answers to frequently asked questions (FAQs)
	Questions regarding GROMACS installation
	Questions concerning system preparation and preprocessing
	Questions regarding simulation methodology
	Parameterization and Force Fields
	Analysis and Visualization

	Force fields in GROMACS
	AMBER
	CHARMM
	GROMOS
	OPLS

	Molecular dynamics parameters (.mdp options)
	General information
	Preprocessing
	Run control
	Langevin dynamics
	Energy minimization
	Shell Molecular Dynamics
	Test particle insertion
	Output control
	Neighbor searching
	Electrostatics
	Van der Waals
	Tables
	Ewald
	Temperature coupling
	Pressure coupling
	Simulated annealing
	Velocity generation
	Bonds
	Energy group exclusions
	Walls
	COM pulling
	AWH adaptive biasing
	Enforced rotation
	NMR refinement
	Free energy calculations
	Expanded Ensemble calculations
	Non-equilibrium MD
	Electric fields
	Mixed quantum/classical molecular dynamics
	Computational Electrophysiology
	Density-guided simulations
	QM/MM simulations with CP2K Interface
	Collective variables (Colvars) module
	User defined thingies
	Removed features

	Useful mdrun features
	Re-running a simulation
	Running a simulation in reproducible mode
	Halting running simulations
	Running multi-simulations
	Examples running multi-simulations
	Running replica-exchange simulations
	Multi-simulation performance considerations

	Controlling the length of the simulation

	Getting good performance from mdrun
	Hardware background information
	Work distribution by parallelization in GROMACS
	Parallelization schemes
	Intra-core parallelization via SIMD: SSE, AVX, etc.
	Process(-or) level parallelization via OpenMP
	Node level parallelization via GPU offloading and thread-MPI
	Multithreading with thread-MPI
	Hybrid/heterogeneous acceleration

	Parallelization over multiple nodes via MPI
	Controlling the domain decomposition algorithm
	Multi-level parallelization: MPI and OpenMP

	Separate PME ranks

	Running mdrun within a single node
	Examples for mdrun on one node

	Running mdrun on more than one node
	Examples for mdrun on more than one node

	Avoiding communication for constraints
	Finding out how to run mdrun better
	Running mdrun with GPUs
	Types of GPU tasks
	GPU computation of short range nonbonded interactions
	GPU accelerated calculation of PME (not for AMD HIP)
	Known limitations
	GPU accelerated calculation of bonded interactions (CUDA and SYCL)
	GPU accelerated calculation of constraints and coordinate update (CUDA and SYCL only)
	Assigning tasks to GPUs
	Performance considerations for GPU tasks

	Reducing overheads in GPU accelerated runs

	Running the OpenCL version of mdrun
	Known limitations of the OpenCL support

	Running SYCL version of mdrun
	Running HIP version of mdrun
	Performance checklist
	GROMACS configuration
	Run setup
	Checking and improving performance

	Common errors when using GROMACS
	Common errors during usage
	Out of memory when allocating

	Errors in pdb2gmx
	Residue ‘XXX’ not found in residue topology database
	Long bonds and/or missing atoms
	Chain identifier ‘X’ was used in two non-sequential blocks
	WARNING: atom X is missing in residue XXX Y in the pdb file
	Atom X in residue YYY not found in rtp entry
	No force fields found (files with name ‘forcefield.itp’ in subdirectories ending on ‘.ff’)

	Errors in grompp
	Found a second defaults directive file
	Invalid order for directive xxx
	Atom index n in position_restraints out of bounds
	System has non-zero total charge
	Incorrect number of parameters
	Number of coordinates in coordinate file does not match topology
	Fatal error: No such moleculetype XXX
	T-Coupling group XXX has fewer than 10% of the atoms
	The cut-off length is longer than half the shortest box vector or longer than the smallest box diagonal element. Increase the box size or decrease rlist
	Atom index (1) in bonds out of bounds
	XXX non-matching atom names
	The sum of the two largest charge group radii (X) is larger than rlist - rvdw/rcoulomb
	Invalid line in coordinate file for atom X

	Errors in mdrun
	Stepsize too small, or no change in energy. Converged to machine precision, but not to the requested F_max
	Energy minimization has stopped because the force on at least one atom is not finite
	LINCS/SETTLE/SHAKE warnings
	1-4 interaction not within cut-off
	Simulation running but no output
	Can not do Conjugate Gradients with constraints
	Pressure scaling more than 1%
	Range Checking error
	X particles communicated to PME node Y are more than a cell length out of the domain decomposition cell of their charge group
	A charge group moved too far between two domain decomposition steps.
	Software inconsistency error: Some interactions seem to be assigned multiple times
	There is no domain decomposition for n ranks that is compatible with the given box and a minimum cell size of x nm

	Command-line reference
	molecular dynamics simulation suite
	Synopsis
	Description
	Options
	gmx commands
	Trajectory analysis
	Generating topologies and coordinates
	Running a simulation
	Viewing trajectories
	Processing energies
	Converting files
	Tools
	Distances between structures
	Distances in structures over time
	Mass distribution properties over time
	Analyzing bonded interactions
	Structural properties
	Kinetic properties
	Electrostatic properties
	Protein-specific analysis
	Interfaces
	Covariance analysis
	Normal modes

	gmx anaeig
	Synopsis
	Description
	Overlap calculations between covariance analysis

	Options

	gmx analyze
	Synopsis
	Description
	Options

	gmx angle
	Synopsis
	Description
	Options
	Known Issues

	gmx awh
	Synopsis
	Description
	Options

	gmx bar
	Synopsis
	Description
	Options

	gmx bundle
	Synopsis
	Description
	Options

	gmx check
	Synopsis
	Description
	Options

	gmx chi
	Synopsis
	Description
	Options
	Known Issues

	gmx cluster
	Synopsis
	Description
	Options

	gmx clustsize
	Synopsis
	Description
	Options

	gmx confrms
	Synopsis
	Description
	Options

	gmx convert-tpr
	Synopsis
	Description
	Options

	gmx convert-trj
	Synopsis
	Description
	Options

	gmx covar
	Synopsis
	Description
	Options

	gmx current
	Synopsis
	Description
	Options

	gmx density
	Synopsis
	Description
	Options
	Known Issues

	gmx densmap
	Synopsis
	Description
	Options

	gmx densorder
	Synopsis
	Description
	Options

	gmx dielectric
	Synopsis
	Description
	Options

	gmx dipoles
	Synopsis
	Description
	Options

	gmx disre
	Synopsis
	Description
	Options

	gmx distance
	Synopsis
	Description
	Options

	gmx dos
	Synopsis
	Description
	Options
	Known Issues

	gmx dssp
	Synopsis
	Description
	Options

	gmx dump
	Synopsis
	Description
	Options
	Known Issues

	gmx dyecoupl
	Synopsis
	Description
	Options

	gmx editconf
	Synopsis
	Description
	Options
	Known Issues

	gmx eneconv
	Synopsis
	Description
	Options
	Known Issues

	gmx enemat
	Synopsis
	Description
	Options

	gmx energy
	Synopsis
	Description
	Options

	gmx extract-cluster
	Synopsis
	Description
	Options

	gmx filter
	Synopsis
	Description
	Options

	gmx freevolume
	Synopsis
	Description
	Options

	gmx gangle
	Synopsis
	Description
	Options

	gmx genconf
	Synopsis
	Description
	Options
	Known Issues

	gmx genion
	Synopsis
	Description
	Options
	Known Issues

	gmx genrestr
	Synopsis
	Description
	Options

	gmx grompp
	Synopsis
	Description
	Options

	gmx gyrate
	Synopsis
	Description
	Options

	gmx gyrate-legacy
	Synopsis
	Description
	Options

	gmx h2order
	Synopsis
	Description
	Options
	Known Issues

	gmx hbond
	Synopsis
	Description
	Options

	gmx hbond-legacy
	Synopsis
	Description
	Options

	gmx helix
	Synopsis
	Description
	Options

	gmx helixorient
	Synopsis
	Description
	Options

	gmx help
	gmx hydorder
	Synopsis
	Description
	Options

	gmx insert-molecules
	Synopsis
	Description
	Options

	gmx lie
	Synopsis
	Description
	Options

	gmx make_edi
	Synopsis
	Description
	Options

	gmx make_ndx
	Synopsis
	Description
	Options

	gmx mdmat
	Synopsis
	Description
	Options

	gmx mdrun
	Synopsis
	Description
	Options

	gmx mindist
	Synopsis
	Description
	Options

	gmx mk_angndx
	Synopsis
	Description
	Options

	gmx msd
	Synopsis
	Description
	Options

	gmx nmeig
	Synopsis
	Description
	Options

	gmx nmens
	Synopsis
	Description
	Options

	gmx nmr
	Synopsis
	Description
	Options

	gmx nmtraj
	Synopsis
	Description
	Options

	gmx nonbonded-benchmark
	Synopsis
	Description
	Options

	gmx order
	Synopsis
	Description
	Options
	Known Issues

	gmx pairdist
	Synopsis
	Description
	Options

	gmx pdb2gmx
	Synopsis
	Description
	Options

	gmx pme_error
	Synopsis
	Description
	Options

	gmx polystat
	Synopsis
	Description
	Options

	gmx potential
	Synopsis
	Description
	Options
	Known Issues

	gmx principal
	Synopsis
	Description
	Options

	gmx rama
	Synopsis
	Description
	Options

	gmx rdf
	Synopsis
	Description
	Options

	gmx report-methods
	Synopsis
	Description
	Options

	gmx rms
	Synopsis
	Description
	Options

	gmx rmsdist
	Synopsis
	Description
	Options

	gmx rmsf
	Synopsis
	Description
	Options

	gmx rotacf
	Synopsis
	Description
	Options

	gmx rotmat
	Synopsis
	Description
	Options

	gmx saltbr
	Synopsis
	Description
	Options

	gmx sans-legacy
	Synopsis
	Description
	Options

	gmx sasa
	Synopsis
	Description
	Options

	gmx saxs-legacy
	Synopsis
	Description
	Options

	gmx scattering
	Synopsis
	Description
	Options

	gmx select
	Synopsis
	Description
	Options

	gmx sham
	Synopsis
	Description
	Options

	gmx sigeps
	Synopsis
	Description
	Options

	gmx solvate
	Synopsis
	Description
	Options
	Known Issues

	gmx sorient
	Synopsis
	Description
	Options

	gmx spatial
	Synopsis
	Description
	Warnings
	Risky options

	Options
	Known Issues

	gmx spol
	Synopsis
	Description
	Options

	gmx tcaf
	Synopsis
	Description
	Options

	gmx traj
	Synopsis
	Description
	Options

	gmx trajectory
	Synopsis
	Description
	Options

	gmx trjcat
	Synopsis
	Description
	Options

	gmx trjconv
	Synopsis
	Description
	Options

	gmx trjorder
	Synopsis
	Description
	Options

	gmx tune_pme
	Synopsis
	Description
	Options

	gmx vanhove
	Synopsis
	Description
	Options

	gmx velacc
	Synopsis
	Description
	Options

	gmx wham
	Synopsis
	Description
	WHAM options
	Parallelization
	Autocorrelations
	Error analysis

	Options

	gmx wheel
	Synopsis
	Description
	Options

	gmx x2top
	Synopsis
	Description
	Options
	Known Issues

	gmx xpm2ps
	Synopsis
	Description
	Options

	Command-line interface and conventions
	Handling specific types of command-line options

	Commands by name
	Commands by topic
	Trajectory analysis
	Generating topologies and coordinates
	Running a simulation
	Viewing trajectories
	Processing energies
	Converting files
	Tools
	Distances between structures
	Distances in structures over time
	Mass distribution properties over time
	Analyzing bonded interactions
	Structural properties
	Kinetic properties
	Electrostatic properties
	Protein-specific analysis
	Interfaces
	Covariance analysis
	Normal modes

	Special topics
	Selection syntax and usage
	Selection syntax and usage
	Specifying selections from command line
	Selection syntax
	Specifying positions in selections
	Arithmetic expressions in selections
	Selection keywords
	Selecting atoms by name - atomname, name, pdbatomname, pdbname
	Selecting based on distance - dist, distance, mindist, mindistance, within
	Selecting atoms in a solid angle - insolidangle
	Merging selections - merge, plus
	Permuting selections - permute
	Selecting atoms by residue number - resid, residue, resindex, resnr
	Extending selections - same
	Selection evaluation and optimization
	Selection limitations
	Selection examples

	Command changes between versions
	Version 2020
	gmx convert-trj
	gmx extract-cluster

	Version 2018
	gmx trajectory

	Version 2016
	Analysis on arbitrary subsets of atoms
	gmx insert-molecules
	gmx rdf
	gmx genconf

