Main Table of Contents

Wed 13 Nov 2013


g_rotacf calculates the rotational correlation function for molecules. Atom triplets (i,j,k) must be given in the index file, defining two vectors ij and jk. The rotational ACF is calculated as the autocorrelation function of the vector n = ij x jk, i.e. the cross product of the two vectors. Since three atoms span a plane, the order of the three atoms does not matter. Optionally, by invoking the -d switch, you can calculate the rotational correlation function for linear molecules by specifying atom pairs (i,j) in the index file.


g_rotacf -P 1 -nparm 2 -fft -n index -o rotacf-x-P1 -fa expfit-x-P1 -beginfit 2.5 -endfit 20.0

This will calculate the rotational correlation function using a first order Legendre polynomial of the angle of a vector defined by the index file. The correlation function will be fitted from 2.5 ps until 20.0 ps to a two-parameter exponential.


-f traj.xtc Input Trajectory: xtc trr trj gro g96 pdb cpt
-s topol.tpr Input Run input file: tpr tpb tpa
-n index.ndx Input Index file
-o rotacf.xvg Output xvgr/xmgr file

Other options

-[no]h bool no Print help info and quit
-[no]version bool no Print version info and quit
-nice int 19 Set the nicelevel
-b time 0 First frame (ps) to read from trajectory
-e time 0 Last frame (ps) to read from trajectory
-dt time 0 Only use frame when t MOD dt = first time (ps)
-[no]w bool no View output .xvg, .xpm, .eps and .pdb files
-xvg enum xmgrace xvg plot formatting: xmgrace, xmgr or none
-[no]d bool no Use index doublets (vectors) for correlation function instead of triplets (planes)
-[no]aver bool yes Average over molecules
-acflen int -1 Length of the ACF, default is half the number of frames
-[no]normalize bool yes Normalize ACF
-P enum 0 Order of Legendre polynomial for ACF (0 indicates none): 0, 1, 2 or 3
-fitfn enum none Fit function: none, exp, aexp, exp_exp, vac, exp5, exp7, exp9 or erffit
-ncskip int 0 Skip this many points in the output file of correlation functions
-beginfit real 0 Time where to begin the exponential fit of the correlation function
-endfit real -1 Time where to end the exponential fit of the correlation function, -1 is until the end