	Version 5.1
	General
	gmx pairdist
	gmx rdf

	Version 5.0
	General
	g_bond
	g_dist
	gmx distance
	gmx gangle
	gmx protonate
	gmx freevolume
	g_sas
	g_sgangle
	genbox
	tpbconv

	Terminology
	Pressure
	Fluctuation

	Periodic boundary conditions
	Suggested workflow

	Thermostats
	What to do
	What not to do
	Further reading

	Energy conservation
	Average structure
	Blowing up
	Diagnosing an unstable system
	Molecular dynamics
	Books
	Types / Ensembles

	Force field

	Environment Variables
	Output Control
	Debugging
	Performance and Run Control
	OpenCL management
	Analysis and Core Functions

	Floating point arithmetic
	Security when using GROMACS
	Policy for deprecating GROMACS functionality

	Short How-To guides
	Beginners
	Resources

	Adding a Residue to a Force Field
	Adding a new residue
	Modifying a force field

	Water solvation
	Non water solvent
	Making a non-aqueous solvent box

	Mixed solvent
	Making Disulfide Bonds
	Running membrane simulations in GROMACS
	Running Membrane Simulations
	Adding waters with genbox
	External material

	Parameterization of novel molecules
	Exotic Species

	Potential of Mean Force
	Single-Point Energy
	Carbon Nanotube
	Robert Johnson’s Tips
	Andrea Minoia’s tutorial

	Visualization Software
	Topology bonds vs Rendered bonds

	Extracting Trajectory Information
	External tools to perform trajectory analysis
	Plotting Data
	Software

	Micelle Clustering

	Reference Manual
	Preface and Disclaimer
	Citation information
	GROMACS is Free Software

	Introduction
	Computational Chemistry and Molecular Modeling
	Molecular Dynamics Simulations
	Energy Minimization and Search Methods

	Definitions and Units
	Notation
	MD units
	Reduced units
	Mixed or Double precision

	Algorithms
	Periodic boundary conditions
	Some useful box types
	Cut-off restrictions

	The group concept
	Molecular Dynamics
	Initial conditions
	Topology and force field
	Coordinates and velocities
	Center-of-mass motion

	Neighbor searching
	Pair lists generation
	Energy drift and pair list buffering
	Cut-off artifacts and switched interactions
	Pressure deviations due to cut-off artifacts
	Simple search
	Grid search
	Charge groups

	Compute forces
	Potential energy
	Kinetic energy and temperature
	Pressure and virial

	The leap-frog integrator
	The velocity Verlet integrator
	Understanding reversible integrators: The Trotter decomposition
	Multiple time-stepping
	Temperature coupling
	Berendsen temperature coupling
	Velocity-rescaling temperature coupling
	Andersen thermostat
	Nosé-Hoover temperature coupling
	Group temperature coupling

	Pressure coupling
	Berendsen pressure coupling
	Stochastic cell rescaling
	Parrinello-Rahman pressure coupling
	Surface-tension coupling
	MTTK pressure control algorithms
	Infrequent evaluation of temperature and pressure coupling

	The complete update algorithm
	Output step

	Shell molecular dynamics
	Optimization of the shell positions

	Constraint algorithms
	SHAKE
	SETTLE
	LINCS
	The LINCS algorithm
	The LINCS formulas
	The LINCS Parameters

	Simulated Annealing
	Stochastic Dynamics
	Brownian Dynamics
	Energy Minimization
	Steepest Descent
	Conjugate Gradient
	L-BFGS

	Normal-Mode Analysis
	Free energy calculations
	Slow-growth methods
	Thermodynamic integration

	Replica exchange
	Essential Dynamics sampling
	Expanded Ensemble
	Parallelization
	Domain decomposition
	Coordinate and force communication
	Dynamic load balancing
	Constraints in parallel
	Interaction ranges
	Multiple-Program, Multiple-Data PME parallelization
	Domain decomposition flow chart

	Interaction function and force fields
	Non-bonded interactions
	The Lennard-Jones interaction
	Buckingham potential
	Coulomb interaction
	Coulomb interaction with reaction field
	Modified non-bonded interactions
	Modified short-range interactions with Ewald summation

	Bonded interactions
	Bond stretching
	Harmonic potential
	Fourth power potential

	Morse potential bond stretching
	Cubic bond stretching potential
	FENE bond stretching potential
	Harmonic angle potential
	Cosine based angle potential
	Restricted bending potential
	Urey-Bradley potential
	Linear Angle potential
	Bond-Bond cross term
	Bond-Angle cross term
	Quartic angle potential
	Improper dihedrals
	Improper dihedrals: harmonic type
	Improper dihedrals: periodic type

	Proper dihedrals
	Proper dihedrals: periodic type
	Proper dihedrals: Ryckaert-Bellemans function
	Proper dihedrals: Fourier function
	Proper dihedrals: Restricted torsion potential
	Proper dihedrals: Combined bending-torsion potential

	Bonded pair and 1-4 interactions
	Tabulated bonded interaction functions

	Restraints
	Position restraints
	Flat-bottomed position restraints
	Angle restraints
	Dihedral restraints
	Distance restraints
	Time averaging
	Averaging over multiple pairs
	Using distance restraints

	Orientation restraints
	Theory
	Calculating orientations in a simulation
	Time averaging
	Restraining
	Ensemble averaging
	Time averaging
	Using orientation restraints

	Polarization
	Simple polarization
	Anharmonic polarization
	Water polarization
	Thole polarization

	Free energy interactions
	Harmonic potentials
	GROMOS-96 bonds and angles
	Proper dihedrals
	Tabulated bonded interactions
	Coulomb interaction
	Coulomb interaction with reaction field
	Lennard-Jones interaction
	Kinetic Energy
	Constraints
	Soft-core interactions: Beutler et al.
	Soft-core interactions: Gapsys et al.
	Forces: van der Waals interactions
	Forces: Coulomb interactions
	Energies: van der Waals interactions
	Energies: Coulomb interactions
	H / : van der Waals interactions
	H/ for Coulomb interactions

	Methods
	Exclusions and 1-4 Interactions.
	Treatment of Cut-offs

	Virtual interaction sites
	On top of an atom
	As a linear combination of two atoms ([reference-manual/functions/interaction-methods:fig-vsites]Fig. 5.35 2)
	On the line through two atoms, with a fixed distance ([reference-manual/functions/interaction-methods:fig-vsites]Fig. 5.35 2fd)
	As a linear combination of three atoms ([reference-manual/functions/interaction-methods:fig-vsites]Fig. 5.35 3)
	In the plane of three atoms, with a fixed distance ([reference-manual/functions/interaction-methods:fig-vsites]Fig. 5.35 3fd)
	In the plane of three atoms, with a fixed angle and distance ([reference-manual/functions/interaction-methods:fig-vsites]Fig. 5.35 3fad)
	As a non-linear combination of three atoms, out of plane ([reference-manual/functions/interaction-methods:fig-vsites]Fig. 5.35 3out)
	From four atoms, with a fixed distance, see separate [reference-manual/functions/interaction-methods:fig-vsite4fdn]Fig. 5.36
	A linear combination of N atoms with relative weights a_i

	Long Range Electrostatics
	Ewald summation
	Using Ewald

	PME
	Using PME

	P3M-AD
	Optimizing Fourier transforms and PME calculations

	Long Range Van der Waals interactions
	Dispersion correction
	Energy
	Virial and pressure

	Lennard-Jones PME
	Using LJ-PME

	Force field
	GROMOS-96
	GROMOS-96 files

	OPLS/AA
	AMBER
	CHARMM
	Coarse-grained force fields
	MARTINI
	PLUM

	Topologies
	Particle type
	Atom types
	Virtual sites

	Parameter files
	Atoms
	Non-bonded parameters
	Bonded parameters

	Molecule definition
	Moleculetype entries
	Intermolecular interactions
	Intramolecular pair interactions
	Exclusions

	Constraint algorithms
	pdb2gmx input files
	Residue database
	Residue to building block database
	Atom renaming database
	Hydrogen database
	Termini database
	Virtual site database
	Special bonds

	File formats
	Topology file
	Molecule.itp file
	Ifdef statements
	Topologies for free energy calculations
	Constraint forces
	Coordinate file

	Force field organization
	Force-field files
	Changing force-field parameters
	Adding atom types

	File formats
	Summary of file formats
	Parameter files
	Structure files
	Topology files
	Run Input files
	Trajectory files
	Energy files
	Other files

	File format details
	atp
	arn
	cpt
	dat
	edi
	edr
	ene
	eps
	g96
	gro
	hdb
	itp
	log
	m2p
	mdp
	mtx
	ndx
	n2t
	out
	pdb
	Example

	rtp
	r2b
	tdb
	tex
	tng
	top
	tpr
	trr
	vsd
	xdr
	xpm
	xtc
	Using xtc in your C++ programs

	xvg

	Special Topics
	Free energy implementation
	Potential of mean force
	Entropic effects

	Non-equilibrium pulling
	Collective variables: the pull code
	Definition of the center of mass
	Definition of the pull direction
	Definition of the angle and dihedral pull geometries
	The transformation pull coordinate
	Limitations

	Adaptive biasing with AWH
	Basics of the method
	The free energy update
	Applying the bias to the system
	The initial stage

	The covering criterion
	Exit from the initial stage
	Choice of target distribution
	Multiple independent or sharing biases
	Reweighting and combining biased data
	The friction metric
	Limitations
	Usage

	Setting the initial update size
	Estimating errors
	Tips for efficient sampling

	Enforced Rotation
	Fixed Axis Rotation
	Stationary Axis with an Isotropic Potential

	Pivot-Free Isotropic Potential
	Parallel Motion Potential Variant
	Pivot-Free Parallel Motion Potential
	Radial Motion Potential
	Pivot-Free Radial Motion Potential
	Radial Motion 2 Alternative Potential
	Pivot-Free Radial Motion 2 Potential
	Flexible Axis Rotation

	Flexible Axis Potential
	Flexible Axis 2 Alternative Potential
	Usage

	Angle of Rotation Groups: Fixed Axis
	Angle of Rotation Groups: Flexible Axis
	Angle Determination by Searching the Energy Minimum
	Torque

	Electric fields
	Boundary conditions

	Computational Electrophysiology
	Usage
	Multimeric channels

	Calculating a PMF using the free-energy code
	Removing fastest degrees of freedom
	Hydrogen bond-angle vibrations
	Construction of virtual sites
	Out-of-plane vibrations in aromatic groups

	Viscosity calculation
	Shear simulations
	Tabulated interaction functions
	Cubic splines for potentials
	User-specified potential functions

	Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface
	Overview
	Software prerequisites
	Limitations in simulation techniques
	Usage
	Choosing atoms for QM calculation
	Supported QM methods
	Providing your own CP2K input file
	Changing names of CP2K files
	Output
	Future developments

	MiMiC Hybrid Quantum Mechanical/Molecular Mechanical simulations
	Overview
	Application coupling model
	Software prerequisites
	Usage
	Preparing the input file for GROMACS
	Preparing the input file for CPMD
	Running a MiMiC QM/MM simulation
	Known Issues

	Using VMD plug-ins for trajectory file I/O
	Interactive Molecular Dynamics
	Simulation input preparation
	Starting the simulation
	Connecting from VMD

	Embedding proteins into the membranes
	Applying forces from three-dimensional densities
	Overview
	Usage
	The simulated density and its force contribution
	The density similarity measure and its force contribution
	Declaring regions to fit
	Performance
	Applying force every N-th step
	Combining density-guided simulations with pressure coupling
	Periodic boundary condition treatment
	The reference density map format
	Output
	Adaptive force constant scaling
	Mapping input structure to density data with affine transformations
	Future developments

	Collective Variable simulations with the Colvars module
	Using Colvars
	Configuration files for input
	Colvars output files
	Colvars checkpointing

	Using PLUMED
	Configuration files for input
	Limitations

	Neural Network Potentials
	Hybrid NNP/MM Simulations
	Software Prerequisites
	Usage

	Run parameters and Programs
	Online documentation
	File types
	Run Parameters

	Analysis
	Using Groups
	Default Groups
	Selections

	Looking at your trajectory
	General properties
	Radial distribution functions
	Correlation functions
	Theory of correlation functions
	Using FFT for computation of the ACF
	Special forms of the ACF
	Some Applications

	Curve fitting in GROMACS
	Sum of exponential functions
	Error estimation
	Interphase boundary demarcation
	Transverse current autocorrelation function
	Viscosity estimation from pressure autocorrelation function

	Mean Square Displacement
	Bonds/distances, angles and dihedrals
	Radius of gyration and distances
	Root mean square deviations in structure
	Covariance analysis
	Dihedral principal component analysis
	Hydrogen bonds
	Protein-related items
	Interface-related items

	Some implementation details
	Single Sum Virial in GROMACS
	Virial
	Virial from non-bonded forces
	The intra-molecular shift (mol-shift)
	Virial from Covalent Bonds
	Virial from SHAKE

	Optimizations
	Inner Loops for Water

	Averages and fluctuations
	Formulae for averaging
	Implementation
	Part of a Simulation
	Combining two simulations
	Summing energy terms

	Bibliography

	gmxapi Python package
	Full installation instructions
	Overview
	Install GROMACS
	Set up a Python virtual environment
	Install the gmxapi Python package

	Background
	GROMACS requirements
	Build system requirements
	Python environment requirements
	“requirements” files in GROMACS source tree

	Documentation build requirements
	Testing requirements
	MPI requirements

	Installing the Python package
	Recommended installation
	Locate or install GROMACS
	Set up a Python virtual environment
	Install dependencies
	Install the latest version of gmxapi
	CMake hints

	Install from source
	Offline install
	Building a source archive

	Accessing gmxapi documentation
	Build with GROMACS

	Testing
	Troubleshooting
	ImportError at run time with dynamic linking error
	AttributeError: module ‘enum’ has no attribute ‘IntFlag’
	Errors regarding pybind11
	Couldn’t find the gmxapi support library?

	Using the Python package
	Notes on parallelism and MPI
	Mapping ranks to ensemble members
	Caveats for MPI jobs

	Running simple simulations
	Running ensemble simulations
	Input arguments and “ensemble” syntax
	Accessing command line tools
	Preparing simulations
	Using arbitrary Python functions
	Subgraphs
	Looping
	Logging
	More

	gmxapi Python module reference
	Interface concepts
	Ensemble data flow

	gmxapi basic package
	Simulation module
	Preparing simulations
	Running simulations

	Utilities
	Run time details

	Status messages and Logging
	Exceptions module
	gmx.version module
	Core API
	gmxapi core module
	Exceptions
	Module Exceptions
	Wrapped C++ exceptions emitted through the supporting GROMACS library
	Other

	Functions
	Tools for launching simulations
	Tools to manipulate TPR input files
	Utilities

	Classes

	(Non-)Bonded LIBrary (NB-LIB) API
	Guide to Writing MD Programs
	Global Definitions
	Define Particle Data
	Defining Coordinates, Velocities and Force Buffers
	Writing the MD Program
	Define ParticleTypes
	Define Non-Bonded Interactions
	Define Molecules
	Define Listed Interactions
	Define Options for the Simulation and Non-Bonded Calculations
	Define Topology and Simulation State
	Writing the MD Loop

	Developer Guide
	Contribute to GROMACS
	Checklist
	Preparing code for submission
	Alternatives
	Do you have more questions?
	Removing functionality

	Codebase overview
	Source code organization
	Organization under src/gromacs/

	Documentation organization
	User documentation
	Unix man pages
	Developer guide
	Doxygen documentation

	Build system overview
	Build types
	CMake cache variables
	Compiler flags
	Variables affecting compilation/linking
	Variables affecting the all target
	Variables affecting special targets

	External libraries
	Special targets
	Passing information to source code

	Change Management
	Getting started
	Setting up login credentials with gitlab
	Creating issues
	Uploading code for review - creating a merge request
	Naming branches
	Documentation

	Labels
	Code Review
	Reviewing someone else’s uploaded code
	Guide for reviewing
	Update the Status label

	Closing Merge Requests

	More git tips

	Relocatable binaries
	Finding shared libraries
	Finding data files
	Known issues

	Documentation generation
	Building the GROMACS documentation
	Needed build tools

	Style guidelines
	Guidelines for code formatting
	Guidelines for #include directives
	Naming conventions
	Files
	Common guidelines for C and C++ code
	C code
	C++ code
	Code for GPUs
	Unit tests

	Allowed language features
	Portability considerations
	C++ Standard Library

	General considerations
	Implementing exceptions for error handling
	GPU API considerations
	Preprocessor considerations

	Guidelines for creating meaningful issue reports
	What to report
	What should be included
	Supporting the developers
	General issue workflow

	Guidelines for formatting of git commits
	General rules for newly submitted code
	Guidelines for git commit messages
	Concerning inline code comments

	Error handling
	Brief summary on which method to use
	Guiding principles
	Specific rules

	Development-time tools
	Using Doxygen
	Documentation flavors
	Building the documentation
	General guidelines for Doxygen markup
	GROMACS specifics
	Controlling documentation visibility
	Modules as Doxygen groups
	Public API and library API groups

	Documenting specific code constructs
	Doxygen pages
	Modules
	Classes/structs
	Methods/functions/enums/macros
	Files
	Directories

	Examples
	Basic C++
	Basic C
	Scoping and visibility rules
	Module documentation
	Common mistakes
	Existing code

	Automation and Infrastructure
	GitLab CI Pipeline Execution
	Configuration files
	Job parameters
	Schedules and triggers
	Global templates
	Job names

	Updating regression tests
	Variables
	Setting variables
	Using GPUs in Gitlab-runner

	Containers
	GitLab Container Registry

	Tools
	make-release-build.py
	trigger-post-merge.py
	admin/containers/buildall.sh
	scripted_gmx_docker_builds.py
	Named Arguments

	Supporting modules in admin/containers
	scripted_gmx_docker_builds.py
	utility.py

	Source tree checker scripts
	Checker details
	Suppressing issues

	Include dependency graphs
	File graphs

	Automatic source code formatting
	Setting up clang-format
	What is automatically formatted?
	Setting up clang-tidy
	Tools
	copyright.py
	copyright.sh
	clang-format.sh
	clang-tidy.sh
	Black
	git pre-commit hook
	reformat_all.sh

	Using git filters
	Hiding formatting commits from git blame

	Unit testing
	Finding, building and running
	Unit testing framework
	Getting started with new tests
	MPI tests

	Physical validation
	Test description
	Integrator convergence
	Ensemble tests

	Building and testing using the build system
	Direct usage of the python script
	Adding new tests

	Known issues relevant for developers
	Issues with GPU timer with OpenCL
	GPU emulation does not work
	OpenCL on NVIDIA Volta and later broken
	PME decomposition automated task assignment broken

	Doxygen documentation
	C++ API
	Public C++ API
	Overview
	Client build system support
	Compiler toolchain
	MPI support
	Caveats

	gmxapi CMake package
	Imported target

	gromacs (and gromacs$GROMACS_SUFFIX packages)
	Imported targets
	Input options
	Output variables
	Macros/functions

	Release notes
	GROMACS 2026 series
	Patch releases
	Major release
	Highlights
	New and improved features
	Performance improvements
	Changes to the API
	Improvements to GROMACS tools
	Bugs fixed
	Deprecated functionality
	Changes anticipated to GROMACS 2026 functionality
	Functionality deprecated in GROMACS 2026

	Removed functionality
	Portability
	Miscellaneous

	GROMACS 2025 series
	Patch releases
	Major release
	Highlights
	New and improved features
	A feature-limited version of the PLUMED interface is available
	Support for amino-acid-specific energy correction maps (CMAPs)
	Neural Network Potential support
	Add Custom Improper Dihedrals in specbond.dat

	Performance improvements
	Instant-submission mode enabled by default when building with AdaptiveCpp

	Changes to the API
	Improvements to GROMACS tools
	gmx grompp now checks dihedral coefficients sum
	Added support for DSSP v.2 in gmx dssp
	The number of averaging blocks for -evisco is now chosen by the user
	New features in gmx hbond
	Improve reading performance of large .gro files

	Bugs fixed
	Deprecated functionality
	Changes anticipated to GROMACS 2025 functionality
	Functionality deprecated in GROMACS 2025
	MTTK pressure coupling is deprecated
	The TNG trajectory format is deprecated

	Removed functionality
	Portability
	Added support to compile GROMACS using AMD HIP as GPU backend
	Added support for the oneMKL interface library for GPU FFTs
	Update of required CMake version

	Miscellaneous
	Internal build of FFTW now uses version 3.3.10
	Increased AWH parameter ‘awh-nsamples-update’ default value from 10 to 100
	Support for continuing expanded ensemble equilibration across simulation parts

	Older (unmaintained) GROMACS series
	GROMACS 2024 series
	Patch releases
	GROMACS 2024.5 release notes
	Fixes where mdrun could behave incorrectly
	Fixes for gmx tools
	Fixes that affect portability
	Miscellaneous

	GROMACS 2024.4 release notes
	Fixes where mdrun could behave incorrectly
	Fix missing non-bonded interactions close to cut-off with GPUs
	Add effect of perturbed masses to foreign Hamiltonian differences
	Fix illegal memory access with more VCM than T-coupling groups
	Fix crashes when some atoms are not part of a VCM group
	Fix parameter handling for coarse-grained bonded potentials
	Fix Colvars output files always written to the working directory.
	Forbid the usage of triangle constraints with -update gpu
	gmx_mpi mdrun could hang when using GPUs and separate PME ranks
	Dynamic load balancing was ineffective when special forces were present
	Fix incorrect memory access with perturbed non-bonded and OpenMP

	Fixes for gmx tools
	grompp checked incorrect B-state charges with free-energy decoupling
	grompp, and mdrun, could exit with large mass differences
	Fix dump crash with Colvars values
	Fix element and atom number deduction in during preprocessing
	Fix hang observed with NVSHMEM enabled PME-PP force transfers

	Fixes that affect portability
	Fix physical validation with Pymbar version 4
	Fix compatibility with VkFFT 1.3.5

	Miscellaneous
	Work around FetchContent warnings in CMake 3.30 and newer
	Fix various crashes when GMX_USE_COLVARS=NONE
	Fix reading cgroups in some kubernetes containers
	Collected fixes in the Colvars library
	Enable NVCC flags checks for Windows

	GROMACS 2024.3 release notes
	Fixes where mdrun could behave incorrectly
	Remove double dispersion correction with MTTK barostat
	Correct zero Verlet buffer for system with only large masses
	Fix incorrect energy group pair assignment of pair interactions
	Correct AWH metric with free-energy and Beutler soft-core
	Implement Lennard-Jones force-switch in free-energy kernel
	mdrun now computes the initial bonded distances with periodic molecules
	Avoid using invalid device streams
	Fix masks and alignment checks in Arm SVE SIMD
	Added an assert to ensure valid cutoff when calculating atom density

	Fixes for gmx tools
	Permit gmx tune_pme to understand md.log files
	Avoid crash of convert-tpr on velocity-less tpr files
	Avoid premature termination when using gmx hbond
	Add grompp warning about zero AWH cover diameter when sharing a bias
	Fix TPR generation with Andersen Massive thermostat and constraints
	Fixed filenames of generated CP2K files in QMMM MdModule
	Added a check in gmx grompp to ensure that cutoffs are valid
	Fix gmx dump with options -sys and -orgir

	Fixes that affect portability
	Fix build when GoogleTest is installed system-wide

	Miscellaneous
	Fix detection of rocFFT installed in non-standard locations
	Fix performance regression on PVC with oneAPI 2024.2

	GROMACS 2024.2 release notes
	Fixes where mdrun could behave incorrectly
	Prevent crashes with AdaptiveCpp/hipSYCL

	Fixes for gmx tools
	Improve errors and warnings to avoid poor results with gmx msd
	Improve error messages from editconf and trjconv
	Avoid floating point exception with corrupted xtc files
	Make Colvars file backup scheme consistent with GROMACS

	Fixes that affect portability
	Enable usage of Intel compiler with AVX-512 SIMD on AMD Zen 4
	Warn about unsupported compilers sooner
	Enable specification of custom install rpath during build configuration
	Permit dpcpp to appear in the path to the compiler

	Miscellaneous
	NBLIB always used geometric Lennard-Jones combination rules
	Fix cuFFTMp compilation issue
	Fix performance regression for some cases on latest NVIDIA GPUs
	Address performance regression on ARM with clang and SVE
	Fix crash in NbnxmSetupTest.CanCreateNbnxmGPU
	Fix incorrect mdp keyword for mass repartitioning in documentation
	Report AdaptiveCpp/hipSYCL compiler path in gmx -version
	Prevented CTest from running racy test cases concurrently

	GROMACS 2024.1 release notes
	Fixes where mdrun could behave incorrectly
	Avoid rounding errors with Parrinello-Rahman coupling of triclinic boxes

	Fixes for gmx tools
	Fixed parsing of phases in gmx nmtraj

	Fixes that affect portability
	Fix compiler flag check with oneAPI DPC++

	Miscellaneous
	Address mdrun performance regression with non-bonded interactions on CPU
	Fixed nbnxm-test failure when bounds checking was enabled for stdlib
	Increase tolerance of mdrun continuation tests in double precision
	Fix missing OpenMP initialization in grompp
	Fix grompp & mdrun crash when GMX_USE_COLVARS=NONE
	Fix broken completion script on zsh-5.9 (Mac OS Sonoma)

	Major release
	Highlights
	New and improved features
	The AWH exponential histogram growth can now be controlled
	Added support for instrumentation based on wallcycle regions using NVTX/ROCTX/ITT
	Collective variables (Colvars) module support
	Automatic metric scaled AWH target distribution

	Performance improvements
	Improved performance for inhomogeneous systems
	Flexible hydrogen mass repartitioning using grompp
	Small performance regression to achieve more accurate pressure
	Reduced grompp and mdrun setup time for systems with many atom types
	With wall potentials, bonded interactions can now be run on GPUs
	HeFFTe multi-GPU FFT plan options are now configurable

	Changes to the API
	Improvements to GROMACS tools
	Improved Einstein viscosity calculation in gmx energy
	XVG output from gmx rdf now uses 6 decimal places
	Handle CYX-CYX disulfide bonds in gmx pdb2gmx

	Bugs fixed
	The deform option was unsuited for flow simulations
	mdrun now checks for excluded pairs beyond the cut-off with reaction-field and FEP
	Limit pressure deviations due to missing Lennard-Jones interactions
	enemat now prints correct headers when using -free or -eref options
	gmxapi.commandline_operation implicitly converts input_files to absolute paths

	Deprecated functionality
	Changes anticipated to GROMACS 2024 functionality
	The analysis tool gmx chi no longer deprecated

	Functionality deprecated in GROMACS 2024
	The analysis tool gmx gyrate-legacy deprecated
	The analysis tool gmx hbond-legacy deprecated
	The analysis tools gmx sans and gmx saxs deprecated
	The Xeon Phi support will be removed

	Functionality deprecated in GROMACS 2022
	GMX_OPENCL_NB_CLUSTER_SIZE CMake variable deprecated in favor of GMX_GPU_NB_CLUSTER_SIZE
	Guessing masses and atomic radii from atom names is deprecated

	Functionality deprecated in GROMACS 2021
	mdrun -deffnm to be removed
	OpenCL to be removed as a GPU framework
	Support for version 1 of the hardware locality library hwloc
	Legacy API

	Functionality deprecated in GROMACS 2019
	Generation of virtual sites to replace aromatic rings in standard residues
	Benchmarking options only available with gmx benchmark
	gmx mdrun -nsteps

	Removed functionality
	Portability
	Always use the Boost version bundled with GROMACS

	Miscellaneous
	Changed default value of tau-p to 5 ps

	GROMACS 2023 series
	Patch releases
	GROMACS 2023.6 release notes
	Fixes where mdrun could behave incorrectly
	Fixes for gmx tools
	Fixes that affect portability
	Miscellaneous

	GROMACS 2023.5 release notes
	Fixes where mdrun could behave incorrectly
	The Verlet buffer estimate could be wrong with initial coordinates out of the box
	With energy minimization, dispersion correction energies were double counted
	Correct forces with virtual_sites1
	Avoid rounding errors with Parrinello-Rahman coupling of triclinic boxes

	Fixes for gmx tools
	Fix grompp crash with atoms far out of the box
	Fix LJ combination rules mixup in nonbonded-benchmark tool
	Fix make_ndx behavior with splitres
	Fix invalid memory access in gmx make_ndx when using splitres/splitat
	Fixed references to old tool names in some commands

	Fixes that affect portability
	Use RDTIME instead of RDCYCLE on RISC-V

	Miscellaneous
	Fix crashes with GPU direct communication for some atypical run configurations

	GROMACS 2023.4 release notes
	Fixes where mdrun could behave incorrectly
	Freezing AWH simulations with multiple MPI ranks per walker
	With AWH for FE, mdrun could exit with an assertion failure
	Missing force contribution on neighbor search steps with GPU update

	Fixes for gmx tools
	GROMACS error messages no longer include broken links
	Fixed a segmentation fault in grompp with AWH and FEP without FEP states
	gmx msd now raises a proper error when given incompatible trajectory

	Fixes that affect portability
	Fixed compilation with Boost 1.83

	Miscellaneous

	GROMACS 2023.3 release notes
	Fixes where mdrun could behave incorrectly
	mdrun now prints an estimate of the pressure deviation due to cut-off effects
	The pressure deviation due to cut-off effects can now be controlled
	Enable AWH to read 3D or higher-dimension user data
	Allow restraining the rotation of a group of atoms during energy minimization
	Fix missing force buffer clearing with GPU DD and CPU bonded interactions
	Improve Verlet buffer estimation for systems with no or weak electrostatics
	Update virtual site velocities to avoid constraint instabilities
	Add workaround for OpenCL bug on AppleSilicon GPUs

	Fixes for gmx tools
	Fix legends in AWH data XVG extracted from AWH energy file
	Correctly dump VSITE2FD virtual sites
	Fix DSSP tool
	Fix editconf -d with -noc
	Fix calculation of rotational kinetic energy in gmx traj

	Fixes that affect portability
	GROMACS can be compiled with Clang 16 with libc++ standard library
	GROMACS automatically finds oneAPI libraries in new layout

	Miscellaneous
	Fix compilation for VMD plugin
	Unsupported anisotropic C-rescale rejected at preprocessing time
	CUDA Graph fixes related to neighbour search steps
	Fix velocity vector copying in constr_vsiten
	Work around the performance regression on AMD MI250X with ROCm 5.5 or newer

	GROMACS 2023.2 release notes
	Fixes where mdrun could behave incorrectly
	Fix mdrun segfault when perturbing only LJ-14 parameters
	Fix numerical instability with free-energy and LJ-PME
	Fix mdrun domain decomposition setup limit of 715827882 atoms
	Allow bonded pair interactions to be missing
	Increase and check for atom count limits in output files
	Fix assertion failure with annealing and multiple T-coupling groups
	Properly update the backup checkpoint
	Fix domain decomposition with bonded interactions with long distances

	Fixes for gmx tools
	Avoid error in tools reading tpr files with energy minimization
	Tools now retain chain identifiers when reading PDB is used as input
	The gmx hbond tool could produce random ouput

	Fixes that affect portability
	CMake config package

	Miscellaneous
	gmxapi.commandline_operation environment variable filtering
	build-dependent checking for gmxapi runtime arguments
	gmxapi.mdrun task uniqueness
	Fix for crash when CUDA Graphs are enabled on multi-GPU
	Enable XTC support for gigantic systems
	Fix resource leak in OpenCL
	Allow convert-tpr to assign initial velocities
	Correct formulas for Nosé-Hoover thermostat
	Fix commandline-test on broken gcc versions
	Fix SIMD detection/recommendation on AMD Zen 4 / Genoa

	GROMACS 2023.1 release notes
	Fixes where mdrun could behave incorrectly
	Parallelization of TPI an normal modes working again
	The AWH metric could be incorrect for free-energy lambda dimensions
	Fix checkpointing of expanded ensemble simulations with domain decomposition
	Fix PME pipelining support in SYCL
	Fix checkpointing of AWH friction metric for dimensions > 1.

	Fixes for gmx tools
	Fix crash in gmx solvate when using solvent box in PDB format
	Fix creating index file from another index file
	Allow selection of energy term by full name in gmx energy
	Fix early crash in gmx anaeig

	Fixes that affect portability
	Fixed GMX_USE_TNG=off build
	Fixed abnormal termination during gmx startup
	Fixed CPU FFT with MKL 2023.0

	Miscellaneous
	Workaround for strange compiler behavior to improve SYCL bonded kernel performance
	Restored OpenMP acceleration of pulling routines
	Added support for new cuFFTMp interface
	Document workaround when MPI detection fails

	Major release
	Highlights
	New and improved features
	mdrun now also reports the conserved energy quantity with AWH bias sharing
	Added option for setting the ensemble temperature
	gmxapi.mdrun now publishes the simulation working directory path
	gmxapi.mdrun now captures STDOUT and STDERR

	Performance improvements
	Update will run on GPU by default
	Increased default T- and P-coupling intervals
	The global communication frequency is independent of nstlist
	PME decomposition support with CUDA and SYCL backends
	CUDA Graphs for GPU-resident Steps
	VkFFT support

	Changes to the API
	Legacy aggregating headers have been removed.

	Improvements to GROMACS tools
	gmx do_dssp replaced by native implementation of DSSP algorithm

	Bugs fixed
	Verlet buffer set correctly for inhomogeneous systems
	Fix segmentation fault for large atom and thread count
	Density-guided simulation normalization
	gmxapi Python package avoids unnecessary MPI initialization
	Fail-safe check for perturbed exclusions beyond rlist

	Deprecated functionality
	Changes anticipated to GROMACS 2023 functionality
	Functionality deprecated in GROMACS 2023
	Functionality deprecated in GROMACS 2022
	GMX_OPENCL_NB_CLUSTER_SIZE CMake variable deprecated in favor of GMX_GPU_NB_CLUSTER_SIZE
	The analysis tool gmx chi will be removed
	Guessing masses and atomic radii from atom names is deprecated

	Functionality deprecated in GROMACS 2021
	mdrun -deffnm to be removed
	OpenCL to be removed as a GPU framework
	Support for version 1 of the hardware locality library hwloc
	Legacy API

	Functionality deprecated in GROMACS 2019
	Generation of virtual sites to replace aromatic rings in standard residues
	Benchmarking options only available with gmx benchmark
	gmx mdrun -nsteps

	Removed functionality
	The built-in viewer gmx view was removed
	Some unmaintained utility scripts were removed

	Portability
	Full support for RISC-V
	Initial support for Apple silicon GPUs
	VkFFT support for improved portability and performance on GPUs with OpenCL and SYCL
	PME GPU offload on macOS
	Increase of required versions

	Miscellaneous
	Fix documentation issues for restricted bending potential
	AWH friction metric is shared between AWH walkers
	Required gmx grompp -maxwarn to take a positive integer

	GROMACS 2022 series
	Patch releases
	GROMACS 2022.6 release notes
	Fixes where mdrun could behave incorrectly
	Fix CUDA PME spread in multi-GPU runs (with >=3 GPUs)
	Fix missing synchronization in GPU PME pipelining

	Fixes for gmx tools
	Fixes that affect portability
	Miscellaneous

	GROMACS 2022.5 release notes
	Fixes where mdrun could behave incorrectly
	Fix perturbed exclusion handling across PBC in small systems
	Add missing net charge term when running PME on a GPU
	Foreign energy differences with the Gapsys soft-core function were zero
	Fix mdrun -rerun energy output with update groups
	Fix checkpointing of expanded ensemble simulations with modular simulator

	Fixes for gmx tools
	Fixes that affect portability
	Miscellaneous
	Improve muParser detection and bumped internal version to v2.3.4

	GROMACS 2022.4 release notes
	Fixes where mdrun could behave incorrectly
	Incorrect foreign energy differences for 1-4 interactions on a GPU
	The deform option caused parallel mdrun to exit
	Pulling with average force output made mdrun exit at checkpoint writing
	AMD RDNA devices are now properly marked as “unsupported” with OpenCL

	Fixes for gmx tools
	Programs reading a tpr file of a large system would exit with random errors
	With flexible constraint grompp and mdrun exited with an assertion failure
	Corrected gmx awh friction metric legend

	Fixes that affect portability
	Miscellaneous
	Fixed argument checking with nvcc
	Added compilation support for new CUDA architectures

	GROMACS 2022.3 release notes
	Fixes where mdrun could behave incorrectly
	Energy minimization would not converge with GPU and without DD
	Settings of lambda-only replica exchange is mistakenly routed to temperature+lambda branch

	Fixes for gmx tools
	Fix pdb2gmx vsite assignment for tetrahedral secondary amines
	Disallow C-rescale barostat without temperature coupling
	Prevent hbond merging in gmx hbond for non-compatible options
	Fix generation of duplicate groups in index generation

	Fixes that affect portability
	Further fix to nvcc flag detection
	Document incompatibility of gcc-11 and nvcc 11.6.1

	Miscellaneous
	Improve mdrun log file energy output formatting
	Improve warning message about AVX_128_FMA SIMD
	Remove unnecessary memory re-allocations for GPU update runs

	GROMACS 2022.2 release notes
	Fixes where mdrun could behave incorrectly
	Fix incorrect constraining in highly parallel runs
	Fix missing CPU-GPU synchronization when doing free-energy calculations
	Fix missing PME mesh dV/dlambda with PME on GPU on a seperate PME rank
	Removed the (incorrect) output file size note/warning with mdrun -rerun
	Wait for PME coordinate padding clearing to complete after reinitialization
	Note known issues with Verlet buffer estimation

	Fixes for gmx tools
	Clarified pdb2gmx error message for undefined atom type in terminal database
	Lower severity of grompp exclusion distance issues with energy minimization
	Fixed missing cmap torsion correction for periodic pepdites
	Avoid crash in gmx bar with invalid input
	Fix printing of incorrect data from analysis tools
	Remove broken charge zeroing function in convert-tpr

	Fixes that affect portability
	Warn when using gcc version 7 with CUDA builds
	Fix external tinyXML version to below 7
	Fixed a possible software build error with OpenMP linking

	Miscellaneous
	Fixed detection of external TinyXML-2
	Fixed warnings when using module-specific OpenMP thread-count environment variables

	GROMACS 2022.1 release notes
	Note to developers and package maintainers
	Next release (GROMACS 2022.2) will rename master branch to main

	Fixes where mdrun could behave incorrectly
	Fixed incorrect pairlist buffer with test particle insertion
	Remove false positives for missing exclusions in free energy kernels
	Fix crash when steering FEP with AWH without PME or with separate PME rank
	Fix bug with reporting energies for groups
	Fix missing B State pinning for PME GPU
	Only allow 1D PME GPU decomposition
	Fixed exact continuation with the -reprod option

	Fixes for gmx tools
	Use correct scattering length for hydrogens in gmx sans
	Fix C-terminal residue patch for charmm
	Add polyproline helix coloring to DSSP maps
	Remove option -unsat from gmx order and document deficiencies
	Fix g96 file writing
	Rerun will no longer abort when encountering too high forces
	Allow incomplete index files for extract-cluster

	Fixes that affect portability
	Fix nvcc flag detection
	Fix issue in GMXRC.bash

	Miscellaneous
	Fixed regression test download URL for forks of GROMACS
	Fix internal nblib test failure
	Workaround for nested MPI-aware code
	Accurately checks when FEP lambda might go over 1 or under 0
	Correct free-energy (de)coupling integrator check
	Density-guided simulation affine transformation force correction
	Clarified Coulomb self terms in the reference manual
	Correct formula for SD integrator
	Adjust test tolerances for double precision testing

	Major release
	Highlights
	New and improved features
	Hybrid Quantum-Classical simulations (QM/MM) with CP2K interface
	Transformation pull coordinate for mathematical transformations of pull coordinates
	Replica-exchange molecular dynamics simulations with GPU update
	A new formulation of soft-core interactions for free energy calculations
	More flexible sharing of biases in AWH
	More features implemented in modular simulator
	Free energy calculations now support all non-perturbed bonded interactions
	Adapt number of threads to actually permitted hardware
	Enable use of more OpenMP threads
	Centering and symmetrization supported in gmx potential

	Performance improvements
	GPU direct communication with CUDA-aware MPI
	Dynamic pairlist generation for energy minimization
	Nonbonded free-energy kernels use SIMD
	PME-PP GPU Direct Communication Pipelining
	Domain decomposition with single MPI rank
	Restricted GPU support with multiple time stepping
	gmx grompp now runs 20-50% faster
	PME decomposition support in mixed mode with CUDA and process-MPI
	Performance improvements when running on Ampere-class Nvidia GPUs

	Changes to the API
	Remove physical constant conversion functions

	Improvements to GROMACS tools
	gmx msd has been migrated to the trajectoryanalysis framework
	gmx lie now reads energy files from reruns
	gmx chi no longer needs residuetypes.dat entries for custom residues
	gmx wham has had minor improvements to its text output
	gmx do_dssp supports DSSP version 4
	gmx trjconv -dump now works reliably
	gmx trjconv handles selections in TNG files better
	gmx pdb2gmx no longer accepts charged glutamine (QLN) with the OPLS-AA forcefield
	gmxapi.commandline_operation isolates working directories.

	Bugs fixed
	Fixed slight inaccuracies when using virtual sites with pressure coupling
	Correct dVremain/dl when nstdhdl > nstcalcenergy
	Removed velocity output for acceleration groups
	Use correct c0 parameter in Me2PO4 in OPLSAA
	Allow function type Fourier Dihedral with free energy perturbations
	Do not scale coordinates of frozen atoms during Parrinello-Rahman pressure coupling
	Avoid non-uniform rotation with Test Particle Insertion in anisotropic systems
	Allow free energy calculations with a linear angle potential
	Fixed progress display in trjconv and trjcat
	Fixed GROMOS dihedral generation for disulfide bridges
	Fixed energy term naming for periodic improper dihedrals
	gmx density now always uses relative coordinates

	Deprecated functionality
	Changes anticipated to GROMACS 2022 functionality
	Functionality deprecated in GROMACS 2022
	GMX_OPENCL_NB_CLUSTER_SIZE CMake variable deprecated in favor of GMX_GPU_NB_CLUSTER_SIZE
	The built-in viewer gmx view will be removed
	The analysis tool gmx chi will be removed
	Guessing masses and atomic radii from atom names is deprecated

	Functionality deprecated in GROMACS 2021
	mdrun -deffnm to be removed
	OpenCL to be removed as a GPU framework
	Support for version 1 of the hardware locality library hwloc
	Legacy API

	Functionality deprecated in GROMACS 2019
	Generation of virtual sites to replace aromatic rings in standard residues
	Benchmarking options only available with gmx benchmark
	gmx mdrun -nsteps

	Removed functionality
	Removed mdrun-only build configuration
	Removed support for x86 MIC, ARMv7, Sparc64 HPC-ACE, and IBM VMX SIMD
	Removed deprecated environment variables
	Removed the ability for gmx wham to read .pdo files
	Removed 32bit support

	Portability
	Intel classic compiler (icc/icpc) no longer supported
	Provisional: Initialize GMX_INSTALL_NBLIB_API and GMXAPI build options from BUILD_SHARED_LIBS
	Updates to pybind11 dependency
	CMake toolchain file replaced with cache file
	Bundle muparser

	Miscellaneous
	grompp no longer modifies nstcomm
	Bonded atom types names can now start with a digit
	grompp now warns when exclusion forces might be missing
	The AWH cover diameter for angles now has units degrees
	Core spin-up code is removed
	Add documentation for linear angle potential

	gmxapi.mdrun guarantees trajectory output
	gmxapi.mdrun accepts arbitrary runtime arguments
	Improved MPI awareness and task uniqueness for gmxapi Python runner
	Further discouraged use of Berendsen coupling algorithms

	GROMACS 2021 series
	Patch releases
	GROMACS 2021.7 release notes
	Fixes where mdrun could behave incorrectly
	Add missing net charge term when running PME on a GPU

	Fixes for gmx tools
	Fixes that affect portability
	Miscellaneous

	GROMACS 2021.6 release notes
	Fixes where mdrun could behave incorrectly
	Extend error message for free-energy exclusion beyond rlist
	Fix running with LJ PME only
	Fix missing synchronization in CUDA update kernels

	Fixes for gmx tools
	Do not try to guess atom names in gmx rms unless needed

	Fixes that affect portability
	Miscellaneous
	Corrects units for AWH interval in the user guide
	Fix distance restraint force calculation in case of negative prefactor

	GROMACS 2021.5 release notes
	Fixes where mdrun could behave incorrectly
	Do not scale coordinates of frozen atoms during Parrinello-Rahman pressure coupling
	Properly account for DeltaH contribution from PME when running AWH with FEP
	Fix reading of AWH user PMF reading with large PMF values

	Fixes for gmx tools
	gmx make_edi now closes its output file properly
	Out-of-bounds, overflow and incorrect outputs fixes in gmx spatial

	Fixes that affect portability
	Miscellaneous
	Performance improvements when running on Ampere-class Nvidia GPUs

	GROMACS 2021.4 release notes
	Fixes where mdrun could behave incorrectly
	Fixed crash for large system with virtual sites
	Fixed bug with GPU LINCS occasionally shifting atoms in wrong direction
	Disabled the use of PME Mixed mode for FEP simulations
	Fixed spurious nan in AWH free energy output when running FEP with other dimensions
	Made mdrun work without MPI

	Fixes for gmx tools
	Fix gmx convert-tpr -s -o
	grompp now prints a note again when combining center of mass motion removal and position restraints
	Static selections of large index groups now work
	Static selections of index groups with repeated indices now work

	Fixes that affect portability
	Miscellaneous
	Fix a bug affecting re-run gmxapi scripts

	GROMACS 2021.3 release notes
	Fixes where mdrun could behave incorrectly
	Fix mdrun -ddorder pp_pme
	Fixed gmxapi MD plugin binding
	Fixed multi-rank restarts from checkpoints written by single-rank simulations

	Fixes for gmx tools
	Fix gmx nmr -viol option
	Fixed gmx dipoles -quad option
	Make sure gmx convert-tpr -until works
	Fixed dihedral transition counting in gmx chi and gmx angle
	Fixed possible crash in gmx chi histogramming
	Fixed gmx chi -chi_prod

	Fixes that affect portability
	Check that necessary python modules are available
	Ensure that NB-LIB and gmxapi can be build even without tests enabled

	Miscellaneous
	Removed performance loss in the mdrun domain decomposition

	GROMACS 2021.2 release notes
	Fixes where mdrun could behave incorrectly
	Removed a potential race condition with GPU update
	Avoided issues with global reduction observed with md-vv
	Prohibited SETTLE interactions for atoms with perturbed masses
	Rerun now writes pull output correctly

	Fixes for gmx tools
	Fix incorrect behaviour with single residue chains in pdb2gmx
	Fix grompp check for position restraints with absolute reference
	Fix error when using VMD plugin
	Fix file permissions with gmx solvate and gmx genion

	Fixes that affect portability
	Support for Intel oneAPI compiler 2021.2
	Fix Apple OpenCL build
	Fixed compilation issue with GCC 11

	Miscellaneous
	Fix bond type in GROMOS force fields
	Allow PME on CPU in runs with domain decomposition and GPU update

	GROMACS 2021.1 release notes
	Fixes where mdrun could behave incorrectly
	Fix MiMiC with virtual sites
	Fix mass perturbation to dH/dlambda
	Running AWH with a convolved potential and an FEP dimension gives wrong results.
	Remove velocity from partially frozen atoms in md-vv

	Fixes for gmx tools
	Fix periodic boundary conditions in analysis framework tools
	Fix range checking bug in gmx covar
	Fix various bugs in gmx xpm2ps

	Fixes that affect portability
	Fixed compilation on Cygwin
	Improve grompp checks of AWH settings when sampling an FEP dimension

	Miscellaneous

	Major release
	Highlights
	New and improved features
	Virtual site with single constructing atom
	Density-guided simulations can apply matrix multiplication and shift vector to structures
	Lower energy drift due to SETTLE
	mdrun now reports energy drift
	FEP using AWH
	Support for cyclic molecules in pdb2gmx
	Stochastic cell rescaling barostat

	Performance improvements
	Added support for multiple time-stepping
	Extend supported use-cases for GPU version of update and constraints
	Reduce time spent in grompp with large numbers of distance restraints
	Support for offloading PME to GPU when doing Coulomb FEP
	CPU SIMD accelerated implementation of harmonic bonds
	Allow offloading GPU update and constraints without direct GPU communication
	Tune CUDA short-range nonbonded kernel parameters on NVIDIA Volta and Ampere A100

	Improvements to GROMACS tools
	Bugs fixed
	Fixed exported libgromacs CMake target
	Fixed unsolicited changing of atom names in pdb file
	pdb2gmx handles ASPH and GLUH inputs better
	Correct excluded perturbed interactions beyond the non-bonded cut-off distance
	Corrected AWH initial histogram size
	Fixed default for tick-mark spacing in gmx xpm2ps
	Fixed LJ Ewald exclusions when used with cut-off electrostatics

	Deprecated functionality
	Changes anticipated to GROMACS 2021 functionality
	gmx mdrun -membed
	gmx mdrun -rerun
	Integrator .mdp options will only contain dynamical integrators
	Much functionality in trjconv, editconf, eneconv and trjcat
	gmx do_dssp to be replaced

	Functionality deprecated in GROMACS 2021
	mdrun -deffnm to be removed
	OpenCL to be removed as a GPU framework
	Intel KNC (MIC) support
	Sparc64 HPC ACE
	Legacy SIMD architecture support
	The mdrun-only build of GROMACS
	Support for version 1 of the hardware locality library hwloc
	Legacy API
	Constant-acceleration MD
	Reading .pdo files in gmx wham

	Functionality deprecated in GROMACS 2020
	Support for 32bit architectures
	Free-energy soft-core power 48
	Support for Armv7

	Functionality deprecated in GROMACS 2019
	Generation of virtual sites to replace aromatic rings in standard residues
	Benchmarking options only available with gmx benchmark
	gmx mdrun -nsteps

	Removed functionality
	Removed GMX_SCSIGMA_MIN environment variable

	Portability
	Python environment
	CMake
	C++ standard
	Cygwin
	Windows
	RDTSCP usage and reporting
	armv8+sve support (ARM_SVE)

	Miscellaneous
	Default values for temperature and pressure coupling intervals are now 10
	Uniform and manual CMake GPU-support configuration
	Configuration-time trivalue options changed from autodetection to boolean on/off
	gmxapi C++ interface
	Unification of several CUDA and OpenCL environment variables
	Dysfunctional parts of the QMMM interface has been removed

	GROMACS 2020 series
	Patch releases
	GROMACS 2020.7 release notes
	Fixes where mdrun could behave incorrectly
	Fixed bug with GPU LINCS occasionally shifting atoms in wrong direction
	Fix calculation of restraint potential for large restraint deviations

	Fixes for gmx tools
	Fixes that affect portability
	Miscellaneous

	GROMACS 2020.6 release notes
	Fixes where mdrun could behave incorrectly
	Cosine acceleration failed to abort if it could not be run

	Fixes for gmx tools
	Fix range checking bug in gmx covar

	Fixes that affect portability
	Miscellaneous

	GROMACS 2020.5 release notes
	Fixes where mdrun could behave incorrectly
	Fix mdrun writing zero dH/dlambda and foreign lambda energies before checkpointing
	Fixed bugs with COM pulling and domain decompostion with weight or >32 ranks
	Fix incorrect AWH free-energies when multiple walkers share a bias
	Fixed conserved energy for MTTK
	Fixed conserved energy for Nose-Hoover
	Fixed kinetic energy and temperature reporting for MTTK
	Fix pull error message with angles and dihedrals
	Fix numerical issues in expanded ensemble
	Fix incorrect electric field strength with applied electric field

	Fixes for gmx tools
	Improve CHARMM support in gmx do_dssp
	Fix non-funtioning gmx h2order -d option
	Fix pull group index handling

	Fixes that affect portability
	Fix building on OSX

	Miscellaneous

	GROMACS 2020.4 release notes
	Fixes where mdrun could behave incorrectly
	Bug fix for the GPU version of LINCS in multiple domain case
	Fix index handling of N-body virtual sites with domain decomposition
	Fix assertion failure with LJ-PME and dispersion correction
	Bug fix for FEP calculations with modular simulator and domain decomposition
	Added workaround for RDRAND not always returning random numbers on Ryzen

	Fixes for gmx tools
	Fix default output with gmx trjcat -demux

	Fixes that affect portability
	CUDA 11.0 supported
	Fix building with MSVC
	Only check for RDTSCP on x86 platforms

	Miscellaneous
	Fix crash of grompp when the whole system is frozen
	Fixes the unexpected change in molecule indexing in output after simulation
	Fix INTERFACE_INCLUDE_DIRECTORIES for libgromacs CMake target

	GROMACS 2020.3 release notes
	Fixes where mdrun could behave incorrectly
	Fixes for gmx tools
	Fix incorrect reading of certain older tpr files
	Fix segmentation fault with gmx lie
	Fix matrix reading in gmx xpm2ps
	Fix uninitialized variable warnings in gmx hbond
	Actually fix gmx do_dssp
	Allow configuration of dssp default path
	Avoid segmentation fault in gmx genrestr

	Fixes that affect portability
	Update MSVC SIMD flags
	Fix error with tinyxml2 linking

	Miscellaneous
	Updated message on using GPU with non-dynamical integrator

	GROMACS 2020.2 release notes
	Fixes where mdrun could behave incorrectly
	Ewald dipole correction incorrect without domain decomposition
	Expanded ensemble simulations restarted from checkpoints
	Fixed free energy calculations with LJ PME
	The velocities of the center of mass are now removed correctly in case of -update gpu
	Fix checkpoint restart with non-zero initial step

	Fixes for gmx tools
	Time output unit fixes
	Fix do_dssp
	Fixes that affect portability
	Give clearer message about not detecting IBM_VSX support in gcc > 9
	Miscellaneous
	Fixed initial DLB state reporting

	GROMACS 2020.1 release notes
	Fixes where mdrun could behave incorrectly
	Fix fatal error with mdrun -multidir with more than 1 rank per simulation
	Fix deadlock in mdrun runs with multiple ranks and separate PME ranks
	Avoid mdrun assertion failure when running with shells and update on a GPU
	Allow large prime factors in the mdrun MPI rank count
	Actually fix PME forces with FE without perturbed q/LJ
	Avoid deadlock when checking for missing DD interactions
	Fix checkpoint restarts using Parrinello-Rahman and md-vv
	Avoid overzealous program abort with orientation restraints
	Add fatal error for mdrun -multidir when simulations sharing state start at different step
	Correct skewed box using modular simulator without DD
	Fix NMR restraints using modular simulator
	Avoid integer overflow when using dispersion correction
	Fix too small pairlist buffer on Intel GPUs
	Fix checkpoint files getting out of sync with simulations sharing data
	Fix simulations using graph and modular simulations
	Fix center of mass motion removal with frozen atoms
	Fix temperature calculation when center of mass motion is removed for part of the system
	Fix possible issue with picking undefined NB kernel types

	Fixes for gmx tools
	Fixes that affect portability
	Add support for ICC NextGen

	Document known issues with OpenCL on Volta and Turing
	Miscellaneous
	Fix check for modified source files in release tarballs

	Major release
	Highlights
	New and improved features
	Density-guided simulations
	Virtual site on the line through two atoms at fixed distance
	gmxapi Python support
	New modular simulator

	Performance improvements
	Up to a factor 2.5 speed-up of the non-bonded free-energy kernel
	Proper dihedrals of Fourier type and improper dihedrals of periodic type are SIMD accelerated
	Avoid configuring the own-FFTW with AVX512 enabled when GROMACS does not use AVX512
	Update and constraints can run on a GPU
	GPU Direct Communications
	Bonded kernels on GPU have been fused
	Delay for ramp-up added to PP-PME tuning

	Improvements to GROMACS tools
	Fixed bug in gmx order -calcdist
	Improved grompp usability by rejecting more invalid .mdp lines
	Added convert-trj
	Added extract-cluster
	Changed behaviour of genion

	Bugs fixed
	gmx mdrun -append now requires that a checkpoint is found
	The Verlet buffer now correctly handles perturbed constraints

	Deprecated functionality
	Changes anticipated to GROMACS 2020 functionality
	gmx mdrun -membed
	gmx mdrun -rerun
	Integrator .mdp options will only contain dynamical integrators
	Much functionality in trjconv, editconf, eneconv and trjcat
	gmx do_dssp to be replaced

	Functionality deprecated in GROMACS 2020
	Support for 32bit architectures
	Free-energy soft-core power 48
	Support for Armv7

	Functionality deprecated in GROMACS 2019
	Generation of virtual sites to replace aromatic rings in standard residues
	Benchmarking options only available with gmx benchmark
	gmx mdrun -nsteps

	Removed functionality
	Group cut-off scheme
	Generalized reaction-field
	gmx anadock
	gmx dyndom
	gmx morph
	gmx mdrun -gcom

	Portability
	Added support for Hygon Dhyana CPU architecture
	Enabled PME offload support with OpenCL on NVIDIA and Intel GPUs
	Fixed building on Solaris with GCC

	Miscellaneous
	grompp now warns if macros in mdp “define” field are unused in topology
	Introduced CMake variable GMX_VERSION_STRING_OF_FORK
	Provide checksum to validate release tarballs
	Updated physical constants to CODATA 2018
	Change grompp warning about decoupling without SD to a note

	GROMACS 2019 series
	Patch releases
	GROMACS 2019.6 release notes
	Fixes where mdrun could behave incorrectly
	Actually fix PME forces with FE without perturbed q/LJ
	Avoid overzealous program abort with orientation restraints
	Calculate Coulomb and LJ reciprocal terms in rerun

	Fixes for gmx tools
	Fixes that affect portability
	Fix compiler errors with Intel compiler

	Miscellaneous
	Avoid cryptic GPU detection errors when devices are unavailable or out of memory

	GROMACS 2019.5 release notes
	Fixes where mdrun could behave incorrectly
	Fix use of uninitialized data on PME only ranks
	Fix out of range memory access with free-energy calculations
	Work around broken Apple Clang compiler in Mac OS Catalina
	Fix error with intermolecular interactions and domain decomposition
	Fix issues with AWH with pull-geometry ‘direction’ to be periodic
	Remove assertion failure with AWH when not using the initial stage

	Fixes for gmx tools
	Make histogram output clearer
	Fix dihedral angle calculation near 180 degree boundary
	Remove problematic output of gmx angle tool

	Fixes that affect portability
	Check that libhwloc headers and runtime match

	Miscellaneous
	Fix .gro file formatting with large boxes
	Fix duplicate PDB CONECT record output
	Fix performance issue with bonded interactions in wrong GPU stream

	GROMACS 2019.4 release notes
	Fixes where mdrun could behave incorrectly
	Fix incorrect pressure when atoms in CMAP cross a box boundary
	Fix incorrect LJ cut-off on GPU when rvdw < rcoulomb
	Fix (unlikely) missing bonded forces with CUDA GPUs and domain decomposition
	Fix incorrect reporting of final kinetic energy and temperature
	Fix segmentation fault in grompp and mdrun with cosine COM pulling

	Fixes for gmx tools
	Fix grompp not adding angle constraints between constraints
	Fix gmx wham with angle and dihedral geometries
	Fix bug in gmx xpm2ps
	Fix bug in gmx anaeig
	Fix issue with demux.pl script
	Made gmx disre work with non-consecutively labeled restraints
	Fixed writing of gro files with index groups
	Made gmx make_ndx keep chain IDs

	Fixes that affect portability
	Disable PME OpenCL on Apple

	Miscellaneous
	Added AMD Zen 2 detection

	GROMACS 2019.3 release notes
	Fixes where mdrun could behave incorrectly
	Fix missing interactions with domain decomposition
	Fix possible floating point exception during minimization.
	Fix segmentation fault when using membrane embedding
	Allow AWH with pull-geometry ‘direction’ to be periodic

	Fixes for gmx tools
	Fixed residue and molecule indexing in selections
	Fix PQR formatting
	Fix gmx wham with angle geometries
	Add some information for grompp error with wrong line endings
	Give meaningful error with too large grid in hbond
	Add some information for syntax errors with include delimiters in grompp

	Fixes that affect portability
	Fixed wider reference SIMD setups
	Fixed build failure with Apple Clang

	Miscellaneous
	Removed non-existent mdp option awh1-dim1-period from user guide
	Add checks for too many interactions during memory allocation

	GROMACS 2019.2 release notes
	Fixes where mdrun could behave incorrectly
	Fix L-BGFS minimizer
	Disallow pull geometry direction-periodic with AWH
	Fixed mdrun -nsteps option

	Fixes for gmx tools
	gmx cluster -clndx indices now correct
	gmx editconf -f in.pdb -o out.pdb again preserves chain IDs
	Tools again accept .tpr files as input
	Fix segmentation fault when preparing simulated annealing inputs

	Fixes that affect portability
	Fix error in AVX 512 detection code

	Miscellaneous
	Added warning with the use of GROMOS force fields
	Prevented internal build of FFTW with clang and AVX-512 SIMD
	Updated performance guide for recent Intel processors with AVX512 instruction support
	Updated release notes for 2019.1

	GROMACS 2019.1 release notes
	Fixes where mdrun could behave incorrectly
	Fix error with 2D/3D dynamic load balancing
	Fix incorrect LJ repulsion force switching on GPUs
	Fix segmentation fault in mdrun with domain decomposition
	Fix segmentation fault with energy minimization with the group scheme
	Correct free-energy Delta H output with mass lambda’s
	Prevent mdrun -rerun from writing incorrect free-energy output
	Fix possible division by zero in enforced-rotation code

	Fixes for gmx tools
	Fix trjconv -ndec
	Fix using index file groups when .tpr file not supplied
	Fix tune_pme

	Fixes that affect portability
	With MSVC, disabled internal clFFT fallback used for OpenCL support
	Explicitly require 64-bit platforms for OpenCL

	Miscellaneous
	Improved docs for applying electric fields

	Major release
	Highlights
	New and improved features
	GROMACS build is now more reproducible
	Update gmx cluster to write correct PDB files and index files with cluster frames
	Allow using COM of previous step as PBC reference
	Transitional external API headers and library
	Restraint module for gmxapi MD extension code
	Enable output of average pull forces and positions

	Performance improvements
	Implemented update groups
	PME on GPU when running free energy perturbations not involving charges
	PME long-ranged interaction GPU offload now available with OpenCL
	Intel integrated GPUs are now supported for GPU offload with OpenCL
	Bonded interactions are now supported for CUDA GPU offload
	Added code generation support for NVIDIA Turing GPUs

	Improvements to GROMACS tools
	pdb2gmx writes total charge differently
	nmeig does thermochemistry
	Implement writing of LaTeX methods in report-methods

	Bugs fixed
	Fix type bug in trilinic DD code
	Ensure domains are large enough for atom motion
	Velocity Verlet integrators output energy averages from correct steps
	Fix chainsep behaviour of pdb2gmx
	grompp correctly checks nstexpanded against nstcalcenergy
	Issue with do_dssp and unknown residues

	Deprecated functionality
	Changes anticipated to GROMACS 2019 functionality
	gmx mdrun -membed
	gmx mdrun -rerun
	Integrator .mdp options will only contain dynamical integrators
	Much functionality in trjconv, editconf, eneconv and trjcat
	gmx do_dssp to be replaced

	Functionality deprecated in GROMACS 2019
	Generation of virtual sites to replace aromatic rings in standard residues
	gmx mdrun -gcom
	Benchmarking options only available with gmx benchmark
	gmx mdrun -nsteps

	Functionality deprecated before GROMACS 2019
	The group cutoff scheme
	QM/MM support for ORCA, GAMESS and MOPAC

	Removed functionality
	NVML support removed on NVIDIA GPUs
	Support for CUDA compute capability 2.x removed
	Contrib directory removed
	BlueGene support removed
	Implicit solvent support removed
	Removed gmx mdrun -multi

	Portability
	Increased the minimum CUDA version required
	Increased the minimum MSVC version required
	Updated the OpenCL requirement to version 1.2
	Preliminary support for ARM Performance Libraries

	Miscellaneous
	grompp discourages use of constraints=all-bonds
	Documentation changed to reStructuredText

	GROMACS 2018 series
	Patch releases
	GROMACS 2018.7 release notes
	Fixes where mdrun could behave incorrectly
	Reverted broken change made in 2018.1
	Work around gcc 7 AVX512 compiler bug

	Fixes for gmx tools
	Fixes to improve portability
	Miscellaneous
	Updated release notes for 2018.6

	GROMACS 2018.6 release notes
	Fixes where mdrun could behave incorrectly
	Correct free-energy Delta H output with mass lambda’s
	Fix incorrect LJ repulsion force switching on GPUs

	Fixes for gmx tools
	Fixes to improve portability
	Fix compiler flags for Power8

	Miscellaneous

	GROMACS 2018.5 release notes
	Fixes where mdrun could behave incorrectly
	Fixed numerical derivative for normal-mode analysis with shell code
	Make large PME grids work on GPU
	Fix LINCS accuracy with OpenMP when constraint triangles are present
	Fix acceleration with cos-acceleration
	Fix checkpoint restart of tpr with infinite step count
	Fix energy history file reading

	Fixes for gmx tools
	Fix trjconv -ndec

	Fixes to improve portability
	Miscellaneous
	Warn for problematic coupling times with Nose-Hoover and Parrinello-Rahman
	Fixed efficiency issue with shell code minimization
	Added code generation support for NVIDIA Turing GPUs

	GROMACS 2018.4 release notes
	Fixes where mdrun could behave incorrectly
	Correct PME forces with free energy without perturbed charges/LJ
	Add constraint contribution to foreign Hamiltonian differences
	Add mass contribution to foreign Hamiltonian differences
	Work around bugs with expanded ensemble runs
	Checkpoint continuations require suitable .tpr files

	Fixes for gmx tools
	Fix mindist output file checks
	Fix gmx helix segmentation faults
	Fix bug in entropy calculation in gmx anaeig

	Fixes to improve portability
	Miscellaneous
	Fix Bromine parameters in amber forcefield files

	Made normal-mode analysis work for more than one molecule
	Disallow rerun using same filename as output file
	Fix issue when building GROMACS without TNG

	GROMACS 2018.3 release notes
	Fixes where mdrun could behave incorrectly
	Multi-domain GPU runs can no longer miss pair interactions
	Fix Conjugate Gradient assertion failure at end of minimization
	Multi-domain Conjugate Gradient minimimization no longer segfaults.
	Fix pairlist buffer with Brownian Dynamics
	Avoid “atom moved to far” errors
	grompp now checks that pull groups are not close to half the box size
	Fixed segmentation fault in mdrun with QM/MM ONIOM scheme
	Correctly specified that PME on GPUs is only supported for dynamical integrators

	Fixes for gmx tools
	Fixed syntax error in make_gromos_rtp.py
	Fix gmx solvate topology updating
	Fix bfactor output error caused by fix for Issue 2511
	Made sure that gmx rms can skip values
	Fix trjconv when not providing structure file
	Fix enforced rotation energy output

	Fixes to improve portability
	Fix nvcc host compiler check triggering
	Report up to date hwloc version information
	Disable single compilation unit with CUDA 9.0

	Miscellaneous
	Avoid aborting mdrun when GPU sanity check detects errors
	Improve OpenCL kernel performance on AMD Vega GPUs

	GROMACS 2018.2 release notes
	Fixes where mdrun could behave incorrectly
	Prevented OpenCL timing memory leak
	Fixed MPI error after constraint failure during energy minimization
	Fixed moving frozen atoms with constraints
	Fixed COM removal moving frozen atoms
	Fixed AWH too infrequent checks for covering
	Fixed AWH continuation consistency checks
	Fixed AWH awh-nsamples-update value checking

	Fixes for gmx tools
	Fixed buffer overflow in grompp warnings
	Fixed infinite loop in gmx solvate
	Fixed enemat when the .edr file had no matching energy groups
	Fixed PQR file output
	Fixed crash in gmx solvate
	Added check for unallowed periodic setups

	Fixes to improve portability
	Fixed CUDA compilation on Windows.
	Fixed SIMD support for POWER systems in double precision with gcc 8
	Fixed possible illegal instruction on KNL with Intel compiler

	Miscellaneous
	Information message about OMP_NUM_THREADS now sent to log file
	Fixed inadvertent disabling of SIMD version of the integrator
	Fixed own FFTW builds on certain AVX2/AVX512 hardware
	Switched to using more standard CMake variables for installing on GNU systems
	Several documentation and output improvements

	GROMACS 2018.1 release notes
	Fixes where mdrun could behave incorrectly
	Fixed leap-frog integrator with Nose-Hoover T coupling and Parrinello-Rahman P coupling
	Used SIMD bondeds without perturbed interactions
	Fixed bonds whose displacement was zero
	Fixed centre-of-mass motion removal on part of the system
	Fixed multi-simulations with multiple ranks per simulation
	Improved inter-simulation signalling implementation
	Fixed FEP calculations with SHAKE
	Fixed handling of mdp define statement assigning preprocessor values
	Prevented log file energy average printing dividing by zero
	Correctly set cutoff modifiers in forcerec
	Fixed box scaling in PME mixed mode using both GPU and CPU
	Re-enabled GPU support with walls and 1 energy group
	Removed tumbling ice-cube warning with SD integrator
	Fixed assertion failure in test-particle insertion
	Avoided mdrun echoing “No option -multi”
	Improved mdrun handling when GPUs are present but unavailable
	Fixed crash with AWH and awh1-equilibrate-histogram=yes
	Fixed issues with AWH and bias sharing
	Fixed virial with AWH and domain decomposiion
	Fixed restart bug with pull geometry direction-periodic

	Fixes for gmx tools
	Added check in grompp to avoid assertion failure
	Fixed grompp net charge check
	Fixed issue with adding selection groups for TNG output
	Fixed help text and functionality of pdb2gmx -missing

	Fixes to improve portability
	PME on Fermi-era GPUs on large systems now works
	GoogleTest death tests are now used in a more portable way
	Tests for GPU utility functionality are now more robust
	Used more portable python shebangs
	Added work-around for GCC 5.3 targetting AVX512 hardware
	Used isfinite unambiguously
	Worked around gcc-6 bug in tabulated group non-bonded kernels
	Detected correct AMD Zen SMT topology
	Fixed POWER VSX SIMD usage for upcoming gcc version 8
	Fixed clang 6 with CUDA 9

	Miscellaneous
	Made multi-atom TPI reproducible with different compilers
	Documentation enhancements

	Major release
	Highlights
	New and improved features
	Added support for AWH biasing
	Dual pair-list buffer with dynamic pruning
	Added physical validation suite
	Added reporting of conserved quantities for coupling algorithms
	Added acceleration correction VCM mode
	Changed handling of gmx mdrun -gpu_id
	Added log output for equivalent 1x1 pair-list setup
	New mdp input for electric fields
	EW3DC for non-neutral systems
	Reduce rounding errors in SETTLE
	Made gmx mdrun -pforce terminate with non-finite forces

	Performance improvements
	Implemented support for PME long-ranged interactions on GPUs
	Added more SIMD intrinsics support for PME spread and gather
	Added SIMD intrinsics version of simple update
	Add SIMD intrinsics version of Urey-Bradley angle kernel
	Use OpenMP up to 16 threads with AMD Ryzen when automating run setup
	128-bit AVX2 SIMD for AMD Ryzen
	Choose faster nbnxn SIMD kernels on AMD Zen
	Enabled group-scheme SIMD with GMX_SIMD=AVX2_128
	Detect AVX-512 FMA units to choose best SIMD
	Speed up nbnxn buffer clearing
	Tweaked conditional in the nonbonded GPU kernels

	Improvements to GROMACS tools
	Split off the NMR related analyses from gmx energy.
	Added selection-enabled gmx trajectory
	Decreased memory usage in gmx traj and gmx trjconv
	Made TNG writing work with multiple identical steps
	Improved frame time/step handling in gmx trjconv
	Fixed gmx trjconv to always dump at correct time
	Clarified gmx editconf help text
	Added option -water tips3p to pdb2gmx.
	Removed incorrect comment for CHARMM tips3p
	Avoided gmx grompp charge warning from merely rounding error
	Improved pdb2gmx for nonstandard residue types
	Allowed empty lines in hdb files
	Changed to no longer require matching names between rtp and tdb files
	Made duplicate atoms in bondeds an error in gmx grompp
	Made gmx grompp -r obligatory with position restraints
	Fixed gmx msd when using COM removal and molecules
	Fixed index error in gmx chi
	Fixed gmx grompp complexity for large exclusion orders
	Fixed gmx density for non-mass calculations
	Fixed gmx check for tprs with different numbers of atoms

	Bugs fixed
	Fixed multiple time stepping with Parrinello-Rahman and Nose-Hoover.
	Applied Berendsen pressure coupling only at nstpcouple steps
	Added missing Ewald correction for PME-User
	Fixed incorrect dV/dlambda for walls
	Supported OpenMP for orientation restraints
	Fixed orientation restraint reference
	Used graph with orientation restraints
	Fixed Ekin at step 0 with COM removal
	Fixed gmx grompp with Andersen massive and no COM removal
	Improved Verlet buffer constraint estimate
	Fixed virtual site generation for water oxygens not named OW
	Fixed thread-MPI rank choice for orientation restraints
	Fixed some incorrect behavior with gmx solvate
	Fixed DD exact continuation in reproducible node
	Made mdrun only stop at nstlist steps with mdrun -reprod
	Added check for GPU detection support before detecting GPU devices
	Removed duplicated lines from OPLS ffbonded.itp
	mdrun no longer warns about NVML clocks that are at max
	Used reduced default tolerances for tpx comparison
	Fixed return values of frame-reading functions
	Removed PBC before generating TPR with group scheme
	Fixed PBC error in gmx_spatial
	Documented power spectrum options of gmx velacc
	Changed to require .tpr file for gmx cluster
	Disallowed ascii formats for gmx trjcat
	Improved grompp missing-parameters error message
	Checked for large energy at first step
	Disallowed combination of PME-user and verlet cutoff
	Avoided confusing message at end of non-dynamical runs
	Changed to require -ntmpi when setting -ntomp and using GPUs

	Removed features
	Removed hybrid GPU+CPU nonbonded mode
	QM/MM: removed optimization and transition-state search
	Updated application clock handling on Pascal+ GPUs
	Removed continuation from gmx convert-tpr

	Portability
	Enabled compiling CUDA device code with clang
	Increased the oldest cmake, compiler and CUDA versions required
	Added check that CUDA available hardware and compiled code are compatible
	Disabled ARM Neon native rsqrt iteration used in short-ranged interactions
	Avoided FTZ triggering simd test failures
	Fixed OpenCL compiles on Mac OS
	Tested that nvcc/host compiler combination works
	Added AVX_512 and KNC symbols to FFTW SIMD test
	Implemented changes for CMake policy 0068

	Miscellaneous
	Updated note in manual on stochastic dynamics integrator
	Added grompp note for Parrinello-Rahman + position restraints
	Clarified the description of Fmax during energy minimization
	Improved vsite parallel checking
	Added partial support for writing masses and partial charges with TNG files
	Updated TNG to version 1.8.1
	Added load balance fraction to DLB print
	Added reference for dihedral function in OPLS.
	Updated many aspects of the documentation
	Updated mdrun signal help text
	Changed to handle erroneous command line args better
	Changed to no longer allow multiple energy groups for GPU runs
	Removed duplications in GMXLIB search paths
	Changed to no longer write reference pull group 0 to log

	GROMACS 2016 series
	Patch releases
	GROMACS 2016.5 Release Notes
	Fixes where mdrun could behave incorrectly
	Fixed triclinic domain decomposition bug
	Required -ntmpi with setting -ntomp with GPUs
	Prevented dynamic load balancing activating immediately after exchange
	Avoided confusing message at end of non-dynamical runs
	Changed to issue fewer messages when -cpi checkpoint file is not present
	Disallowed combination of PME-user and Verlet cutoff
	Added missing Ewald correction for pme-user
	Fixed thread-MPI rank choice for orientation restraints
	Fixed nstlist increase warning print
	Removed incorrect comment for CHARMM tips3p
	Fixed incorrect dV/dlambda for walls
	Fixed warning for confout with periodic molecules
	Fixed wrong megaflop accounting

	Fixes for gmx tools
	Fixed gmx grompp net charge check
	Extended gmx grompp missing energy term message
	Fixed gmx genion charge summation accuracy
	Fixed gmx check for tprs with different #atoms
	Fixed gmx grompp with Andersen massive and no COM removal

	Improved documentation
	Updated documention of Nose-Hoover output
	Clarified docs for Fmax in EM

	GROMACS 2016.4 Release Notes
	Fixes where mdrun could behave incorrectly
	Disabled PME tuning with the group scheme
	Fixed value of Ewald shift
	Fixed orientation restraint reference
	Fixed bugs with setup for orientation restraints
	Worked around missing OpenMP implementation in orientation restraints
	Enable group-scheme SIMD kernels on recent AVX extensions
	Fix FEP state with rerun
	Fixed COM pull force with SD
	Fix PBC bugs in the swap code
	Fixed flat-bottomed position restraints with multiple ranks
	Fixed null pointer print in DD
	Improved the “files not present” error message
	Fixed LJ-PME + switch grompp error
	Fixed unused SIMD PME table kernel
	Fixed bugs in most double-precision Simd4 implementations
	Avoid inf in SIMD double sqrt()
	Fix NVML error messages
	Fixed IMD interface malfunctions
	Fixed initial temperature reporting
	Fix exception in SIMD LJ PME solve

	Fixes for gmx tools
	Fixed memory access issues in gmx solvate
	Fixed a consistency check in gmx make_edi for flooding
	Supported quiet trajectory-handling I/O

	Improved documentation
	Migrated much content from the wiki to the user guide
	Corrected the PDF manual to reflect that all tools are called gmx <tool>
	Clarified gmx editconf help text
	Added missing .mdp file documentation for the enforced rotation module
	Fixed parameter description for dihedral_restraints
	Replaced instance of “group” by “coord” in pull .mdp documentation

	Portability enhancements
	Supported CUDA 9/Volta for nonbonded kernels
	Really enabled AVX512 in the GROMACS-managed build of FFTW
	Fixed aspects for compiling and running on Solaris
	Fixed AVX512F compiler flags
	Fixed compiler flags for using MKL
	Fixes compilation issues with ARM SIMD

	GROMACS 2016.3 Release Notes
	Fixes where mdrun could behave incorrectly
	Fixed mdrun with separate PME ranks hanging upon exit
	Fixed handling of previous virials with md-vv integrator
	Fixed an incorrect check that nstlog != 0 for expanded ensembles

	Fixes for gmx tools
	Fixed gmx tune_pme detection of GPU support
	Fixed spacing in gmx tune_pme call to thread-MPI mdrun
	Fixed minor issues in gmx traj -av -af
	Removed rogue printing to xvg file in gmx mindist
	Fixed bug in gmx solvate -shell if it yielded 0 SOL.
	Corrected output of gmx do_dssp -sc

	Improved documentation
	Made several minor improvements to documentation and messages to users
	Documented that we now support AMD GCN on Mesa/LLVM
	Documented running Clang static analyzer manually

	Portability enhancements
	Enabled avx512 in the GROMACS FFTW build only if the compiler supports it
	Worked around false positives in SIMD test from bug in xlc 13.1.5
	Fixed compile with icc of GMX_SIMD=None

	GROMACS 2016.2 Release Notes
	Fixes where mdrun could behave incorrectly
	Add grompp check for equipartition violation risk for decoupled modes
	Disallow overwriting of dihedral type 9
	Fixed flat-bottom position restraints + DD + OpenMP
	Fixed multi-domain reruns

	Fixes for mdrun performance issues
	Corrected CUDA sm_60 performance

	Fixes for gmx tools
	Fixed some FFT handling in cross-corrrelation calculations
	Fixed gmx rmsf -q -oq
	Fixed crash in gmx order
	Fixed minor trjconv bug
	Fixed time label print in gmx vanhove
	Handled issuing warnings correctly in xpm2ps and membed
	Corrected documentation about eigenvalue handling
	Made editconf B-factor attachment more useful in practice
	Fixed possible memory error with long selections
	Fixed use of position variables with plus/merge

	Improved documentation
	Made several minor improvements to documentation and messages to users
	Clarified use of tau-p and pcoupltype

	Portability enhancements
	Fixed x86 conditional on IBM s390x

	Build system enhancements
	Fixed compilation with CMAKE_CXX_FLAGS=”-Wall -Werror”
	Stopped trying to use objdump –reloc in the build system on Mac
	Improved the support for plugin loading in the build system
	Turn off hwloc support when static lib found
	Fixed build with GMX_EXTERNAL_TNG=ON

	House-keeping that reduces users’ problems
	Mdrun prints invalid performance data less often
	Added a runtime check for number of threads in bonded code
	Fixed integer narrowing in TNG reading for long trajectories
	Fixed logic of TRR reading

	GROMACS 2016.1 Release Notes
	Made distance restraints work with threads and DD
	Fixed Ewald surface+3DC corrections
	Fixed opening of wall table files
	Fixed bug in gmx insert-molecules.
	Made virial reproducible
	Updated to support FFTW 3.3.5
	Permitted automatic load balancing to disable itself when it makes the run slower
	Improved the accuracy of timing for dynamic load balancing with GPUs
	Corrected kernel launch bounds for Tesla P100 GPUs
	Improved logic handling if/when the run is terminated for SETTLE warnings
	Fixed bug in gmx wham for reading pullx files.
	Fixed ouput bug in gmx wham
	Fixed deadlock with thread-MPI
	Made error reporting in grompp more user friendly
	Fixed SIMD suggestion for VMX
	Fixed script xplor2gmx.pl to work with GMXDATA
	Fixed default nice level in mdrun-only build
	Fixed math-test false positive
	Improved documentation
	OpenCL error string are now written, instead of cryptic error codes
	Fixed build with GMX_USE_TNG=off
	Removed variable-precision .gro writing
	Fixed BG/Q platform files and install guide
	Reduced the memory required for free-energy simulations

	Major release
	Highlights
	New and improved features
	Changed to require a C++11 compiler
	Changed to support only CUDA 5.0 and more recent versions
	Allowed rcoulomb > rvdw with PME
	Added optional support for portable hardware locality (hwloc)
	Made normal-mode calculations work with shells and vsites
	Changed pull group count for coords stored in tpr file
	Added pull coordinate geometry angle-axis
	Added pull coordinate geometry dihedral (angle)
	Added pull coordinate geometry angle
	Replaced pull-print-com1,2 mdp option with pull-print-com
	Added pull potential flat-bottom-high
	Added gmx grompp check for pull group
	Added new swapping functionality to computational electrophysiology module
	Fixed logic for DD missing-interactions check
	Permitted forces and velocities to be written to compressed TNG
	Added new notes to the user when coupling algorithms are unavailable
	Added mdrun check for finite energies
	Added gmx grompp check for unbound atoms
	Improved multi-simulation signalling
	Added working directory to things reported in .log file
	Prevented fragile use cases involving checkpoint restarts and/or appending
	Removed warning after OpenMP core-count check
	Preparation for hardware detection might try to force offline cores to work
	Added new suggestion for users to try e.g. hyper-threading, if its disabled

	Performance improvements
	GPU improvements
	Improved support for OpenCL devices
	Added Lennard-Jones combination-rule kernels for GPUs
	Added support for CUDA CC 6.0/6.1
	Improved GPU pair-list splitting to improve performance
	Improved CUDA GPU memory configuration
	Automatic nstlist changes were tuned for Intel Knight’s Landing

	CPU improvements
	Optimized the bonded thread force reduction
	Used SIMD transpose-scatter in bonded force reduction
	Added SIMD implementation of Lennard-Jones 1-4 interactions
	Added SIMD implementation of SETTLE
	Added SIMD support for routines that do periodic boundary coordinate transformations

	Threading improvements
	Improved Verlet-scheme pair-list workload balancing
	Improved the threading of virtual-site code
	Add OpenMP support to more loops
	Add OpenMP parallelization for the pull code

	Other improvements
	Multi-simulations are coupled less frequently

	Improvements to GROMACS tools
	Supported replacing solvent in gmx insert-molecules
	Default random seeds have changed for some analysis tools
	Made gmx solvate and gmx insert-molecules work better with PDB inputs
	Tools in the new analysis framework can read trajectory files with subsets
	Made moleculetype name case sensitive
	Added number density normalization option for gmx rdf
	Simplified gmx genconf by removing -block, -sort and -shuffle
	Used macros for units and conversions in gmx wham
	Improved gmx sasa error message
	Made gmx vanhove work without PBC
	Fix gmx hbond group overlap check
	Made gmx dos work again.
	Add checks for too much memory in gmx nmeig

	Bugs fixed
	Fixed two problems related to restarts for velocity-Verlet
	Fixed Verlet buffer calculation with nstlist=1
	Fixed large file issue on 32-bit platforms
	Avoided using abort() for fatal errors
	Fixed possible division by zero in polarization code
	Avoided numerical overflow with overlapping atoms in Verlet scheme
	Relax pull PBC check
	Add detection for ARMv7 cycle counter support
	Introduced fatal error for too few frames in gmx dos
	Properly reset CUDA application clocks
	Fixed replica-exchange debug output to all go to the debug file
	Fixed gmx mdrun -membed to always run on a single rank
	Fixed issues with using int for number of simulation steps
	Fixed trr magic-number reading
	Changed to use only legal characters in OpenCL cache filename

	Fixes for bugs introduced during development
	Fixed bug in v-rescale thermostat & replica exchange
	Fixed vsite bug with MPI+OpenMP
	Fixed some thread affinity cases
	Removed OpenMP overhead at high parallelization
	Removed std::thread::hardware_concurrency()
	Added support for linking against external TinyXML-2
	Fixed data race in hwinfo with thread-MPI
	Fixes for Power7 big-endian
	Reduce hwloc & cpuid test requirements
	Work around compilation issue with random test on 32-bit machines
	Updated gmx wham for the new pull setup
	Fix membed with partial revert of 29943f

	Removed mdrun features
	Removed SD2 integrator
	Removed the twin-range scheme
	Removed support for twin-range with VV integrators
	Removed Reaction-Field-nec
	Removed AdResS module
	Removed mdrun -compact
	Removed lambda printing from mdrun log file
	Removed GMX_NOCHARGEGROUPS

	Miscellaneous
	Various improvements to documentation and tests
	Improved make_ndx help text
	Addded checks on number of items read in mdp statements
	Work around glibc 2.23 with CUDA
	Split NBNXN CUDA kernels into four compilation units
	Added stream flushes when not writing newline character
	Supported cmap with QMMM
	Upgraded support for lmfit library
	libxml2 is no longer a dependency
	Disable automated FFTW3 builds on Windows
	Remove warnings on checkpoint mismatch
	Report the filename and the line number on failure
	Handled constraint errors with EM
	Disable static libcudart on OS X
	Fixed rare issue linking with clock_gettime
	Disabled NVIDIA JIT cache with OpenCL

	Release notes for older GROMACS versions
	GROMACS 5.1 series

	Python Module Index

